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Two-stage coarsening mechanism in a Kkinetically constrained model of an attractive colloid
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We study an attractive version of the East model using the real-space renormalization group (RG) introduced
by Stella er al. The former is a kinetically constrained model with an Ising-like interaction between excitations
and shows striking agreement with the phenomonology of attractive colloidal systems. We find that the RG
predicts two nonuniversal dynamic exponents, which suggests that in the out-of-equilibrium regime the model
coarsens via a two-stage mechanism. We explain this mechanism physically and verify this prediction numeri-
cally. In addition, we predict that the characteristic relaxation time of the model is a nonmonotonic function of
attraction strength, again in agreement with numerical results.
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I. INTRODUCTION

In this paper we study the attractive East model intro-
duced by Geissler and Reichman [1], a kinetically con-
strained model designed to capture the physics of colloidal
suspensions with short-ranged attractions [2]. Kinetically
constrained models (KCM’s) [3—6] are systems in which cer-
tain trajectories between configurations are suppressed [7].
As a result, they possess interesting slow dynamics [8—-14].
Simple KCM'’s, such as the facilitated spin models intro-
duced by Fredrickson and Andersen [3] (hereafter the FA
model) and Jickle and Eisinger [5] (hereafter the East
model), display the slow, cooperative relaxation characteris-
tic of supercooled liquids near the glass transition [13,14].
For a review of the glassy dynamics of KCM’s see [15].

The attractive East model possesses in addition to a ki-
netic constraint a static attraction between facilitating excita-
tions. It was shown numerically [1] that this model captures
some key features of the phenomenology of attractive col-
loids, such as a reentrant (nonmonotonic) time scale associ-
ated with relaxation in equilibrium and logarithmic relax-
ation near reentrance [2].

In this paper we study the attractive East model using the
real-space renormalization group (RG) scheme of Refs.
[16,17]. Our reasons for doing so are twofold. First, we wish
to determine analytically the nature of the model’s out-of-
equilibrium coarsening behavior. We expect this behavior to
caricature that of a real colloid whose attraction strength is
fixed but whose equilibrium free volume alters suddenly in
response to a pressure change. Such experiments are needed
to distingush between various scenarios of attractive glassi-
ness that account for equilibrium behavior. The equilibrium
behavior of the attractive East model, modeling a set of ex-
periments in which the free volume remains fixed but the
attraction strength varies, was explored in Ref. [1]. Second,
we wish to test the utility of the real-space RG scheme,
which has previously been applied to quantum spin systems
[17], reaction-diffusion systems [16], and simple kinetically
constrained models [18].

Our key results, which we present in Sec. VI, are as fol-
lows. We show that the first-order RG scheme predicts two
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nonuniversal (parameter-dependent) dynamic exponents,
which suggests that in the out-of-equilibrium regime the
model coarsens via a two-stage mechanism. On short wave-
lengths, relaxation is approximately diffusive; on longer
wavelengths, relaxation is dramatically subdiffusive. We ex-
plain this mechanism in terms of a competition between the
static attraction and the kinetic constraint, and verify this
prediction numerically, as illustrated in Fig. 3, below. In ad-
dition, using an uncontrolled second-order adaptation of the
RG scheme, we show in Sec. VII that the characteristic re-
laxation time of the model is a nonmonotonic function of
attraction strength, in agreement with the numerical results
of Ref. [1].

This paper is organised as follows. In Sec. II we define the
attractive East model and for convenience cast its evolution
operator in the guise of a quantum spin model. In Sec. III we
explain the RG scheme of Refs. [16,17]. In Sec. IV we apply
this RG to the ordinary East model, emphasizing the physical
interpretation of the scheme, and in Sec. V we do the same to
its attractive counterpart. We thus demonstate that the for-
malism can, with little modification, treat both models.
Those readers interested principally in the results of our
study should focus on Secs. VI and VII, in which we present
our findings, to first and second order, respectively, summa-
rized above. We conclude in Sec. VIIIL.

II. THE MODEL

The attractive East model introduced in Ref. [1] is a chain
of N binary occupancies n;=0, 1 with periodic boundary con-
ditions, an interacting reduced Hamiltonian

N N
H=- 52 ning + h(e,c)E nj, (1)
i=1 i=1

where €>0, and the kinetic constraint of the East model [5].
This constraint dictates that a cell i may change state only if
it possesses a left neighbor in the excited state (n;_;=1). We
consider these occupancies to represent immobile (7;=0) or
mobile (n;=1) regions of the colloid, defined over a suitable
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microscopic coarse-graining time [1,13]. We define the equi-
librium concentration of mobile regions as ¢, and we shall
refer to occupancies n;=1 as “excitations.”

The attraction € induces correlations between excitations.
It should not be taken to represent a literal attraction between
mobile regions of a real colloid, but instead to describe the
tendency of colloidal particles to attract one another [19].
These attractions may be mediated by dissolving a polymer
in the colloid or by changing the concentration of a dissolved
salt solution. We regard the field &(e,c) as an auxiliary vari-
able that depends on ¢ and € in such a way that ¢ is un-
changed by varying e: in other words, varying the strength of
the intermolecular attraction does not change the system’s
free volume. The required adjustment of field with attraction
strength follows from the standard result for the magnetiza-
tion of an Ising model in d=1 [20],

1-2
— 6_6/2). @)

h(e,c)=€+2 sinh_l(
2Ve(1-c¢)

The dynamics of the model is governed by a master equation

aP(n,1) == 2, wn)P(n,t) + > w(l =n)P(n',1), (3)

1 L

where P(n,f) is the probability that the system has configu-
ration n={n,,...,n;,...,ny} at time ¢ (n' is the configuration
n with occupancy n;— 1-n;) and w(n;) =w(n;,{n;}) is the
probability per unit time that n; will change state. The {n;}
are the nearest neighbors of i.

