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We study the statistical properties of the sampled scale-free networks, deeply related to the proper identifi-
cation of various real-world networks. We exploit three methods of sampling and investigate the topological
properties such as degree and betweenness centrality distribution, average path length, assortativity, and clus-
tering coefficient of sampled networks compared with those of original networks. It is found that the quantities
related to those properties in sampled networks appear to be estimated quite differently for each sampling
method. We explain why such a biased estimation of quantities would emerge from the sampling procedure and
give appropriate criteria for each sampling method to prevent the quantities from being overestimated or
underestimated.
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I. INTRODUCTION

Recently, a huge amount of research on complex networks
has been achieved in interdisciplinary fields including math-
ematics, statistical physics, computer science, sociology, bi-
ology, etc. �1–3�. Complex networks are ubiquitous in the
real world, e.g., there are technological networks such as the
Internet �4�, biological networks such as protein interaction
networks �5�, and social networks such as scientific collabo-
ration networks �6�. Various models to explain the observed
properties of those real networks have been introduced and
studied by both numerical and analytic approaches. Rela-
tively fewer works, however, have been done about possible
error or bias in collecting data and identifying real networks
in a practical sense, and most works deal exclusively with
either social networks or the Internet �7–17�.

For instance, a survey of relationships among participants
has to be conducted to construct a social network, but the
collected network data may be incomplete or erroneous since
a survey usually targets only a partial sample of a whole
population �9�. The topology of the Internet is inferred by
aggregating paths or traceroutes �18�, which also reveals
only a part of the whole Internet �10–13�. In biology, protein-
protein interaction networks are identified by seeking contex-
tual or cellular functions mostly within specific functional
modules �5�. Identification of such networks by experiments
also has a fundamental limit naturally. Thus, all these net-
works identified are sampled networks from complete struc-
tures. In addition, if the size of an entire network is too large
to measure some quantities such as betweenness centrality
�19,20� due to time complexity, inevitably a sampling pro-
cess is necessary.

So far models of networks have been designed based on
features observed in real networks, such as the small-world
effect �21� and the power-law degree distribution �22,23�.
But what if those observed characteristics from the sampled

networks are considerably different from the original struc-
tures of the real networks? It has been shown that the
sampled networks based on the traceroute sampling method
may have significantly different topological properties from
the original network in some cases �10–13�. Effects of miss-
ing data in social networks are discussed in Ref. �9�, in
which it was shown that some problems in conceiving social
networks can cause incompleteness of data and lead to mis-
estimation of quantities like mean node degree, clustering
coefficient, assortativity, etc. At this point, bias in such quan-
tities needs to be considered in a more general sense.

In a statistical sense, inference from a sample provides
fairly reasonable estimation of a whole population if a large
number of objects are selected randomly enough to be rep-
resentative in the population. This naive criterion, however,
cannot be applied directly to sampling networks, since there
are two different elements, i.e., nodes and links in a network.
A degree distribution of nodes is, for example, a statistic of a
network, but the degree is not an independent characteristic
of each node. Nodes are literally connected to one another,
by the other kind of components called links from which a
degree is defined. Similarly, other properties of a network
also heavily depend on the way that nodes and links are
interwoven. There could be several different ways of sam-
pling networks due to the two interrelated elements �nodes
and links�, and each method may give distinctive features
with respect to such properties.

There has been a large amount of work on random break-
downs or intentional attack on complex networks, considered
as the exact reverse process of sampling, in the physics com-
munity �24–27�. The analytic methods in that work, there-
fore, can be also applied to the sampling problem. In this
paper, we adopt three basic methods of sampling networks
and investigate the effect of each method on measuring sev-
eral well-known network quantities such as degree distribu-
tion, average path length, betweenness centrality distribution
�19,20�, assortativity �28�, and clustering coefficient �21�.
Observed bias of such quantities is explained, and we pro-
vide appropriate criteria for choosing sampling methods to
measure the quantities more accurately. Some typical real
networks as well as the Barabási-Albert model �22� are
sampled for this analysis. More general sampling processes
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used to identify real networks may consist of some combi-
nations of methods presented here or variations of them, but
we can infer by using the results from the basic methods.

