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A transfer-matrix simulation scheme for the three-dimensional �d=3� bond percolation is presented. Our
scheme is based on Novotny’s transfer-matrix formalism, which enables us to consider arbitrary �integral�
number of sites N constituting a unit of the transfer-matrix slice even for d=3. Such an arbitrariness allows us
to perform systematic finite-size-scaling analysis of the criticality at the percolation threshold. Diagonalizing
the transfer matrix for N=4,5 , . . . ,10, we obtain an estimate for the correlation-length critical exponent �

=0.81�5�.
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I. INTRODUCTION

The transfer-matrix method has an advantage over the
Monte Carlo method in that it provides information free from
the statistical �sampling� error and the problem of slow re-
laxation to thermal equilibrium. On one hand, the tractable
system size is severely limited, because the transfer-matrix
size increases exponentially as the system size enlarges.
Such a difficulty could be even more serious for “geometri-
cal” problems such as the percolation, for which the configu-
ration space is much larger than that of the Ising model, for
example.

A transfer-matrix approach to the percolation in two di-
mensions �d=2� was discussed by Derrida and Vannimenus
�1�. They treated the system sizes �transfer-matrix strip
widths� up to N=5. Performing an extensive phenomenologi-
cal renormalization group �finite-size-scaling� analysis �2�,
they estimated the correlation-length critical exponent as �
=1.2�1.4; the variance is due to the choice of the boundary
conditions. Their result is quite consistent with the exact
value �=4/3, indicating that the transfer-matrix approach to
percolation would be promising. Because the transfer-matrix
data are free from the statistical error, the data allow us to
take its numerical derivative, which provides valuable infor-
mation as to the subsequent finite-size-scaling analysis.

It turned out, however, that its naive extension to the
d=3 case is rather problematic; we refer to Sec. 4.4 of Ref.
�3� for an overview. Actually, for d=3, as the system size
�linear dimension� L enlarges, the number of constituent sites
N�=L2� of the transfer-matrix unit soon exceeds the limit of
the available computer resources.

The aim of this paper is to develop an improved version
of the transfer-matrix formalism for the d=3 bond percola-
tion. For that purpose, we utilize Novotny’s idea, which has
been applied successfully to various Ising models in d�7
�4–9�. His formalism stems on a very formal expression for
the transfer-matrix elements. It enables us to consider arbi-
trary �integral� number of constituent sites ∀ N even for
d�3. Owing to this arbitrariness, we are able to treat a va-
riety of system sizes and perform systematic finite-size-
scaling analysis of the numerical data. In this paper, we
demonstrate that his idea is applicable to the d=3 bond
percolation.

The rest of this paper is organized as follows. In Sec. II,
we formulate the transfer-matrix scheme for the d=3 bond
percolation. We place an emphasis how we adapted Novot-
ny’s idea to the bond-percolation problem. The simulation
results are shown in Sec. III. Taking an advantage that we
can treat various system sizes, we manage the phenomeno-
logical renormalization group �2� �finite-size-scaling� analy-
sis. Thereby, we obtain an estimate for the correlation-length
critical exponent �=0.81�5�. In Sec. IV, we present the sum-
mary and discussions.

II. CONSTRUCTION OF THE TRANSFER MATRIX FOR
THE THREE-DIMENSIONAL BOND PERCOLATION

In this section, we set up the transfer-matrix formalism for
the d=3 bond percolation. As mentioned in the introduction,
we adopt Novotny’s idea �4�. So far, his idea has been ap-
plied to various types of the Ising models in d�7. Here, we
show that his idea is also applicable to the bond percolation.
At the end of this section, we argue a conceptual difference
from the original Novotny method.

A. Configuration space

Above all, we need to set up the configuration space so as
to represent the transfer-matrix elements explicitly. The
bases of the configuration space should specify all possible
connectivities among the N sites which constitute a unit of
the transfer matrix, namely, a cross section of the transfer-
matrix bar; see Fig. 1. In the figure, we also presented a
drawing of an example of connectivity among the N=4 sites.