We now pass to a quantum formalism [21] in the manner
described in [18]. Equation (3) is recast as the Euclidean
Schrodinger equation

o (0)==2 LIP(@), @)

where the Liouvillian £, is
Li — Ci({sj}){e—[ﬁ(n/)—H(n)]/2 _ e—[H(n)—H(n ')]/Z&i} (5)

and ¢; is the spin-flip operator defined via ,f(n)=f(n')d;.
The state vector |W(¢)) can be written as

[W() = {2;, P(n,1)|n), (6)

with [n)=IIY, ®|n;). The kinetic constraint is C;({n;}})=n,_,
and so suppresses the dynamics of cell i if cell i—1 is unex-
cited.

We can write the Liouvillian (5) as [18]

£i:11® ®n,-_1 ®€i’(2)®ni+1 ® 1i+2® ®1N+11
® N R H® Vi ® 1 ® -+ ® 1y, (7)

where v;=1-n;, is the vacancy operator. The full Liouvillian
is composed of a sum of terms like those in Eq. (7), with one
factor for each site of the lattice. All factors in Eq. (7) are
2 X 2 matrices.

We can write the Liouvillian schematically as
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L=n®{(,@n+n®l,Qu, (8)

where we have dropped site labels for brevity. Using the

representation
bl
7=\ o) "o o)

we can write the single-site Liouvillians as

oh2kel2  _ ~hi2+kel2
ek = b

_ phi2kel2  ~hi2+kel2 (10)
where the excitation number k=1,2. The off-diagonal ele-
ments of €, control the rates for the flipping processes: if n;
has two neighboring excitations (k=2), it will excite with
rate e”"/2*€ and deexcite with rate ¢"/?>~€ [note the global mi-
nus sign in Eq. (4)]. If only its left neighbor is excited (k
=1), n; will excite with rate e”/>*¥2> and deexcite with rate
e?=¢2_Since h— e is a monotonically decreasing function of
€ [1], the attraction € encourages excitations to congregate.

The diagonal elements of €, are such that the sum of
elements in each column is zero, a property that is required
by any probability-conserving stochastic process. We shall
call this property stochasticity [16], and we shall require that
it be preserved under renormalization.

III. REAL-SPACE RENORMALIZATION GROUP

We shall study the attractive East model using a real-
space RG developed in the 1980s and since applied to quan-
tum spin models [17], reaction-diffusion systems [16], and
nonequilibrium exclusion models [22]. The procedure is as
follows. First, one partitions the lattice into blocks of b spins;
we shall take »=2. Then one splits the Liouvillian £ into a
reference, intrablock piece £ and an interblock interaction V
in which an expansion will be made. By performing a suit-
able coarse graining from the original lattice to a renormal-
ized block-spin lattice, one obtains a coarse-grained or renor-
malized Liouvillian from which one may infer the scaling
properties for the model in question. In Ref. [18] we showed
that this scheme yields the low-temperature critical behavior
of some simple kinetically constrained models in one dimen-
sion.

Because the attractive East model possesses three-site in-
teraction terms, we must go to O(V?) in the perturbation
expansion. We shall outline the procedure; see [17] for more
details.

We first split the Liouvillian into a reference piece and a
perturbation,

L=Ly+V. (11)

This splitting is arbitrary, and we shall choose the reference
piece L to be the simplest term that we expect to capture the
physics of the model under study, subject to the requirement
that it consist only of intrablock operators. The interaction V,
which constitutes the remainder of the Liouvillian, includes
in addition interblock interactions. For example, £, might
look like
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Lo=n® ) (1x1), (12)

where the brackets indicate the way in which we choose to
partition sites into renormalized cells. The interblock inter-
action V might then look like

V=(1®n)e{xl), (13)

where now the nontrivial operators n and € are split between
the notional renormalized cells.

Next, we introduce the right eigenstates |¢;)={|g,).
the reference Liouvillian,

£0|¢i> :E¢.|¢i>v (14)

where |¢;) includes both ground states |g;) with E, =0 and
excited states |e;) with E, ,#0. We shall find that the refer-
ence state we choose for the attractive East model has three
ground states (j=1,2,3) and one excited state (/=1). Ground
states describe slow processes, and excited states describe
fast processes. Note that here and subsequently the excited
states to which we refer are excited states of Liouvillians
(evolution operators), rather than Hamiltonians (energy func-
tions). The original RG scheme [17] indeed involved Hamil-
tonians, whereas the subsequent extension of the scheme to
nonequilibrium processes [16], used in this paper, exchanged
Hamiltonians for Liouvillians by exploiting the similarity be-
tween equations such as Eq. (4) and bone fide Schrodinger
equations.

