
Lack of self-averaging of the specific heat in the three-dimensional random-field Ising model

Anastasios Malakis and Nikolaos G. Fytas
Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis, GR 15784 Zografos, Athens, Greece

�Received 12 November 2004; revised manuscript received 28 November 2005; published 11 January 2006�

We apply the recently developed critical minimum-energy subspace scheme for the investigation of the
random-field Ising model. We point out that this method is well suited for the study of this model. The density
of states is obtained via the Wang-Landau and broad histogram methods in a unified implementation by
employing the N-fold version of the Wang-Landau scheme. The random fields are obtained from a bimodal
distribution �hi= ±2�, and the scaling of the specific heat maxima is studied on cubic lattices with sizes ranging
from L=4 to L=32. Observing the finite-size scaling behavior of the maxima of the specific heats we examine
the question of saturation of the specific heat. The lack of self-averaging of this quantity is fully illustrated, and
it is shown that this property may be related to the question mentioned above.
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I. INTRODUCTION

The random-field Ising model �RFIM� �1� is one of the
best studied glassy magnetic models �2–4�, mainly because
of its interest as a simple frustrated system. In fact, it has
been a matter of conspicuous controversy over the last
15 years, mainly concerning the nature of its phase transi-
tions. The RFIM Hamiltonian is given by

H = − J�
�i,j�

SiSj − �
i

hiSi, �1�

where Si= ±1, J�0 is the nearest-neighbor ferromagnetic
interaction and the random fields �RF’s� are obtained from a
discrete distribution hi= ±�, where �=2 is the disorder
strength, also called randomness of the system.

The notion of dimensional reduction �5� indicated that the
critical behavior of the RFIM in d dimensions, at sufficiently
low randomness, should be identical to that of the well-
known normal Ising model in d−2 dimensions. On the other
hand, the droplet theory of domain wall energies in the fer-
romagnetic state �6� suggested that a phase transition should
exist in three dimensions �3D�, for finite temperature and
randomness. The puzzle has been cleared out by Imbrie �7�,
Schwartz �8�, and Bricmont and Kupiainen �9�. Their argu-
ments strongly support the view that a phase transition in 3D
exists for sufficiently small randomness ��c�2.3� �4�.

From the experimental point of view, a true realization of
the RFIM is hardly conceived. However, it has been shown
that dilute antiferromagnets in uniform external field �DAFF�
represent physical realizations of the RFIM �10� and a num-
ber of experiments investigated the phase transitions of such
3D systems �11�. These experiments have proven to be very
difficult and their interpretation doubtful due to the slow,
glassy dynamics of the system.

Although there exist several open questions about the
phase transition in the RFIM, it is now generally accepted
that a new fixed point controls the behavior of RF ferromag-
nets �12,13�. The significance of this for the RFIM �in d
�2� is that this new zero-temperature random fixed point
controls the whole critical line �Tc���� and that the RF’s are
always relevant. For disordered systems with weak random-

ness which couples to the local energy �such as random-site
impurity or random-bond models� the crossover to a new
random fixed point depends on the Harris criterion �13,14�.
According to this, the disorder is relevant if the correlation
length exponent of the pure model ��=�pure� satisfies the
condition d��2 and this condition may be stated, with the
help of the hyperscaling relation ��=2−d��, as ��0. Since
the specific heat exponent of the 3D Ising model is positive
�15�, weak disorder should be expected to be relevant. In the
case of the RFIM the type of disorder is much more severe,
since the randomness couples to the local order parameter
and the crossover renormalization group eigenvalue is al-
ways positive �13�. The inequality ��2/d, derived by
Chayes et al. �12� for the correlation length exponent of a
generic disordered system ��=�random� would imply, using
again hyperscaling, a negative specific heat exponent ��
�0�. However, it is believed that hyperscaling is violated in
the RFIM and the specific heat exponent � is related to � by
a modified hyperscaling law 2−�= �d−���. The exponent �
characterizes the scaling of the stiffness of the ordered phase
at the critical point �16�. Thus, the specific heat exponent of
the RFIM is not restricted, by the above theoretical consid-
erations, to be negative �12�.

