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I construct a two-dimensional lattice on which the inhomogeneous site percolation threshold is exactly
calculable and use this result to find two more lattices on which the site thresholds can be determined. The
primary lattice studied here, the “martini lattice,” is a hexagonal lattice with every second site transformed into
a triangle. The site threshold of this lattice is found to be 0.764826…, i.e., the solution to p4−3p3+1=0, while
the others have ��5−1� /2 �the inverse of the golden ratio� and 1/�2. This last solution suggests a possible
approach to establishing the bound for the hexagonal site threshold, pc�1/�2. To derive these results, I solve
a correlated bond problem on the hexagonal lattice by use of the star-triangle transformation and then, by a
particular choice of correlations derived from a site-to-bond transformation, solve the site problem on the
martini lattice.
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I. INTRODUCTION

Percolation theory �1,2� concerns the appearance of infi-
nitely connected components in randomly populated lattices.
The problem was originally stated by Broadbent and Ham-
mersley �3� and is one of the simplest examples of a process
that exhibits a phase transition. Given a lattice, such as the
one shown in Fig. 2, and referring to the line segments as
bonds and the vertices between bonds as sites, we consider
site percolation by declaring each site to be occupied with
probability p and unoccupied with probability 1− p. Two oc-
cupied sites that are connected by a bond are said to be part
of the same cluster and it is clear that as p is increased,
clusters of ever increasing size will appear. As shown by
Broadbent and Hammersley, there is a clearly defined thresh-
old, pc, above which there is, with probability 1, a cluster
containing an infinite number of sites, and below which there
is no such cluster. This number is called the percolation
threshold and is unique to each lattice. We can also have
bond percolation, in which bonds are declared open or closed
with probability p and 1− p. A bond problem can be trans-
formed into a site problem by covering every bond with a
site, and then connecting two sites if their underlying bonds
were adjacent, thus forming the “covering lattice.” For ex-
ample, the kagomé lattice �Fig. 6� is the covering lattice of
the hexagonal lattice, and so the former’s site threshold is
equal to the latter’s bond threshold. Not every lattice is a
covering lattice, however, so in this sense site percolation is
more general.

Despite the problem’s innocuous appearance, the exact
calculation of thresholds on non-trivial lattices is very diffi-
cult. Many problems are still outstanding, such as site perco-
lation on the square and hexagonal lattices and bond perco-
lation on the kagomé lattice �4�. There are a few two-
dimensional �2D� lattices that have been solved, however.
For example, 2D lattices with a certain property, self-duality

for bond problems and self-matching for site problems, are
known to all have pc= 1

2 �1�. In a pioneering paper, Sykes and
Essam �5� used a nonrigorous method called the star-triangle
transformation to find the exact values of the bond thresholds
for the triangular and hexagonal lattices. With some ingenu-
ity, Wierman �6� adapted the star-triangle transformation to
find the bond threshold on the bowtie lattice. The star-
triangle transformation has clearly been a very useful tool;
every exact result in two dimensions is either 1

2 , meaning it is
self-matching or self-dual, or relies on the star-triangle trans-
formation in some way. In the present work, I extend this
method to problems with some limited correlation structure.

It is necessary to make a distinction between exact solu-
tions and proofs. As mentioned before, the star-triangle trans-
formation is a nonrigorous method that nonetheless predicts
the correct bond thresholds for the triangular, hexagonal, and
square lattices. Although it was already widely accepted, it
was not until 1980 that the value of 1

2 for the bond threshold
of the square lattice was eventually proved by Kesten �7�.
That the predictions for the other two lattices were also cor-
rect was proved by Wierman �8� in 1981, many years after
the conjecture of Sykes and Essam. The present paper pre-
sents nonrigorous but nevertheless exact results. However, it
is hoped that it is a straightforward exercise to put the argu-
ments on a rigorous footing.

The primary lattice studied here, which I call the “martini
lattice” due to the shape of the basic cell, is the one shown in
Figs. 1 and 2. Each site has three nearest neighbors, but the
lattice is nonuniform because some sites are �3,92� while
others are �93� in the notation of Grünbaum and Shephard
�9�, in which one lists the number of sides of each polygon
that surround a site. This lattice is mentioned on p. 186 of
that book as an example of what they call a 2-homeohedral
tiling of valence 3.