We require also the left eigenstates of the reference Liou-
villian,

<¢i|£0=<¢i|E¢i7 (15)

which are generally distinct from the right eigenstates for
non-Hermitian Liouvillians.

The renormalization is executed by projecting the Liou-
villian onto an arbitrarily chosen coarse-graining subspace S
of the reference piece, corresponding to its ground or low-
lying excited states [16,17]. What remains is an evolution
operator for slow, coarse-grained dynamical processes;
whether this captures successfully the physics of the model
depends on how valid are the arbitrary choices one makes,
both of the reference piece and of the coarse-graining sub-
space.

We shall construct the coarse-graining subspace S from
only the ground states of the reference Liouvillian, in which
case we have [16,17]

Ly(i,))=0, (16)

Ly(i.j) =~ E (G, |V|¢k> <¢>k|V|G> (18)

where the |G,) (and their left counterparts) are linear com-
binations of the ground-state vectors of L. The subscripts on
the matrix elements £(i,j) refer to the order of the perturba-
tion series. The second-order result (18) is required only if
the Liouvillian of the model under study possesses n-site
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interaction terms, with n>>2, as is the case for the attractive
East model. For the ordinary East model, which contains
only two-site interactions, the first-order term (17) is suffi-
cient. The sum in Eq. (18) runs over all eigenstates of £, not
assigned to the subspace S. We shall call this the comple-

mentary subspace S.
The factor of E;i in Eq. (18) weights the relative contri-

butions of excited states to the renormalization procedure.
States with small eigenvalues, those corresponding to slower
processes, are accorded more importance as a consequence
of this factor.

The excited states divide into two classes: those contain-
ing single-cell excitations and those containing two-cell ex-
citations. Higher-order contributions vanish by virtue of the
orthogonality between distinct eigenvectors and the fact that
the model we study contains at most three-site, or two-cell,
interactions. To second order we acquire contributions from
one-cell and two-cell excitations.

Note that according to the RG prescription of Stella et al.,
the sum in the second-order result (18) runs over all eigen-
states of the reference Liouvillian £, not assigned to the
subspace S. In our treatment of the attractive East model we
shall arbitrarily discard one of the right ground eigenstates of
Lo, |g3), and we shall explain in detail in the following sec-
tion our physical reasons for doing so. To first order in the
RG scheme this omission introduces no mathematical com-
plications. However, to second order, the sum in Eq. (18)
becomes ill defined. We find that £, admits one eigenstate
with nonzero eigenvalue, and we can incorporate this into
the sum without difficulty. However, by omitting |g;) from
the coarse-graining subspace S, and thereby assigning it to

the complementary subspace S, we are required by the RG to
sum over this state in Eq. (18). Two issues arise. The first is

that while |g5) is included in the subspace S, we assign its
left counterpart {(g;| to the coarse-graining subspace S (we
choose to do this in order to ensure probability conserva-
tion). Thus the projection of (g| in the complementary sub-

space S is the zero vector. The second issue is that the ei-
genvalue associated with the omitted state is zero, and so the
denominator E, vanishes. As a consequence of these two
points, the relevant term in Eq. (18) contains a factor 0/0 and
so is undefined. Since we cannot treat this term in any mean-
ingful way, we choose to discard it. It should therefore be
borne in mind that at second order our treatment is entirely
uncontrolled in the mathematical sense. Nonetheless, we
shall present our results obtained in this manner, which ap-
pear to reproduce the numerically observed [1] nonmono-
tonic behavior of the attractive East model’s charateristic re-
laxation time.

It might be possible to justify our treatment to second
order as an embedding onto a three-state coarse-graining
subspace S (spanning all of the ground space), followed by
a projection onto the original two-dimensional space S [22].
This procedure would still be uncontrolled, however. An al-
ternative means of regularizing the troublesome term in Eq.
(18) might be to modify the physics of the model in a con-
trollable way. The physical root of the mathematical problem
discussed above is the (total) asymmetry of the attractive
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East model’s dynamics. One could imagine replacing the at-
tractive East model with a model interpolating between it
and an attractive version of the FA model, similar to the
interpolation model of Buhot and Garrahan [23]. The RG
properties of the latter were studied in [18], where it was
shown that the ground-state vector |g;) acquires a nonzero
eigenvalue of O(r). Here r is an asymmetry parameter equal
to zero in the East model limit. By taking the attractive East
model limit of the attractive interpolation model in a suitable
way, it might be possible to regularize the 0/0 pathology
plaguing the current treatment.

In the following section we describe how this formalism
may be used to treat the ordinary East model, emphasizing
the physical interpretation of the procedure. In Sec. V we
apply this formalism to the attractive East model.

IV. RG FOR THE EAST MODEL

In this section we shall outline the application of the RG
procedure described above to the East model [18]. We show
that it is possible to partially define the scheme by imposing
normalization and probability conservation. To complete the
definition we arbitrarily discard part of the ground-state sub-
space of the reference Liouvillian; in what follows, we jus-
tify this choice physically by considering in detail the pecu-
liar hierarchical dynamics of the East model. This allows us
to show that the RG for the attractive East model, which we
discuss in the following section, can be determined, to first
order, by straightforward generalization of the result for its
noninteracting counterpart.