As shown in the figure, an integer index �=1,2 , . . . ,N
specifies the position of the constituent sites of a transfer-
matrix unit. In order words, the transfer-matrix unit is of
one-dimensional structure rather than a two-dimensional one.
Such a feature might be confusing, compared with the draw-
ing in Fig. 1�a�, where the transfer-matrix unit is drawn as a
rectangular shape with the edges �N. Actually, the dimen-
sionality is lifted to d=2 afterward by introducing the
�Nth-neighbor long-range interactions among the N sites. We
will explain this scheme explicitly in Sec. II B. Here, for the
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time being, we consider that these N sites are arranged into a
one-dimensional structure.

In order to specify the connectivity among the N sites, we
accepted the following matrix-based representation:

�ai��� = �1 for a pair of connected sites ��,��
0 otherwise

. �1�

The index i runs over all possible connectivities among the N
sites. For example, the connectivity of Fig. 1�b� is repre-
sented by

a =�
1 1 0 1

1 1 0 1

0 0 1 0

1 1 0 1
	 . �2�

Let us mention a few remarks: The authors in Ref. �1�,
accepted a more elaborated representation scheme. Namely,
they specified whether a cluster is connected with the “ori-
gin” or that a cluster is an isolated one. Here, the origin
stands for an edge of the transfer-matrix bar. An advantage of
their extended representation is that one only needs to evalu-
ate the largest eigenvalue of the transfer matrix to obtain the
correlation length. Here, however, we did not accept their
representation scheme. Correspondingly, we calculated the
subdominant eigenvalue together with the dominant one in
order to calculate the correlation length. This task is not so
computationally demanding, and it renders significant sim-
plification of the formalism mentioned below.

B. Explicit formula of the transfer-matrix elements
for the d=3 bond percolation

In this section, we present the explicit formula for the
transfer-matrix elements. We consider an anisotropic bond
percolation on the cubic lattice. Namely, we set the percola-
tion probabilities p
, p�1 and p�2 independently for the re-

spective bond directions along the d=3 Cartesian axes. Cor-
respondingly, we factorize the transfer matrix into the
following three components:

T = T��v,p�2�T��1,p�1�T
�p
� �3�

with

v = �N . �4�

�We followed the idea of Derrida and Vannimenus, who de-
composed the transfer matrix for the d=2 percolation into
two factors �1�.� The components T
�p
�, T��1, p�1�, and
T��v , p�2� denote the transition probabilities due to the lon-
gitudinal bond, intracluster nearest-neighbor bond, and the
intracluster vth-neighbor bond, respectively. �Here, the “clus-
ter” stands for the N sites constituting a unit of the transfer-
matrix slice, and the “longitudinal” direction is parallel to the
transfer-matrix bar; see Fig. 1.�

In other words, the product of two components
T
�p
�T��1, p�1�, namely, with T��v , p�2� ignored, should
yield the transfer matrix for the d=2 bond percolation. The
remaining factor T��v , p�2� lifts the dimensionality to d=3.

We present the explicit formulas for each component.
First, for simplicity, we consider the longitudinal part T
.
�This is essentially the same as the horizontal factor MH
appearing in the formalism �1� for the d=2 percolation.� Our
formula for the elements of T
 is given by

�T
�p
��ij = �
�J�


p��J�
,p
��ai,m��J�
� � aj� . �5�

Here, the summation ��J�
 runs over all possible random-
bond configurations �J�
 with either J�=0 �unoccupied bond�
or 1 �occupied bond� for �=1,2 , . . . ,N. The probability
p��J�
 , p
� is given by

P��J�
,p
� = p

NJ=1�1 − p
�N−NJ=1 �6�

with the number of occupied bonds NJ=1. The “random-
bond” matrix m��J�
� is a diagonal N�N matrix with the
diagonal elements �m��J�
����=J�. The operation � denotes
the matrix product,

�a � b��� = �
�=1

N

�a�� ∧ b��, �7�

with the logical product ∧ in the Boolean algebra. �The sum-
mation �� gives 1, unless all the summands are zero.� The
product �ai ,aj� accounts for the orthogonality of the matri-
ces; namely,

�ai,aj� = 	ij , �8�

with Kronecker’s symbol 	ij.
As would be apparent from the above formula �5�, the

transfer-matrix element �T
�ij stands for the transition prob-
ability from the initial configuration aj to the final configu-
ration ai through the longitudinal random-bond percolation
�J�
.