II. STAR-TRIANGLE TRANSFORMATION

The star-triangle transformation exploits the fact that if
the bonds of a unit cell of the triangular lattice �T� are re-*Electronic address: scullard@uchicago.edu
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placed by a corresponding star, as illustrated in Fig. 3, the
result is the hexagonal lattice �H�, which is the triangular
lattice’s dual �Fig. 4�. The dual, Ld, of a graph L is formed by
placing sites in the faces of L and connecting them with
bonds that cross the bonds of L. The bond percolation thresh-
old of a lattice and its dual are related, in 2D, by the well-
known formula �1�

pc
bond�L� = 1 − pc

bond�Ld� . �1�

This means that the appearance of the infinite open cluster on
L coincides with the disappearance of the infinite closed
cluster on Ld. The star-triangle transformation leads to an-
other relationship between the critical probabilities of H and
T besides pc�T�=1− pc�H�, which allows both to be deter-
mined exactly. The method even works for the inhomoge-
neous case, where the probabilities of each bond being open
on the base triangle are different, resulting in a critical sur-
face rather than a critical point.

The argument proceeds as follows. Consider bond perco-
lation on the triangle and superimposed star shown in Fig. 3.
The probabilities p ,s ,r refer to the probabilities that their
corresponding bonds are open on either the star or triangle.
We can ask several questions about the connectedness of the
sites A ,B ,C. For example, what is the probability that A
is connected to both B and C, an event we will denote
P�A→B ,A→C�, through open bonds on the triangle? This
is easily found to be

P�A → B,A → C� = ps + pr�1 − s� + sr�1 − p� . �2�

Next, we want the probability that A ,B ,C are connected
through closed bonds on the star. We denote this event
Q*�A→B ,A→C�. Q will hereafter denote the probability of
events that happen in closed bonds and � will indicate that
the event happens by traversing the star rather than the tri-

FIG. 2. Another representation of the martini lattice.

FIG. 1. The martini lattice, drawn to emphasize its origin as a
hexagonal lattice with every second site transformed into a triangle. FIG. 3. The star-triangle transformation. p ,r ,s denote the prob-

abilities of their corresponding bonds on the triangle and star, and
A ,B ,C label the sites.

FIG. 4. The star-triangle transformation. Replacing each triangle
with a dashed star transforms the triangular lattice into the hexago-
nal lattice.
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angle. Since this event only happens if all three bonds are
closed, we have

Q*�A → B,A → C� = �1 − p��1 − r��1 − s� . �3�

If we now consider the entire lattice, we can see that the
replacement of triangles by stars turns the triangular lattice
into the hexagonal lattice, i.e., the dual �Fig. 4�. As we will
see, the condition

P�A → B,A → C� = Q*�A → B,A → C� �4�

defines the critical surface. Substituting our previous results
into Eq. �4� and simplifying, we get

psr − p − s − r + 1 = 0. �5�

Setting s=r= p leads to the critical point for bond percolation
on the triangular lattice, pc=2 sin � /18. To convince our-
selves that Eq. �4� defines the critical surface, we can exam-
ine the other ways of connecting the sites. The probability
that A connects B, but not C, denoted P�A→B ,AyC�, is
given by

P�A → B,A y C� = r�1 − p��1 − s� . �6�

Also,

Q*�A → B,A y C� = r�1 − p��1 − s� �7�

so that P�A→B ,AyC�=Q*�A→B ,AyC� for all �p ,r ,s�
and similarly for the events �AyB ,A→C� and
�B→C ,ByA�. The condition

P�A y B,A y C� = Q*�A y B,A y C� �8�

also leads to Eq. �5�. Because all open connectivities internal
to a triangle are equivalent to the closed connectivities on the
star when this condition is satisfied, the connectivity of open
bonds on T is exactly the same as that of the closed bonds on
H. This means that if there is an infinite open cluster on T,
then there is an infinite closed cluster on H. This leads, by
our previous discussion of duality, to the conclusion that

there is neither an infinite open cluster on T nor an infinite
closed cluster on H, i.e., we are on the critical surface.

III. CORRELATED BOND PERCOLATION
ON THE TRIANGULAR LATTICE

The method of Sykes and Essam can be extended to the
case in which the bonds of the triangle are not independent.
Our critical surface will now appear as a constraint between
the one-, two-, and three-point joint probabilities. It is impor-
tant to note that although all bonds in a triangle are corre-
lated, there are no correlations between neighboring tri-
angles, so a given bond is only correlated to two of its
neighbors. The dual lattice is constructed analogously to the
uncorrelated case, with each bond in the dual inheriting the
probabilities and now the correlations of the original lattice.
Labeling the bonds v ,h , l as shown in Fig. 5, we will deal
with the quantities P�v�, P�h�, P�l�, P�h , l�, P�v ,h�, P�v , l�,
and P�h ,v , l�, which are the set of one-, two-, and three-point
joint probabilities of the indicated bonds being open. Prob-
abilities of bonds being closed will be denoted with a bar
over the bond name, e.g., P�v̄�. We can now repeat the pro-
cedure outlined above but with our joint probabilities,

P�A → B,A → C� = P�v,h� + P�v,l, h̄� + P�h,l, v̄� �9�

and

Q*�A → B,A → C� = P�v̄, l̄, h̄� . �10�

Equating these gives our critical surface,

P�v,h� + P�v,l, h̄� + P�h,l, v̄� − P�v̄, l̄, h̄� = 0. �11�

There are many equivalent ways this can be expressed. For
example, if we use the condition

P�A y B,A y C� = Q*�A y B,A y C� ,

we obtain the more compact

FIG. 5. Labels used in treating the correlated triangle. A ,B ,C
label sites and v ,h , l label bonds on the triangle and the correspond-
ing bonds on the star—note that these are now names, not
probabilities.