The Liouvillian of the East model is

L=n®{, (19)
where
l-¢c -¢
=17 ) o
c-1 ¢

and c is the excitation rate of a facilitated cell. Equation (19)
describes the dynamics of a cell facilitated only by a left-
neighboring excitation. The RG prescription (17) may be
written

L'(n")=Ty(n",n) - L(n) - Ty(n,n'), (21)

where T, and T, are, respectively, (2V2>x2M)- and (2V
X 2M?)-dimensional matrices built from the left (7)) and
right (7,) ground-state eigenvectors of £,. The RG prescrip-
tion is thus a mapping from a 2V-dimensional Hilbert space
of “real” occupancies to a 2"/>-dimensional Hilbert space of
renormalized occupancies, which we distinguish with
primes.

As discussed in Ref. [18], we find that T} and T, have
simple interpretations in terms of the dynamics of the model
under study. The projection matrix 7 takes a “real” state {11,
10, 01, 00} and projects it onto a renormalized state. For the
East model we choose that states with at least one excitation

project onto a renormalized excitation. Thus T1=tj®N/ % where
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t = 1){(11] + (10| +(01[} + |0")00]. (22)

Hence blocks of spins which can, within a single time step,
facilitate neighboring spins are deemed also to be facilitating
in the coarse-grained sense. Note that if we were to renor-
malize an Ising model with no kinetic constraint, then we
would require that flipping a spin in an unrenormalized con-
figuration would result in the flipping of the coarse-grained
spin. This is not the case for kinetically constrained models,
for which there is no symmetry between excitations and va-
cancies.

The embedding matrix 7, reconstitutes a real state from a
coarse-grained state and in a sense identifies those original
states most important for the low-temperature dynamics of
the system. As discussed in [18], we build T, so as to respect
both energetic and entropic effects. For the East model we

choose T,=15™2, where
1
b= NI+ 10X+ 00X’ (23)

We have defined N=c/(1-c). The structure of Eq. (23) can
be partially determined by the right ground-state eigenvec-
tors of L, together with the requirements of normalization
and conservation of probability [18], but may be simply mo-
tivated as follows. To find 7,, one adds to the term [00) (0’| a
sum of terms (1+\)"'N"1*"27!n, , n,)(1'|, where nyn, is an
unrenormalized configuration and the power of A accounts
for the energetic weighting of these states. Thus state 11 is
penalized by a factor of N\, wheras state 10 receives no pen-
alty.

According to this rule we should also include in Eq. (23)
a term (1+\)7!|01)(1’|, but we choose to suppress this for
the following reason. The East model possesses an hierarchi-
cal dynamics [9,15], whereby two excitations separated by a
distance d are relaxed by establishing a set of isolated exci-
tations between them, at distances d/2, 3d/4, etc. We can
incorporate this behavior into our RG scheme by suppressing
“frozen” configurations 01 during embedding, which is per-
mitted by the structure of the ground-state eigenvectors of
the East model reference Liouvillian. Under repeated appli-
cation of this modified embedding operator we then see that
the most important state in the dynamical sense for d=4 is

1011, weight 1 X ¢2, (24)
and not, for instance,
1001, weight 0 X c. (25)

The latter state is favored thermodynamically over the
former, because it contains one fewer excitation, but the lat-
ter is suppressed entropically (the factor 0 multiplying ¢). To
see this, note that in order to relax the rightmost excitation in
state (25) we must excite the second spin, followed by the
third, and then finally we may relax the rightmost spin. To
perform a similar relaxation for state (24) we may simply
relax the rightmost state. Thus in an approximate sense we
see that our ad hoc choice of T, respects the hierarchical
dynamics of the East model. Note that for the FA model,
which has symmetrical dynamical rules, we choose to make
no such suppression. Indeed, none is required. The ground-
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state subspace of the FA model’s reference Liouvillian is
only doubly degenerate, and these two states are natural
choices for the two-dimensional coarse-graining subspace S.
States (24) and (25) are then of similar importance to the
dynamics.

The renormalization prescription can thus be thought of as
a scheme that picks out those dynamical trajectories that
most readily relax the system. As detailed in [18] we find for
the East model the dynamic exponent z=—(Inc/In2), to
leading order in ¢, and a marginally unstable critical point at
¢=0, at which the recursion relation for A=c/(1 —c) satisfies
N\'=N+\2. From these results and the relation between exci-
tation concentration and temperature, c=1/(1+e'""), the
scaling properties of the East model at low temperature fol-
low. For example, based on the existence of a critical point
we can write down a scaling relation for the density of exci-
tations n in the out-of-equilibrium regime,

n(t,\) = e A(€) N (£)). (26)

Here d=1 is the physical dimension, €=1In b parametrizes the
lattice rescaling parameter (now taken to be a real number), 7
is a dimensionless scaling function, and the arguments on the
right-hand side of Eq. (26) are the renormalized flowing time
t(€)=e*t and temperature parameter N(€)=1/[\"!
—In(€/¢€,)], respectively. Equation (26) relates a real system
at long times and low densities (left-hand side) to an effec-
tive, renormalized system at short times and high densities
(right-hand side). By imposing the matching condition e~%‘¢
=1 we find in the regime 0<In #<< 1/(7?% In 2) the anomalous
coarsening behavior

n(t) ~rTn?2, (27)

which has been derived by other means and verified numeri-
cally [15].