Second, we turn to considering the transverse component
T��w , p��. This component accounts for the intracluster
wth-neighbor random-bond percolation with the percolation

FIG. 1. �a� A drawing of the transfer-matrix bar. A unit of the
transfer-matrix slice consists of N sites. �b� An example of connec-
tivity among the N�=4� sites. Such a connectivity is represented by
the matrix notation, Eq. �2�.
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probability p�. This factor is the most significant part in our
formalism. We propose the following formula for T��w , p��:

�T��w,p���ij = �
�J�


p��J�
,p��tij�w,�J�
� . �9�

The transition amplitude tij is given by

tij�w,�J�
� = �
�=1

N

f��w��ai,m���J�
� � aj� . �10�

Here, the symbol � denotes an operation,

�a � b��� = �
�=1

N

�a�� ∨ b��, �11�

with the logical summation ∨ in the Boolean algebra. The
“�th-neighbor-random-bond matrix” m���J�
� is given by
the formula,

m���J�
� = m��J�
� � s�, �12�

with the shift operator,

�s���	 = �1 for � − 	 = � mod N

0 otherwise
. �13�

The operation s� shifts the diagonal random-bond operator
m��J�
� to an off-diagonal one, which now represents the
�th-neighbor random bonds. That is, the operation
m���J�
� � aj introduces new intracluster �th-neighbor-
random-bond percolation in adding to the initial connectivity
aj.

In order to implement the wth-neighbor intracluster per-
colation with a nonintegral value of w, we need to average
over all sectors �=1,2 , . . . ,N with an appropriate weight
f��w�; see Eq. �10�. We propose that the weight should be
given by the wth-order power of the shift operator

f��w� = ��s1�w�1�. �14�

As would be apparent from the definition, the operator �s1�w

generates the translational shift of the distance w, and the
factor f��w� picks up the amplitude of each sector �. Hence,
the resulting formula, Eq. �10�, should be the transition am-
plitude from aj to ai by the wth-neighbor random-bond per-
colation. Hence, the product T��v , p�2�T��1, p�1� with v
=�N introduces a two-dimensional intracluster percolation
among the N sites. As noted previously, a crucial point is that
there is no restriction to the number of constituent sites N.

Lastly, let us argue a conceptual difference from the origi-
nal Novotny method �4� for the Ising ferromagnet. In the
original method, the translation operator �s1�w acts on the
configuration space, which has huge dimensionality. On
the contrary, in our formalism, the operator �s1�w is a mere
N�N matrix. Hence, from the viewpoint of the computer
programing, the present formalism for the percolation is even
simpler than the original method. �Here, the generation of the
list of connectivity �ai
 is the most time-consuming.�

III. NUMERICAL RESULTS

In Sec. II, we set up the transfer-matrix formalism for the
d=3 bond percolation. In this section, we present the numeri-
cal results by means of the exact diagonalization of the trans-
fer matrix. We consider the anisotropic bond percolation. The
anisotropy parameter R governs the mutual ratios of the per-
colation probabilities; namely,

R−1p
 = R−1p�1 = p�2 = p . �15�

We consider the anisotropy ratio R as a freely tunable param-
eter to stabilize the finite-size corrections. Diagonalizing the
system sizes N=4,5 , . . . ,10, we analyze the percolation tran-
sition in terms of the phenomenological renormalization
group �2� method. Note that the linear dimension of the sys-
tem L is given by the relation,

L = �N , �16�

as shown in Fig. 1.

A. Percolation threshold pc

In Fig. 2, we plotted the scaled correlation length 
 /L for
the percolation probability p with the fixed anisotropy pa-
rameter R=3.3. �Afterward, we explain how we adjusted the
anisotropy parameter to R=3.3.� The symbols +, �, *, �, �,
�, and • denote the system sizes N=4, 5, 6, 7, 8, 9, and 10,
respectively. The correlation length 
 is calculated by the
formula 
=1/ ln��1 /�2� with the dominant �1 and the sub-
dominant �2 eigenvalues of the transfer matrix.