FIG. 6. The kagomé lattice. The circled triangles are the ones on
which we apply the site-to-bond transformation.
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P�v� + P�v̄,h,l� − P�h̄, l̄� = 0. �12�

Although they look dissimilar, Eqs. �11� and �12� are in fact
the same constraint and it is a simple matter to relate them
using identities. The conditions P�A→B ,AyC�=Q*�A
→B ,AyC�, etc., are also satisfied for all choices of the
probabilities, as before.

To compare with our earlier results, it is easy to see that

setting P�h̄ , l̄�= �1−r��1−s�, P�v̄ ,h , l�= �1− p�rs, P�v�= p
leads to Eq. �5�.

IV. SITE-TO-BOND TRANSFORMATION

The process of forming the covering lattice of a given
bond problem, by covering each bond with a site, is com-
monly referred to as the bond-to-site transformation. As pre-
viously mentioned, not every site problem is a covering lat-
tice, so there is no inverse “site-to-bond” transformation that
works in general. I will therefore use this name to describe a
different transformation by which it is always possible to
transform from a site problem into a bond problem. If we
consider a realization of site percolation on a given lattice,
we can transform it into a bond process by declaring a bond
to be open if both its bounding sites are occupied, and closed
otherwise. By doing this, we introduce correlations between
neighboring bonds; the probability that a given bond is open
is p2, but the probability that a bond is open given that one of
its neighbors is open is p. Furthermore, there are three-point
correlations; the probability that a bond is open is 1 if two of
its neighbors on opposite ends of the bond are open. It is
clear that the existence or lack of an infinite open cluster are
properties that will be shared by both the site and trans-
formed bond problems. If we now consider sites on a tri-
angle, we can use these rules to derive joint probabilities for
the bonds, which we can then use in the criticality condition
�12�. It is easy to see that if the sites are occupied with
probability p,

P�v� = p2, �13�

P�h̄, l̄� = �1 − p�3 + 3p�1 − p�2 + p2�1 − p� , �14�

P�h,l, v̄� = 0. �15�

If we use these in Eq. �12�, we cannot expect to have solved
the site problem on the triangular lattice. The critical surface
is not appropriate to that problem because we have not in-
cluded correlations between triangles. I suggest that the
threshold we will discover is that of the site problem on the
kagomé lattice �Fig. 6�. To see this, consider the triangles
outlined in Fig. 6. Clearly they are not correlated to each
other if we use the site-to-bond transformation. But percola-
tion of bonds on these triangles implies percolation of the
lattice since, due to three-point correlations, a connecting
bond on the separating triangles will be open with probabil-
ity 1 if two bonds on either side of it are open. More spe-
cifically, consider the bonds on the two top circled triangles.
Under the site-to-bond transformation, if the horizontal bond
on each is open, then both bounding sites on each of the

bonds are occupied. But if this is true, then it follows that the
horizontal bond on the separating triangle is also open, thus
our two original bonds are connected to each other by virtue
of being open themselves, and they are independent. Thus,
by inserting the separating triangles, we have preserved the
way in which the circled triangles were connected to each
other on the original triangular lattice and ensured that neigh-
boring triangles are independent, thus enabling us to use our
star-triangle result. Plugging expressions �13�–�15� into Eq.
�12�, we obtain the polynomial

1 − 3pc
2 + pc

3 = 0 �16�

with solution pc=1−2 sin � /18, which is indeed the critical
threshold of the kagomé lattice. However, since this is just
the covering lattice of H, its threshold has long been known
through more elementary means.

We can obtain our new results by considering percolation
on the star. The critical surface in this case will be given by
the complement of Eq. �12�,

P�v̄� + P�v, h̄, l̄� − P�h,l� = 0. �17�

In fact, we will consider the inhomogeneous site problem,
and assign probabilities p ,r ,s , t, to the sites as shown in
Fig. 7,

P�v̄� = 1 − st , �18�

P�h,l� = prs , �19�

P�v, h̄, l̄� = st�1 − p��1 − r� . �20�

This leads to the critical surface

1 − rst − prs − pst + stpr = 0, �21�

which is the central result of this work. But to what lattice
does it correspond? In the previous example, where we ob-
tained the kagomé lattice, we needed to insert extra triangles
to separate our correlated triangles. Inserting these separating
triangles in between the correlated stars, we obtain the mar-
tini lattice shown in Fig. 2. The critical threshold for site
percolation is obtained by setting r=s= t= p,