V. RG FOR THE ATTRACTIVE EAST MODEL

We now apply the formalism of Sec. II to the attractive
East model, whose Liouvillian is

L=n®,@n+n®{, 0. (28)

In order to obtain a reference Liouvillian that contains only
two-site interactions, we write the vacancy operator v in the
second term on the right-hand side of Eq. (28) as 1-n, to get

L=n®{+n®A®n, (29)
where A=¢,—{,. We choose as our reference Liouvillian
EQ =nQ €1 . (30)

The ground-state embedding and projection operators are
then similar to those for the ordinary East model. The pro-
jection operator 7' is identical, which may be motivated in a
physical way by considering that the definition of a facilitat-
ing spin in the attractive East model is identical to that in its
ordinary counterpart. The embedding operator T,=15 N2 how
accounts for the attraction-modified Boltzmann weights of

two-site configurations: the attraction “rewards” neighboring
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excitations with an energy —2 € with respect to an excitation-
vacancy pair. We enforce the same ad hoc suppression of the
state 01 as we did in the case of the ordinary East model. We
thus get

1
ty=—5——(e"[11) +[10))(1'| + [00)X0"|,  (31)
e+ 1

where h=h(e,c). In the limit e— 0 we recover Eq. (23), with
N—e~". For the second-order result (18) we require also the

excited projection matrix Elzei@m and embedding matrix
E2=e§®N/ 2, which are determined by
er=[1")((10] = e=(11]) (32)
and
er=(1+97 (=] 11) + [10)K1]. (33)

The prefactor in Eq. (33) ensures that e;-e,=|1")1"|.
We now write our Liouvillian as £=Ly+V, where

Lo=n®€)®(0®1) (34)
and
V=A®B+C®D, (35)

with A=(1®n), B=({,®1+A®n), C=(n®A), and D
=(n®1). The brackets denote the blocking of the lattice into
cells.

We find under renormalization that to first order

L =1At, ® 1,Bt,. (36)

To second order, neglecting the pathological term discussed
at the end of Sec. III, we have

Eé = t1A62 . elAtz ® letz . tlez+ IIAEZ . €1Ct2

® tlBtz . tlDt2 + tlAt2 . tlAt2 &® tlBeZ . elBtz
1
+ EtlAEZ . elAtz ® [1B€2 . ElBtz + tlAtz

®tlB€2'e]Ct2®t]Dt2. (37)

We can make sense of these results by noting that the com-
bination #;At,=n’' is a renormalized number operator and
1,Bt,=4{'" is a renormalized single-site Liouvillian. Hence the
first-order result (36) looks like a renormalized (ordinary)
East model, £'=n"®€’. The second-order two-site terms,
the first four lines of Eq. (37), also have the form “constraint

® rate,” or n’ ®¢'. Note that the fourth term arises from a
two-cell excitation and so, by virtue of the factor of E(;:( in

Eq. (18), enters with a factor of % The final term in Eq. (37)
is a three-site interaction that allows us to write £, in the
form (8).

In addition, to second order, we find two terms corre-
sponding to operators not present in the original Liouvillian:
namely,

Zé = tlAtz ® t1A€2 . elBtz ® tlBtz + tlAtz ® tlB€2 . elAtz
® 1,Bt,. (38)

For example, the second term in Eq. (38) represents a non-
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local facilitation of the form n;_ | ® ---®¢{],,. Hence to this
order the renormalization procedure is not closed. We
choose, arbitrarily, to ignore these terms, for two reasons.
First, in order to treat them properly within the framework of
the RG we would have to insert them into the unrenormal-
ized Liouvillian, which, because of the terms’ nonlocal na-
ture we deem to be unphysical, and second, omitting these
terms seems not to adversely affect our results.

VI. RESULTS OF OUR STUDY TO FIRST ORDER

With the renormalized Liouvillian now in hand we can
extract the scaling properties of the attractive East model in
the limit of small defect concentrations and long times. The
first-order result (36) shows that in the long-time- and large-
length-scale limit the model behaves like an ordinary East
model with renormalized parameters. This agrees with the
analysis of [1], which concluded that the attractive East
model behaves on long length scales as an ordinary East
model, albeit with a rescaled typical width of excited do-
mains. We shall use the second-order RG result (37) to infer
the “flow” of the model towards this “renormalized” East-
like behavior. To extract the dynamic exponent, however, it
is sufficient to use the first-order result, which describes the
slowest dynamically relevant processes. We proceed as fol-
lows.

The dynamic exponent z, defined via t'=b"%, describes
the rescaling of time as a consequence of rescaling space by
a factor of b~!. Hence we can determine z by studying the
ratio of renormalized to unrenormalized rates. We define the
rates I',, a €{1,2,3,4}, for the four processes of the model
as follows:

o' Process r,

1 111—101 ehr=e
2 110— 100 e
3 101 —111 ehire
4 100—110 eThare2

Let us define the renormalized rates FS) extracted from the
first-order result (36). Then upon rearranging I'V=p=T" we
have z,=-Inr,/In 2, where raEFS)/Ta. The renormalized
rates are cumbersome, and so we shall not display them ex-
plicitly.