The intersection point of the curves in Fig. 2 indicates the
location of the critical point �percolation threshold� pc. �The
scaled correlation length 
 /L is invariant with respect to the
system size N at p= pc.� Hence, we observe that a percolation
transition occurs around p�0.096.

In order to determine the critical point pc more precisely,
in Fig. 3, we plotted the approximate transition point
pc�L1 ,L2� for �2/ �L1+L2��2. Here, the approximate transition
point pc�L1 ,L2� denotes the location of the intersection point

FIG. 2. The scaled correlation length 
 /L is plotted for the per-
colation probability p with the fixed anisotropy parameter R=3.3.
The symbols +, �, *, �, �, �, and � denote the system sizes
N=4, 5, 6, 7, 8, 9, and 10, respectively; note that the relation
L=�N holds. From the intersection point of these curves, we read
off the location of the critical point �percolation threshold� as
pc�0.096.
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of the curves for a pair of �L1 ,L2�. The symbols +, �, and
* show that the differences of the system sizes are N1−N2

=1, 2, and 3, respectively; note that the relation L1,2=�N1,2
holds. As indicated in Fig. 3, we survey several values of the
anisotropy parameter such as R=2.8, 3.3, and 3.8. Thereby,
we notice that the finite-size corrections to pc are suppressed
on setting R=3.3. The least-squares fit to the data for R
=3.3 yields the critical point pc=0.0958�27� in the thermo-
dynamic limit L→�.

Let us argue the role of the anisotropy parameter R. First
of all, it is worthwhile that the system size along the transfer-
matrix �longitudinal� direction is infinite, whereas the trans-
verse system sizes are both finite L��10; see Fig. 1. In this
sense, it is by no means necessary to consider the isotropic
condition p�1= p�2= p
 specifically. Hence, we consider that
the ratio R= p
 / p�2 is a tunable parameter. Practically, we
found that the finite-size corrections improve for large R.
Second, we need to remedy the dimensionality d=3 by ad-
justing the ratio of the intracluster interactions R= p�1 / p�2.
That is, the “effective dimension” �5,6� can deviate slightly
from d=3, at least, for small system sizes. �This deviation
deteriorates the finite-size-scaling analysis.� Note that basi-
cally, the backbone structure of Novotny’s transfer matrix is
of d=2, and the dimensionality is lifted to d=3 by introduc-
ing the long-range interactions among the intracluster sites.
In other words, it is not quite obvious that the dimensionality
d=3 is realized precisely, at least, for small N. Hence, in
order to remedy this dimensionality deviation, we should
tune �5,9� the intracluster-interaction ratio R= p�1 / p�2.
�Note that for large R, the component T��1, p�1� dominates
T��v , p�2�, and the dimensionality reduces to d=2. For a
certain moderate value of R, the dimensionality would ap-
proach d=3.� More specifically, we adjusted R so as to im-
prove the finite-size-scaling behaviors of pc�L1 ,L2� �5,6� as
shown in Fig. 3. In this respect, there might exist alternative
parametrization schemes other than the present one. Here,
however, we accepted the simplest parametrization scheme
p
 = p�1=Rp�2 involving a single tunable parameter R.

B. Correlation-length critical exponent �

In this section, we study the criticality at p= pc. In Fig. 4,
we plotted the approximate correlation-length critical expo-
nent �2�,

��L1,L2� = �ln�L1/L2�� ln� ��
�L1�/L1�
�p

/
��
�L2�/L2�

�p
��

p=pc

,

�17�

for �2/ �L1+L2��2. Here, we set pc=0.0958 and R=3.3. The
symbols +, �, and * show that the differences of the system
sizes are N1−N2=1, 2, and 3, respectively. Note that this
formula contains a p derivative, which is readily calculated
with the transfer-matrix method very precisely. �The transfer-
matrix data are free from the statistical error.�

We see that the data align rather satisfactorily. The least-
squares fit to these data yields an extrapolated value �
=0.812�15� to the thermodynamic limit L→�. Similarly, we
obtain �=0.813�21� by omitting the L=10 data. Thereby, we
confirm that the data are almost converged.