The inconsistency of various estimations in the literature
concerning the critical exponent � is the origin of a long-
lasting lively controversy, leaving open, so far, even the
question of divergence or saturation of the specific heat. The
specific heat of the RFIM can be experimentally measured
and is of considerable theoretical interest. Several Monte
Carlo methods at finite temperatures but also methods using
ground-state configurations have been used to estimate the
critical exponent �. Some of the ground-state studies came
up with strongly negative values, ranging from �=−1.5 �17�
to �=−0.5 �18–20�, whereas Middleton and Fisher �16� es-
timated in marked disagreement �=−0.01±0.09. Experi-
ments on DAFF provided evidence of a second-order phase
transition and a logarithmic singularity for the specific heat
�21�. Recently, Barber and Belanger �22� in their Monte
Carlo study of a DAFF model reported also that their specific
heat curve closely mimics a logarithmic peak. Moreover, it
has been pointed out that a strongly negative value of �
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causes serious difficulties when it comes to finding a consis-
tent set of scaling relations to describe the critical behavior
of the RFIM. These scaling relations are consistent if one
uses ��0 �18�, which is also close to the experimental value
�11�. Clearly more work is needed to understand the specific
heat behavior of the model. This important issue may be
intimately linked to the main physical finding of this paper:
the violation of self-averaging of the specific heat, illustrated
below in Sec. III.

The RFIM has been studied numerically using traditional
�17,19,23,24� but also more sophisticated Monte Carlo tech-
niques �4�. However, the nature of the model demands enor-
mous computer resources. The equilibration of the system at
low temperatures is exponentially slow for large systems.
Furthermore, in order to get a good estimate of the mean
properties of the system, it is necessary to repeat the simu-
lations for a large number of realizations of RF’s. In the
present work we have applied the new and popular Wang-
Landau �WL� �25� and broad histogram �BH� �26� methods
to estimate the density of states �DOS�, G�E�, of the model.
These methods have been employed in a unified implemen-
tation using the N-fold version of the WL scheme of Schulz
et al. �27,28� and the energy space was restricted using the
recent critical minimum-energy subspace �CMES� technique
�15�.

The rest of the paper is organized as follows. In Sec. II we
provide an outline of the numerical methods which are in-
volved in our calculations, including a brief description of
the WL and BH methods. The recently developed CMES
restriction is properly adapted and illustrated for the RFIM,
and useful technical details are provided. In Sec. III we dis-
cuss the main conclusion of our work—the violation of self-
averaging of the specific heat of the RFIM—by studying the
relevant probability distributions. The scaling behavior of the
pseudocritical temperatures and their sample-to-sample fluc-
tuations are also presented. Our conclusions are summarized
in Sec. IV.

II. A NUMERICAL APPROACH

We proceed to describe and appropriately adapt to the
RFIM a recently developed Monte Carlo approach, based on
the WL algorithm for estimating the DOS and using the idea
of dominant energy subspaces �CMES technique�. Consider
a particular RF realization. Then, the specific heat and its
peak are easily obtained with the help of the usual statistical
sums. The CMES scheme �15� uses only a small but domi-

nant part �Ẽ− , Ẽ+� of the energy space �Emin ,Emax� to deter-

mine the specific heat peaks. Let Ẽ denote the value of en-
ergy producing the maximum term in the partition function
at the pseudocritical temperature �corresponding to the spe-
cific heat peak� and S�E�=ln G�E� the microcanonical en-
tropy. Then, Eq. �2� defines the CMES approximation

CL�Ẽ−,Ẽ+� = N−1T−2	Z̃−1�
Ẽ−

Ẽ+

E2 exp�	̃�E��

− 
Z̃−1�
Ẽ−

Ẽ+

E exp�	̃�E���2� , �2a�

	̃�E� = �S�E� − 
E� − �S�Ẽ� − 
Ẽ�, Z̃ = �
Ẽ−

Ẽ+

exp�	̃�E�� ,

�2b�

where N=L3 and �Ẽ− , Ẽ+� is the minimum dominant sub-
space satisfying the following accuracy criterion:


 CL�Ẽ−,Ẽ+�
CL�Emin,Emax�

− 1
 � r , �3�

with r=10−6. This accuracy is extremely demanding com-
pared to the statistical errors produced by the DOS method
and to the large sample-to-sample fluctuations of the RFIM.
An algorithmic approach for specifying the CMES is de-
scribed in Ref. �15�.

Using an ensemble of M �m=1, . . . ,M� macroscopic
samples of linear size L corresponding to different RF real-
izations we have applied the described scheme in a broad
energy space that covers the overlap of the dominant energy
subspaces for all RF’s of the ensemble. For a RF

realization—say, m—let us denote by �Ẽ−,m , Ẽ+,m� the loca-
tion of the dominant energy subspace defined by the above

restriction and by �Ẽm= Ẽ+,m− Ẽ−,m its extension. Our simu-
lations were carried out in the broad energy subspace, which
covers at least the union of the individual subspaces—i.e.,

�E−�M� ,E+�M����m�Ẽ−,m , Ẽ+,m�—of total extension ��E��M�
=E+,�M�−E−,�M�. Note that the total extension may be for
large lattices several times larger than the individual exten-
sions. This practice has the advantage that the approximation
of the specific heat for a particular RF is accurate in a wide
temperature range, including its pseudocritical temperature.
Thus, the present implementation is not the most efficient for
the purposes of locating only the specific heat peaks. How-
ever, this usage provides a more reliable alternative for com-
paring the statistics of the specific heat peaks to the averaged
specific heat curve used in the literature �see, for example,
Ref. �17� and also Sec. III� and for discussing the pathology
of this quite common choice. Despite the strong fluctuations
of the energy value corresponding to the maximum term of
the partition function Z, the union of the CMES for large
samples of RF’s is a relatively small subspace, compared to
that of the normal Ising model. Consider the case L=16.
Then, the energy levels used in Ref. �15� for the normal Ising
model, counting from the ground state �ie=1�, are the levels
�ie=1220–2410�. Using an ensemble of 1000 RF’s the union
of the CMES was found to be the range of levels �ie
=1–950�, while our simulations were performed in a wider
range �ie=1–1200�. This is of the same order with that of
the normal Ising model and at least 5 times smaller than that
of the total energy space.

To conclude the above technical remarks, let us illustrate
that the efficiency of our method may be highly increased by
studying each RF realization in its own dominant subspace.
The following observations will be useful in subsequent
studies of the RFIM or analogous models. Figure 1 shows
results of an extensive WL simulation of two particular RF’s,
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labeled as RFm=a�RFa and RFm=b�RFb in the figure, for a
lattice of linear size L=24. The simulation was repeated, for
both RF’s, 50 times in the energy subspace �ie=200–2000�.
The curves of the specific heat shown were obtained from the
average DOS over the 50 runs. Note however that the union
space used in our simulations presented in Sec. III �Fig. 5�
was estimated over large ensembles of RF’s. For instance,
the union space for L=24 and its extension was found to be
of the order of 2500 energy levels �ie=200–2700�, using an
ensemble of 200 RF’s. Since there are RF’s with one sharp
peak and RF’s with two or more pronounced peaks, we have
chosen to show in Fig. 1 two characteristic examples of
RF’s, RFa and RFb. The inset of Fig. 1 shows the fluctuation
of the extension of the individual dominant subspaces over
the 50 runs. There are some points that one should observe
from this figure. First, in both cases the extension of the
CMES for a particular RF is much smaller than the broad
energy space used in the simulations. Specifically, for the
RFa the dominant energy subspace is approximately of the
order of 850 energy levels �ie=800–1650�, which is almost
3 times smaller than the 2500 levels of the total union space.