We find that, unlike for the ordinary East model, there is
no common rescaling factor z. Instead we find four distinct
Z4 Whose dependence upon e is dramatically different. Two
values z; and z, we discard as unphysical, being negative and
tending asymptotially to unity, respectively. The other two
we plot for excitation concentration c=107 in Fig. 1. The
larger value z3 is nonmonotonic and follows approximately
the behavior of the East-like exponent. The smaller value z,
tends to a diffusive value 2 for large attraction strengths.

We can understand the nature of these two dynamic ex-
ponents from the following simple argument. The dynamic
exponent characterizes the typical rate 7! at which a domain
wall can move a given distance € via 7~ €%. Let us define a
diffusion constant D, such that
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FIG. 1. (Color online) Dynamic exponent z versus attraction
strength € for the attractive East model, at excitation concentration
¢=1073. The lower horizontal line marks the diffusive limit z=2;
the upper horizontal line is the prediction for the East model in the
absence of the attraction. The bold dashed lines are the phenomeno-
logical predictions z, (lower line, green) and z3 (upper line, red).
These we expect to be characteristic values for the dynamic expo-
nent of the attractive East model when the domain sizes are, respec-
tively, much less than and much greater than the attraction-induced
length scale a(e,c). The bold blue lines are the prediction for z from
the first-order RG calculation. Both correctly reproduduce the €
—0 limit and agree with our numerical results (see Fig. 3).

= ({r(n-r0)])=2Dr (39)

and r(7) is the position of a given domain wall at time 7.
Replacing the exponent 2 in Eq. (39) by the more general
value z, we can write

T~ D' (40)

But if we consider domain wall drift as an “activated” pro-
cess, one inhibited by an effective barrier of size A(f), then
we can also write

7~ T exp[A(0)], (41)
where 'y~ D is the rate for attempting a barrier crossing.
Equating Egs. (40) and (41) and taking logarithms gives

A(6)
In¢’

z (42)
Note that the effective barrier A(€) accounts for the dynam-
ics of the process under consideration. For example, for the
ordinary East model the barrier A(€) grows logarithmically
with € [9]. We then obtain z~ 1/(TIn 2) to leading order in
T.

The two dynamic exponents we find in the case of the
attractive East model arise because the attraction imposes a
length scale below which the East-like hierarchical dynamics
is suppressed. This follows from the fact that there exists in
the attractive East model a characteristic width a(c,€) of
excited (black) domains [1]. To see this, note that the energy
of a configuration 10---01 of length a is 2A. The energy of a
similar length of chain with all the intermediate cells excited
is h+a(h—¢€). These energies are equal when a=h/(h—e).
Hence a, which increases as € increases, sets a length scale

016115-6



TWO-STAGE COARSENING MECHANISM IN A...

200

15[)- — P ———— . = — -'—

0 —
] 500 1000 1500 2000
1

FIG. 2. An illustration of the finite thickness of excited (black)
domain walls induced by the attraction e. We show here nonequi-
librium space-time trajectories for the attractive East model, starting
from excitation concentration n(0)=0.5 for equilibrium excitation
concentration ¢=0.1. We show the cases e=0 (upper panel) and €
=35 (lower panel). Space runs along the vertical axis, time along the
horizontal. Notice the emergence of a finite thickness of excited
domains in the lower plot, for which the attraction-induced length
scale a=24 lattice sites. On length scales £ <a we expect essen-
tially diffusive dynamics.

below which a 10 domain wall can readily move eastwards
via a mechanism that excites contiguous cells. See Fig. 2 for
an illustration of this effect. This domain wall cannot move
freely, however; the penalty for exciting successive cells to
the east is, from Eq. (1), A—e. Thus domain wall motion on
length scales € <a should proceed principally by diffusion in
a potential (h—e)€. The largest barrier to be surmounted is
therefore (h—é€)a, and so

_ (h-e)a

Ina (43)

22

We call this exponent z, as per the RG notation, and we
expect it to dictate the dynamics of the system when the
characteristic domain size L(7) satisfies L(¢) <a.

However, on length scales L(f)>a we expect relaxation
to proceed via East-like hierarchical dynamics, suitably res-
caled to account for the attraction-induced length a. A char-
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FIG. 3. (Color online) Continuous-time Monte Carlo simulation
data for the attractive East model with ¢=1073, showing elapsed
time 7 (vertical axis) versus mean white domain length L (horizon-
tal axis). The system size is N=103. We show the average of ten
runs for each attraction strength €=0,2,6,8,10,12, from left to
right. The two-stage coarsening mechanism is seen clearly in the
three curves at largest €, and the crossover occurs when the mean
domain length exceeds approximately a(c, €). Note that the domain
length distribution broadens as the model slows, and so the mean
domain length becomes progressively less good as an estimate of
the crossover. We show the value of a as vertical dotted lines for
€=8, 10, and 12. We show also the RG predictions for short-
wavelength coarsening at large €, z=2 (heavy black dashed line),
and for long-wavelength coarsening for e=6(z=6.72), €=38(z
~7.24), and e=10(z~8.37) (heavy red dashed lines). We show for
comparison next to the e=6 line the ordinary East model low-
temperature prediction, z=9.97 (thin blue line), which clearly dis-
agrees with the data.

acteristic value for the relevant dynamic exponent can be
derived by considering the typical size of white domains in
thermal equilibrium, (L(t— ))=d(c, €). This length may be
found found from the partition function of the d=1 Ising
model. Denoting by u the largest eigenvalue of the transfer
matrix

1 "2
T/l,-,n,-H: o2 e ) (44)

we have that white domains of size L occur with probability
P(L)=exp(-L In w). Hence the typical white domain size in
equilibrium is d(c,€)=1/1n u.