In order to check the reliability of � further, we try to
manage alternative extrapolation schemes: First, we replace
the abscissa in Fig. 3 with the refined one �2/ �L1+L2��
+1/�

�10�, where we used 
=1.61�5� and �=0.89�2� reported in
Ref. �11�. Thereby, we arrive at �=0.811�15�. This result
indicates the stability of � with respect to pc. Second, replac-
ing the abscissa in Fig. 4 with �2/ �L1+L2��
, we obtain �
=0.853�19�. Actually, this refined extrapolation yields an
“improved” value for �. However, for the sake of self-
consistency, we do not accept this refined extrapolation
method and consider it as a reference. Lastly, setting the
values of the anisotropy parameter as R=2.8 and R=3.8, we
obtain �=0.853�27� and �=0.771�11�, respectively. These
results again confirm the stability of � satisfactorily.

Recollecting these results, we estimate the correlation-
length critical exponent as,

FIG. 3. The approximate critical point pc�L1 ,L2� is plotted for
�2/ �L1+L2��2 and the various values of the anisotropy parameter
R=2.8, 3.3, and 3.8. The symbols +, �, and * denote the differ-
ences of the system sizes N1−N2=1, 2, and 3, respectively. We also
presented the slopes with the least-squares fit to the data as the
dashed lines. We see that the finite-size corrections to pc are sup-
pressed on setting R=3.3.

FIG. 4. The approximate correlation-length critical exponent
��L1 ,L2� is plotted for �2/ �L1+L2��2 with the fixed anisotropy pa-
rameter R=3.3. The symbols +, �, and * denote the differences of
the system sizes N1−N2=1, 2, and 3, respectively. The least-squares
fit to these data yields �=0.812�15� in the limit L→�.
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� = 0.81�5� , �18�

with an expanded error margin.
Let us recollect a number of recent estimates for � deter-

mined with other approaches: From the series expansion
method, Dunn et al. �12� obtained �=0.83�5�. On the other
hand, the Monte Carlo studies have reported �=0.89�2� �11�,
�=0.8765�16� �13�, �=0.893�40� �14�, and �=0.868�11�
�15�. These estimates and ours are consistent with each other
within the error margins. Nevertheless, we stress that our
motivation is not necessarily directed to the accurate estima-
tion of the critical indices. In Sec. IV, we address an ex-
tended remark on the potential applicability of our scheme
and future perspective.

Lastly, in Fig. 5, we present the approximate � function
�16�,

��L1,L2� =
1 − ln�
�L1�/
�L2��/ln�L1/L2�

��
�L1�
�p

�
�L2�
�p

/
�L1�/
�L2�

, �19�

for R=3.3. �Note that this formula also contains the deriva-
tives, and it is hardly accessible by other approaches.� The
symbols +, �, and � show that the pairs of system sizes are
�N1 ,N2�= �6,8�, �7,9�, and �8,10�, respectively. The beta
function provides rich information on the overall feature of
the criticality. The zero point ��p��p=pc

=0 indicates the loca-
tion of the transition point pc, and the slope at the transition
point yields the inverse of �. In the figure, we presented a
slope −�p− pc� /� with pc=0.0958 and �=0.81 determined
above. The slope well describes the behavior of the beta
function in the vicinity of p= pc. However, in a closer look,
the beta function bends convexly, indicating that non-
negligible corrections to scaling do exist. Possibly, such se-
vere corrections are reflected in Fig. 4, where we observe
pronounced finite-size corrections to �. However, these cor-
rections are fairly systematic so that we could manage the
extrapolation to L→� rather unambiguously. This is an ad-
vantage of Novotny’s method, with which a variety of sys-

tem sizes are available even for the case of d=3.