Second, the fluctuations of the extension �Ẽb of the RFb are
more pronounced and this is related to the existence of a
secondary peak in the left of the main peak. This secondary
peak causes a stronger fluctuation in the estimation of the
end points of the corresponding dominant subspaces. In any
case, we could improve the efficiency of our scheme by a
factor of at least 2 �for the case L=24�, by carefully individu-
alizing the used energy space for simulating a particular RF.
In fact, the fast early stages of the WL process may be used
as a prognostic method to approximately locate the CMES of
a particular RF, and this strategy may be an indispensable
ingredient in analogous future studies. Finally, an entropic
sampling study of the magnetic properties of the RFIM using
the CMES restrictive entropic scheme based on the high-
levels of the WL algorithm �29� would be greatly facilitated
by such a strategy.

To determine the density of states, we have used the
N-fold version of the WL method as presented by Schulz
et al. �27�, using 20 iterations for the reduction �f j+1=�f j,
f1=e� of the WL modification factor. Our implementation is
analogous to that presented in Ref. �28�, where the first 13
iterations follow the simple WL scheme and the remaining
iterations �j=14–20� use the N-fold version of Schulz et al.
�27�. We have used a flatness criterion of 5% for the energy
histogram �25,28�. For RF’s hi= ±2 the classes for the N-fold
process are specified by the energy changes �En=−16+4�n
−1�, n=1,2 , . . . ,9. Using the part of the simulation corre-
sponding to the N-fold iterations �j=14–20�, we have accu-
mulated data corresponding to nonzero energy changes in
order to apply the well-known BH equation �26�: G�E�
��N�E ,E+�En��E=G�E+�En��N�E+�En ,E��E+�En

. N�E ,E
+�En� is the number of possible spin-flip moves from a mi-
crostate of energy E to a macrostate with energy E+�En,
which are known during the N-fold process. In this way we
have produced four BH �n=1,2 ,3 ,4� approximations for the
DOS and the specific heat for each RF of the ensemble.

III. LACK OF SELF-AVERAGING OF THE SPECIFIC
HEAT

For a disordered system we have to perform two distinct
kinds of averaging. For each sample, the usual thermal aver-
age has to be carried out and then we have to average over
the random parameters. Let Cm�T� denote the specific heat of
a particular realization m in the ensemble of M realizations
of RF’s. The pseudocritical temperature TL,m

* will, of course,
depend on the realization of the RF. The location of the cor-
responding peak is denoted by �Cm

* ,TL,m
* � and the respective

probability distributions by PL�Cm
* � and PL�TL,m

* �.
Rieger and Young �17,19� have studied the following

sample summation for the specific heat curves:

�C�av =
1

M
�
m=1

M

Cm�T� , �4�

and the finite-size scaling behavior of the peak of this aver-
aged curve has been studied by assuming that the maximum
�C�av

* =maxT�C�av and the corresponding pseudocritical tem-
perature TL

* obey the scaling laws

�C�av
* � p + cL�/�, �5a�

TL
* � Tc + bL−1/�. �5b�

Here we shall also examine the scaling of the sample aver-
ages of the specific heat maxima and the pseudocritical tem-
peratures, defined by

�Cm
* �av �

1

M
�
m

Cm
* � p̃ + c̃L�̃/�̃, �6a�

�TL,m
* �av �

1

M
�
m

TL,m
* � T̃c + b̃L−1/�̃. �6b�

The possibility of different exponents may be ultimately re-
lated to the functional form of the distributions PL�Cm

* � and

FIG. 1. The specific heat for two characteristic examples of
RF’s, RFa �dotted line� and RFb �solid line�. The specific heat
curves were obtained using the average DOS over the 50 runs for
each RF. The inset shows the fluctuation of the extension of the
individual dominant subspaces over 50 runs.
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PL�TL,m
* �, whose behavior is decisive for the comprehension

of the critical behavior of the RFIM.
For a small number of RF’s the averaged curve �C�av has

several local maxima reflecting a very strong sample-to-
sample fluctuation of the individual pseudocritical tempera-
ture. Figure 2 shows how the smoothness of this curve de-
velops, as we increase the number of RF’s. Figure 3 presents
an example of the probability distribution PL�TL,m