The logarithmic barrier confronting domain walls moving
a distance d>a is then A(d)=h1In(d/a)/In2 [1], and so

h In(d/a)

~ . 45
IndIn?2 (43)

23
We show in Fig. 1 the dynamic exponents calculated from
both phenomenological and RG predictions. In Fig. 3 we
show numerical results for the attractive East model in the
nonequilibrium regime. The coarsening mechanism is as we
predict from RG and physical considerations: approximately
diffusive relaxation on short wavelengths, crossing over to
dramatically subdiffusive behavior on larger wavelengths.
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Note that the value of z we display for the ordinary East
model is its low-temperature approximation. The crossover
length (the position of the “kink™ in the plots) is consistent
with €(t) ~a. For large values of € the distribution of white
bubble lengths is very broad, and the crossover begins while
the mean domain length is still appreciably less than a.

We verified also that diffusive coarsening persists
throughout the nonequilibrium regime for systems such that
a>d.

VII. RESULTS OF OUR STUDY TO SECOND ORDER

While the first-order result is sufficient to determine the
dynamic exponent of the model, to first order the renormal-
ized Liouvillian (36) looks like that of an ordinary East
model, in that the rate for creating an excitation is insensitive
to the state of the right neighbor. However, the renormalized
Liouvillian to second order, Eq. (37), does account for the
state of the right neighbor. We can infer from this result a
characteristic time scale for relaxation, as well as a time
scale for crossover from diffusive to subdiffusive relaxation.
It should be borne in mind that to second order our pertur-
bation scheme is formally ill defined.

We can infer the values of the renormalized parameters
via the matrix elements of the renormalized Liouvillian to
second order, £’ =L+ L. In particular, we define the quan-
tities

2 @@
o = I‘L’ (2) — ﬂ’ (46)
1—\(12) F(32)F(22)

whose unrenormalized counterparts are a=e><"¢ and B
=¢~¢. From the latter two expressions we solve for ¢ and € as
functions of « and B, obtaining c=f(«, 8) and e=—In B. The
function f is unwieldy, by virtue of the complicated depen-
dence of h(c, €) upon its arguments, Eq. (2), and so we shall
not display it explicitly. Then we define renormalized param-
eters via ¢/ =cP=f(a?,8?) and € =P =—In g2,

In the absence of attraction the recursion relation for ¢
under renormalization reads c=c/(1-c+c?), encoding an
unstable critical fixed point ¢*=0 and a stable full-lattice
fixed point ¢*=1. We shall focus on the regime ¢<<1 and
shall avoid probing the large-e regime where possible static
critical effects intrude.

To extract a characteristic time scale we define the expo-
nent y, via ¢’ =b"<c. From standard RG arguments [24] we
then have that v, =1/y., where v, controls the divergence of
the correlation length & near the critical point ¢=0, via &
~¢7VL. Scaling arguments [25] dictate that the characteristic
time scale diverges near c=0 as 7~ ¢~ "I, where yj=zv . We
plot the logarithm of this time scale, log;q 7=ylogo ¢, in
Fig. 4. We find a similar degree of nonmonotonic behavior
(roughly one decade at the lowest concentrations ¢) to that
shown in Fig. 3 of Ref. [1]. For consistency we use the
exponent z3 calculated to second order. We expect this expo-
nent to be relevant on large wavelengths—for example, in
equilibrium for d> a—as was the case for those simulations
shown in Fig. 3 of Ref. [1].
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FIG. 4. (Color online) Negative of the logarithm of the charac-
teristic time scale, —log;y 7=vjlogo c, from the second-order RG
result, for ¢=0.01,0.02,0.04,0.06,0.08,0.10,0.12,0.14,0.16,0.18
(bottom to top). The degree of nonmonotonicity at each value of ¢
is in good agreement with the numerical results shown in Fig. 3 of
Ref. [1]. The difference in absolute value at each concentration
occurs because the RG result refers to a generic time scale 7. For
any given process 7, there exists a basic rate I'(c, €) such that 7,
=I'(c, e)c™", and hence the vertical offset of —log Ty relative to the
generic value —log;q 7, is —log I'(c, €).

Last, we can infer the length scale at which the attractive
East model crosses over from near-diffusive to subdiffusive
behavor. To extract such a crossover length, recall that the
first order RG result, Eq. (17), looks like the Liouvillian of
an ordinary East model (with rescaled parameters), in that
the rates for excitation and relaxation of a cell are unaffected
by the state of the neighbor to the east. By contrast, the
original Liouvillian (8) and the second-order RG result (18)
describe models whose dynamics depends on the state of a
cell’s east neighbor.

We thus identify the parameter 8 in Eq. (46) as a measure
of the extent to which the model looks “East like” (rates
insensitive to the state of the east neighbor) or “attractive
East like” (rates dependent upon the state of the east neigh-
bor). We equate the former situation with the regime of hi-
erarchical (dramatically subdiffusive) coarsening.