FIG. 7. The assignment of probabilities to the sites on the mar-
tini lattice.
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1 − 3pc
3 + pc

4 = 0, �22�

which has a solution on �0,1�,

pc = 0.764826 . . . . �23�

This number has an exact representation in terms of radicals,
but it is complicated and not very illuminating. We can ob-
tain further results by making different choices for the prob-
abilities. For example, by setting s=1, r= t= p, we expect the
kagomé lattice to reappear, since s=1 effectively turns the
star back into a triangle. Plugging these into Eq. �21�, we
indeed get Eq. �16�. Other choices are possible that lead to a
variety of results.

A. t=r=1

The corresponding lattice is the one shown in Fig. 8 and it
resembles a stack of houses or a neighborhood. It is nonuni-
form, with some sites �52 ,3 ,5 ,3� with five nearest neighbors
and others �3,52� with three nearest neighbors, and falls
somewhere between the hexagonal lattice and the �33 ,42�
lattice. It is also self-dual, meaning we can immediately lo-
cate its bond threshold at 1

2 . If the �52 ,3 ,5 ,3� sites have
probability s and the �3,52� sites p, the critical locus for site
percolation is

1 − s − ps = 0. �24�

Setting s= p leads to the critical threshold

1 − pc − pc
2 = 0 �25�

or pc= ��5−1� /2=1/�=0.618034. . ., where �= ��5+1� /2
=1.618034. . . is the golden ratio �10�.

This site threshold is an unexpected place for the golden
ratio to appear, and it is interesting to note that the bond
threshold of the square lattice with every horizontal bond
doubled also satisfies Eq. �25�, even though the two prob-
lems are not related by any obvious transformation.

B. s= t=1

Setting s= t=1 and r= p, we get the covering lattice of the
square bond problem, leading to pc= 1

2 , which is a very
roundabout way of solving that problem.

C. r=1

Again, a star is turned into a triangle, but a different one
from that which produced the kagomé lattice earlier. The
lattice that results here is shown in Fig. 9. The critical sur-
face is

1 − st − ps = 0. �26�

Setting s= t= p yields

1 − 2pc
2 = 0, �27�

which means pc=1/�2=0.707107. . .. This value has been
verified numerically by Robert Ziff �11� to within
±0.000001. This is an interesting result for several reasons.
For one, some sites have three nearest neighbors while others
have four. Thus, if we were to make a guess strictly on the
basis of nearest neighbors, we might be led to believe that

FIG. 10. The transformation that takes the hexagonal lattice to
the one shown in Fig. 9. The site at the bottom of every hexagon is
divided into two sites, and a bond is inserted between them.

FIG. 8. The lattice obtained from the martini lattice by setting
t=r=1. On this lattice, pc

site= ��5−1� /2=0.618034. . . and pc
bond= 1

2 .
FIG. 9. The lattice obtained by setting r=1. The site threshold is

pc=1/�2.
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this lattice’s site threshold is smaller than that of the hexago-
nal lattice, where every site has three nearest neighbors. The
contrary is true, however, as we know from numerical results
�12�. Actually, the value 1/�2 is noteworthy in itself. Usu-
ally, simple values like this indicate an elementary transfor-
mation from a known lattice with pc= 1

2 . If such a transfor-
mation exists in this case, it does not appear to be obvious.
Interestingly, pc=1/�2 was once conjectured to be the exact
site threshold for the hexagonal lattice �13� but was shortly
thereafter judged unlikely from numerical considerations
�14�.

This result suggests an approach to finding an upper
bound for pc

site�H�. Consider the following procedure for pro-
ducing this lattice. Starting with the usual hexagonal lattice,
take the site at the bottom of each hexagon, split it into two
sites, and connect them together with a bond, as shown in
Fig. 10. All that is required is to show that this procedure
always increases the critical probability and one will have
shown that

pc
site�H� �

1
�2

. �28�

It remains to be seen whether this suggestion actually sim-
plifies the problem.

V. CONCLUDING REMARKS

I have found three lattices whose site percolation thresh-
olds can be calculated exactly, and shown that one of these
solutions might lead to an upper bound for the hexagonal
lattice.

It should be noted that a special case of Eq. �21� has
previously appeared in the literature, though in a slightly
different context. In considering a mixed site/bond problem,
Kondor �13� derived an expression that matches Eq. �21� for
r= t= p. The situation he considered was bond percolation on
the triangular lattice in which there is a “three-site” bond in
the middle of every second triangle. The dual is a hexagonal
lattice with a site in the middle of every second star. This
problem is evidently isomorphic to site percolation on the
martini lattice.
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