* �. Since the
peaks are found in different locations, the averaging in Eq.
�4� wipes the particular peaks out. This explains why the
averaged curve does not represent the behavior of the most
probable—say, x—realization of the RF’s: �C�av�T��Cx�T�.
It also suggests the absence of self-averaging for the specific
heat of the present model, at least for the randomness studied
here. Figure 4 illustrates the finite-size behavior of the dis-
tribution PL�Cm

* �. Although for L=4 the distribution is sharp,
as L increases the distribution broadens so that there is a
significant number of RF’s having their peaks higher, or
lower, than the expected sample mean, defined in Eq. �6a�.
The above observations provide very strong evidence that
the real behavior of the RFIM is not appropriately described
by a possible misleading saturation of �C�av

* . The source of
this problem is the severe fluctuation of the pseudocritical
temperatures and the lack of self-averaging may be an im-
portant statement.

Broad distributions, with lack of self-averaging, have
been studied also in other physical problems, such as in the
well-known case of the scaling theory of Anderson localiza-

tion. There, it has been shown that for a disorder electronic
sample the conductance distribution at the point of the metal-
insulator transition �the mobility edge� is so broad that the
conductance is not a self-averaging quantity �30�. Notewor-
thy is the fact that the lack of self-averaging appears to be a
common property of disordered systems at criticality and
that besides the above-mentioned paradigm one can find sev-
eral examples of magnetic systems where this feature is
present �31–34�. Actually, when dealing with physical quan-
tities that are characterized by broad distributions, one must
be mindful when attempting to define a transition in terms of
related averaged quantities. In this sense, it seems that for the
present model the common use of �C�av

* may be a “meaning-
less” choice for a proper description. In order to discuss the
significance of the above broad probability distributions and
to present a more convincing finite-size scaling argument for
the violation of self-averaging in the thermodynamic limit,
we have included as an inset in Fig. 4 the ratio Rc
=Vc / �Cm

* �av
2 , where Vc is the sample-to-sample variance of

the average �6a�. Both the WL and BH estimates are shown
with their errors. The variance Vc was reduced by eliminating
the statistical �DOS� errors, assumed to be of the order of the
difference between the two methods. The above-defined nor-
malized square width is a measure characterizing the self-
averaging property of a system �33–35�. This ratio appears to
tend to a constant �Rc→0.3�, as can be seen from the inset of
Fig. 4. Thus, according to the literature �33–35� the system is
not self-averaging and the corresponding distribution does
not become sharp in the thermodynamic limit.

The WL and BH estimates for �Cm
* �av appear in Fig. 5. For

L=4–20 we have averaged over an ensemble of 1000 RF’s
and for L�20 over 200 RF’s. In this figure we show the WL
estimates and the mean �BH� of the four BH estimates. The
same figure presents the size dependence of �C�av

* . Although
for the range L=4–20 the behavior of the estimates is con-
vincing for their accuracy, an increase of statistical errors is
observed for larger sizes, depicted in the growing differences
between the WL and BH estimates. The estimates for L
=28 and L=32 appear to decline from the L=4–20 behavior,

FIG. 2. Averaged curves for various samples of RF’s.

FIG. 3. Fluctuation of the pseudocritical temperature.

FIG. 4. Broadening of probability distributions. The inset pre-
sents finite-size evidence for the violation of self-averaging. Rc is
defined and discussed in the text.
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and the growing errors after L=24 make difficult a definite
judgment for the asymptotic behavior. Refinements of the
WL scheme will be favorable for these larger lattice sizes.
This could be attempted by using multiple measurements for
each RF, by increasing the final WL j iteration, and/or by
introducing other refinements of the WL algorithm, such as a
separation S between successive recordings �36�. Our first
attempt to increase the WL j iteration to j=24 for small
samples of RF’s indicated that the level of j=20 leads to an
underestimation of the sharp peaks of the specific heat for
most RF’s. Nevertheless, this observed underestimation was
not of the order of the decline in Fig. 5, so it is possible that
the model crosses over to the conjectured saturation at these
lattice sizes.