In the language of RG, then, we expect subdiffusive be-
havior when the renormalized parameter € becomes small.
Let us define the exponent y, via € ~b™<e. From the linear-
ized second-order result we find €' =€/2, giving y.=1. It is
more meaningful, however, to retain all orders of e. If we do
this and then iterate the RG until €' ~ €, where €, is some
sufficiently small value of the renormalized coupling €', we
find the corresponding value of the rescaling parameter: b
~ (e,/ €)' Since this occurs as a consequence of rescaling
space by a factor of b~!, we infer the crossover length L,,
~ (&,/ €)'Y<. On length scales > L, we thus expect hierar-
chical, subdiffusive relaxation. We plot this crossover length
in Fig. 5 and find that for €,=10~* we obtain good agreement
with the phenomenological crossover length a(c,€). Note
that, since €, is arbitrary, we require additional physical input
to fix the absolute scale of the crossover length. The pre-
dicted trend of increasing L,, with increasing €, however, is
illuminating.
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FIG. 5. (Color online) Crossover length L,,=(€,/€)'< calcu-
lated from the second-order RG result, for c=1073, as a function of
€ (solid blue line). We show also the phenomenological prediction
a(c=1073,¢) (red dashed line). The RG result gives correctly the
trend of increasing crossover length with increasing €, as we expect
on physical grounds. However, additional physical input is needed
to fix the absolute scale of the crossover. Here we obtain close
agreement between the two curves by choosing arbitrarily e
=1073, but the RG result varies strongly with €, and can be made to
look very different from a(c, €).

As an aside and a further demonstration of the predictive
power of the RG scheme, it is interesting to note that a first-
order real-space RG calculation for an attractive version of
the FA model suggests a “bifurcation” at large € of the dy-
namic exponent (Fig. 6, top). Our numerics support this pre-
diction (Fig. 6, bottom). Our RG treatment of the attractive
FA model is a straightforward adaptation of the procedures
used in Ref. [18] and in this paper: we modify the embed-
ding operator to account for the attraction € and implement
the RG to first order.

VIII. CONCLUSIONS

We have predicted and verified numerically that the at-
tractive East model shows a two-stage coarsening behavior
in its out-of-equilibrium regime, as well as a nonmonotonic
variation of relaxation time with attraction strength. In doing
so, we have shown that the real-space RG scheme of Refs.
[16,17], subject to our arbitrary selection of the coarse-
graining subspace and an uncontrolled approximation to sec-
ond order, captures several interesting characteristics of this
model. It also bears out the intuitive idea of Ref. [1] concern-
ing the “renormalized East-like” nature of the model at large
wavelengths. Because the RG scheme may be motivated in
simple physical terms, it is therefore a useful starting point in
directing more detailed analyses, either numerical or theoret-
ical.

The two-stage coarsening mechanism of the attractive
East model is an example of two-stage relaxation induced by
a competition between a static attraction and a kinetic con-
straint. It would be interesting to search for such a mecha-
nism in real systems. The attractive East model was intended
originally to be studied in its equilibrium regime, at fixed c,
corresponding to fixed colloid packing fraction. To test the
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FIG. 6. (Color online) Top: real-space RG prediction for the
dynamic exponent z for an attractive FA model as a function of
attraction strength e; ¢=1073. Note the bifurcation for e=8. Bot-
tom: a test of the RG calculation—Elapsed time rescaled by the
square of the mean domain length 7L~2 versus mean domain length
L for c=1073 and €=0,2,4,6,8,10,12 (top to bottom). We show
averages over five runs for each attraction strength, starting from
initial excitation concentration n(O):%. For the topmost curves the
scaling prediction 7~L2, for which 7L72~const, is reasonably
demonstrated. For e>8 (the two lowest curves) we see a regime in
which 7~ L% with z<2, as predicted by the RG calculation. We
show as a heavy black dashed line the prediction 7~ L' for e
=12.

results of this paper against the behavior of real attractive
colloids we propose the following experiment: a sudden
pressure increase at fixed 7, inducing an increase in packing
fraction, and hence a reduction in ¢ as the liquid equilibrates.
On the basis of our results we would expect particle mobility
to differ qualitatively depending on the wavelength one
probes and the isothermal compression line one explores [2].
For weak attractions and for moderate attractions at large
wavelengths we would expect particle motion to be con-
trolled principally by free volume and thus to be subdiffusive
and repulsive glass like. For moderate attractions at small
wavelengths we would expect particles to move in an ap-
proximately diffusive manner, because attractions render the
short-wavelength structure of the collid labile.

In general terms, it would be interesting to determine
whether two-stage relaxation like that descibed in this paper
could be brought about by a competition between two static
attractions: one short-ranged and repulsive and the other
long-ranged and attractive.
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It would also be interesting to see if the two-time scaling
behavior of the attractive East model could be determined by
RG or other means; the different behavior exhibited by the
original East model and its attractive counterpart in the non-
equilibrium regime (Fig. 3) suggests that the two-time scal-
ing behaviors of the models differ. Since this regime corre-
sponds, according to our mapping, to the aging regime of an
attractive colloid, such a study would be a valuable way of
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comparing the behavior of the attractive East model and real
colloids [26-28].
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