C. Isotropic case p¸=p�1=p�2

In Fig. 6, we plotted the beta function ��L1 ,L2� for
R=1 �isotropic case�. The symbols +, �, and � show that the
pairs of system sizes are �N1 ,N2�= �6,8�, �7,9�, and �8,10�,
respectively. We also presented a slope −�p− pc� /� with
pc=0.248 812 6 and �=0.89 �11� as a dashed line. We see
that our data and the slope behave similarly in the vicinity
of p= pc. We obtain the correlation-length critical exponent
��0.64 from a pair of N=8 and 10. However, for small N,
the data scatter, and eventually, even the zero point of the
beta function disappears. Because of this irregularity, we
cannot manage systematic extrapolation to the thermody-
namic limit. In this sense, the anisotropy parameter R is sig-
nificant in order to stabilize the finite-size corrections of the
transfer-matrix data as demonstrated in Secs. III A and III B.

IV. SUMMARY AND DISCUSSIONS

We developed a transfer-matrix formalism for the d=3
bond percolation. Our formalism is based on Novotny’s idea
�4�, which has been applied to the Ising models in high di-
mensions d�7. We demonstrated that his idea is also appli-
cable to the d=3 bond percolation. A key ingredient of his
method is that we can treat an arbitrary number of sites con-
stituting a unit of the transfer-matrix slice; see Fig. 1.

Diagonalizing the transfer matrix for the system sizes
N=4,5 , . . . ,10, we studied the criticality of the percolation
transition. We found that the numerical data are well de-
scribed by the finite-size-scaling theory, and thereby, we
obtained an estimate for the correlation-length critical expo-
nent �=0.81�5�. Here, we tuned the anisotropy parameter to
R=3.3 in order to reduce the finite-size corrections. Because
the system size along the transfer-matrix direction is infinite,
it is by no means necessary to consider the isotropic limit
R=1 specifically.

FIG. 5. The approximate beta function ��L1 ,L2� �19� is plotted
for the percolation probability p with the fixed anisotropy parameter
R=3.3. The symbols +, �, and � show that the pairs of the system
sizes are �N1 ,N2�= �6,8�, �7,9�, and �8,10�, respectively. We also
presented a slope −�p− pc� /� with pc=0.0958 and �=0.812 deter-
mined in Figs. 3 and 4.

FIG. 6. The approximate beta function ��L1 ,L2� �19� is plotted
for the percolation probability p at R=1 �isotropic point�. The sym-
bols +, �, and � show that the pairs of the system sizes are
�N1 ,N2�= �6,8�, �7,9�, and �8,10�, respectively. We also presented
a slope −�p− pc� /� with pc=0.248 812 6 and �=0.89 reported in
Ref. �11� as a dashed line.
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The aim of this paper is to demonstrate an applicability of
the transfer-matrix method to the geometrical problem such
as the percolation even for d=3. As mentioned in the intro-
duction, the transfer-matrix method has some advantages
over the Monte Carlo method. Actually, as for the d=2 per-
colation, the transfer-matrix approach �17� has made a
unique contribution, although its accuracy as to the critical
indices is not particularly superior to that of Monte Carlo.
Lastly, let us address a remark on the advantage of our ap-
proach: For example, according to Fortuin and Kasteleyn
�18�, the q-state Potts model admits a geometrical represen-
tation in terms of the bond percolation. Namely, based on the
percolation framework, one is able to extend the integral
number q to a continuously variable one. In fact, in d=3, an
extensive Monte Carlo study �19� reports an existence of the
critical value qc=2.45�10�, above which the magnetic transi-
tion becomes discontinuous; see also Ref. �20�. However, the
nature of this singularity is not fully understood, because the
Monte Carlo method cannot deal with the complex-q number

�due to the negative sign problem�. On the contrary, the
transfer-matrix method is free this difficulty. Actually, with
the transfer-matrix method, in d=2, in the complex-q plane,
the distribution of zeros �of the partition function� was inves-
tigated �21–23�. As for d=3, however, similar consideration
has not yet been done due to the lack of an efficient algo-
rithm. Our scheme meets such a requirement. Moreover, the
low-lying spectrum of the Potts model in d=3 is of funda-
mental significance �24�, and the problem also remained un-
solved. In this sense, our scheme provides a step toward a
series of such longstanding problems, to which the Monte
Carlo method does not apply. An effort toward this direction
is in progress, and it will be addressed in future study.
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