From our attempts to acquire a better comprehension of
the reasons for the above-mentioned underestimation we also
observed that this aspect is quite strong for RF’s with a sharp
specific heat peak. Note that such RF’s are quite common
and have been recently discussed also by Wu and Machta
�37�. This underestimation may be observed also within the
j=20 WL level by using multiple measurements and also a
separation S=16 between successive recordings of the ac-
cepted microstates of the WL process. The separation refine-
ment is generally believed to improve the accuracy of the
WL method �29,36�. Figure 6 illustrates its effect in a re-
peated application using the RFa, that appears also in Fig. 1.
From Fig. 6 we observe that the effect of separation is to
increase the mean value of the maximum of the specific heat
by an amount which is of the same order with the standard
deviation of the statistical errors that one obtains by using
multiple measurements �100 independent WL runs� without
separation. The standard deviation of the new sample of mul-
tiple measurements �25 independent WL runs using separa-
tion� is also of the same order, as shown in Fig. 6. We note
that the WL sampling in these multiple measurements was
carried out in a energy subspace which is slightly wider than
the CMES of the RFa �ie=700–1800� and not in the wider
energy range used for the simulation appearing in Fig. 1.
Comparing these two figures �Figs. 1 and 6� one can detect
the effects of different restrictions on the energy space. The
observed sudden decrease of the right tail of the specific heat
�a similar comment applies also for the left tail� in Fig. 1 is

an effect induced by the restriction imposed on the energy
space and appears in the neighborhood of T�3. The further
restriction imposed in the new samplings �appearing in Fig.
6� is now reflected in the shift of the observed sudden de-
crease in the neighborhood of T�2.5. Before attempting to
simulate larger samples of RF’s, other refinements should be
also tested, in order to obtain a more accurate and efficient
scheme. In any case, our study shows that there is a large
number of RF’s with sharp peaks strongly fluctuating in their
pseudocritical temperatures and this generic property makes
the proposed CMES scheme the most appropriate alternative,
despite the accuracy and slowing down problems observed at
the larger sizes. Sharp peaks are usually missed by impor-
tance sampling, due to an inadequate temperature scanning
often used.

Figure 7 illustrates that the two pseudocritical tempera-

tures, �TL,m
* �av and TL

*, tend to the same limit �T̃c=Tc�. The

FIG. 5. Size behavior of the averages �Cm
* �av and �C�av

* . The
vertical bars illustrate the order of the sample-to-sample fluctuations
and should not be confused with the small errors of the WL scheme.

FIG. 6. Illustration of the separation effect in the specific heat of
the RFa. The specific heat curves shown were calculated from the
average DOS over the runs, while the horizontal lines represent the
mean values of the independent runs for the specific heat peaks. The
dotted line shows the case S=16, while the solid line the case S
=0. The error bars illustrate the standard deviation �of the indepen-
dent peaks� over the 25 �dotted� and 100 �solid� WL runs, corre-
sponding to S=16 and S=0.

FIG. 7. Size dependence of pseudocritical temperatures. The
vertical bars as in Fig. 5. The inset illustrates the scaling of the
sample-to-sample variance of the average �TL,m

* �av �Eq. �6b��.
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behavior of �TL,m
* �av is smoother than the behavior of TL

*,
which is more sensitive to the sample size. Using our data
for �TL,m

* �av we found a reasonably good fit with T̃c
=2.03�18� and �̃=1.31�18�. This value is very close to the
value �=1.37�9� found in Ref. �16� and lies between the
values 1.0�1� of Ref. �20� and the estimates 1.6�3 and 1.4�2�
of Ref. �17�. The inset in Fig. 7 illustrates the scaling of the
sample-to-sample variance of the average �TL,m

* �av of Eq.
�6b�. Assuming that the square of these sample-to-sample
fluctuations scales with the linear size L according to

2��TL,m

* �av��L−2/�, we obtain, from the fit shown in the in-
set, the value �=1.18�15�. This estimate is slightly smaller
than the value found above, which is in good agreement with
the best estimate in the literature �16�. The rather slow ap-
proach of the fluctuations to zero is also an interesting find-
ing. According to Aharony and Harris �33� and Wiseman and
Domany �34�, the fact that the square width of the distribu-
tion of the sample-dependent pseudocritical temperatures
scales with L−2/� and not with L−d, when combined with
finite-size scaling �34�, is an indication of a lack of self-
averaging of the random system. Therefore, our main con-
clusion is reinforced and is also in conformity with the re-
sults of Parisi and Sourlas �38�. The numerical study of these
authors showed that the strong fluctuations of the 3D RFIM
produce a maximal violation of self-averaging for the corre-
lation length. It appears that the disorder present in the RFIM
brings about drastic effects and its strong non-self-averaging
behavior includes also the specific heat, as suggested in this
paper.

It is quite possible that the above relevant aspect was
overlooked in previous finite-temperature studies but also in
ground-state calculations. We think that, at least partly, this
practice is behind the existing controversial situation in the
literature concerning the behavior of the specific heat. For
instance, the saturation of �C�av

* is evident from the very
small sizes and its behavior does not admit a finite-size scal-
ing, but rather appears as a random fluctuation around the
value 0.84, as shown by the dashed line in Fig. 5. The nega-
tive value for the exponent � found from the study of �C�av

*

in previous finite-temperature studies �17,19� seems to us
questionable. In addition to all the reasons mentioned above,
the very early and clear saturation observed here and the
possibility of a crossover behavior of the model at larger
lattice sizes are strong indications that make us question the
meaning of such a scaling prediction. It appears that the be-
havior of �Cm

* �av incorporates more of the physical content of
the model, although its asymptotic behavior seems unsettled

at the lattice sizes studied here. As pointed out earlier, the
systematic errors of the WL scheme for large lattice sizes are
due to the practical �j=20� but not fully converged usage of
this algorithm in our simulations. This option was dictated by
the need to study large samples of RF’s. We assume that the
decline of the estimates observed here for L�24 is stronger,
as pointed out earlier, from the underestimation observed by
studying smaller samples of RF’s and using longer �j=24�
runs. Then, it is quite obvious from Fig. 5 that the true
asymptotic behavior cannot be observed at these lattice sizes,
although its saturation seems to be now plausible. In order to
obtain a safe and sound estimation of the large-L behavior,
larger systems of at least of the order of L=60 should be
considered. This is an extremely demanding computer
project and will have to be postponed, until further tests
make available a more accurate and optimum refinement of
the presented scheme. Finally, let us point out that our first
attempts to observe the behavior of the susceptibility of the
3D RFIM via a recently proposed entropic scheme �29� sug-
gested also an even stronger violation of self-averaging for
the magnetic properties of the system.

IV. CONCLUSIONS

In spite of many years of study, the conflicting situation in
the literature concerning the divergence or saturation of the
specific heat of the RFIM is still an open important topic,
necessary for a better comprehension of the model. This
problem was considered in a completely new basis in this
paper. The property of self-averaging of the specific heat was
addressed in a concise way, and its violation was explicitly
shown by studying the relevant probability distributions.
This finding may lead to a better theoretical and numerical
approach of the problem. The scaling behavior of the pseud-
ocritical temperatures and their sample-to-sample fluctua-
tions were also presented, and found to support a strong vio-
lation of the self-averaging property of the system. The new
ideas and numerical techniques utilized to tackle the RFIM
use as an essential ingredient the critical minimum-energy
subspace scheme. We hope that the combination of algo-
rithms and techniques applied here will be useful in further
numerical studies of this and other similarly challenging
problems.
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