II. SAMPLING METHODS AND NETWORKS

We introduce three kinds of sampling method called node
sampling, link sampling, and snowball sampling. In node
sampling, a certain number of nodes are randomly chosen
and links among them are kept. The sampling fraction in this
method is defined as the ratio of the number of chosen nodes
�including isolated nodes that will be removed later� to that
of all the nodes in the original network. As in Fig. 1�a�,
isolated nodes are neglected for convenience, although they
are fully predictable, so the number of nodes in a sampled
network is a little bit less than that of selected nodes. We
observe the dependence of the number of chosen links on
that of nodes, since it is related to the average degrees and
average path length of sampled networks, discussed later on.
Suppose the fraction of number of selected nodes is � and
that of links among them is �. Then it is found that ���2 if
we pick nodes randomly, since the maximum number of �un-
directed� links possible for n selected nodes are � n

2
�=n�n

−1� /2�n2 �29�.
In link sampling, a certain number of links are randomly

selected and nodes attached to them are kept, as in Fig. 1�b�.
In snowball sampling �30,31�, we first choose a single node
and all the nodes directly linked to it are picked. Then all the
nodes connected to those picked in the last step are selected,
and this process is continued until the desired number of
nodes are sampled. The set of nodes selected in the nth step
is denoted as the nth layer, in the same sense of “radius” for
ego-centered networks in Ref. �31�. See Fig. 1�c� for illus-
tration. To control the number of nodes in the sampled net-
work, a necessary number of nodes are randomly chosen
from the last layer. Similar to the cluster-growing method
used to calculate the fractal dimension of percolation clusters
in Ref. �32�, the snowball sampling method tends to pick
hubs �nodes with many links� in short step due to high con-
nectivity of them. So whether the initial node is a hub or not

does not make a noticeable difference in characterizing the
sampled network.

For numerical analysis of the sampled networks, we use
Barabási-Albert �BA� scale-free network as an example of
model networks, which follows the power-law degree distri-
bution p�k��k−3, with 30 000 nodes and m0=m=4 �22�. We
also consider three real-world networks from various fields,
including protein interaction network �PIN� �5,33�, the Inter-
net at the autonomous systems �AS� level �34�, and e-print
archive coauthorship network �arxiv.org� �6�. The numbers of
nodes and links for each network are in Table I. Although
results from other homogeneous networks are also discussed
in Sec. IV, most of networks considered in this work are
undirected and scale-free networks following power-law de-
gree distribution, p�k��k−�, where 2���3.

III. CHARACTERISTICS OF SAMPLED NETWORKS

A. Degree distribution and average path length

A degree of a node is defined as the number of links
attached to the node. Many real networks are shown to have
a power-law degree distribution p�k��k−� �1–3�, including
the networks considered in this paper. We found that in gen-
eral degree distributions of sampled networks from the four
networks obtained by all three methods follow the power-law
as well as those of the original networks. The exponents of
degree distribution � �degree exponent� are extracted using
maximum likelihood estimate given by the formula �35�

� = 1 + n��
i=1

n

ln
ki

kmin
�−1

, �1�

where n is the number of elements in a set 	ki
 whose ele-
ments follow the power-law distribution p�k��k−�, and kmin

is the smallest element for which the power-law behavior
holds. Figure 2 shows the change of the degree exponent for
the sampled networks from each network obtained by nu-
merical simulation for each method as we change the sam-
pling fraction �.

For node sampling, we fix the number of sampled nodes
and select nodes randomly. In this case, the new degree dis-
tribution p��k� of the sampled network is expressed as

p��k� = �
k0=k

n−1

p�k0��k0

k
��n − k0 − 1

ns − k − 1
�
� n − 1

ns − 1
� , �2�

where p�k� is the degree distribution of the original network,
n is the number of nodes in the original network, and ns
=�n is the fixed number of sampled nodes. In the case that

FIG. 1. Three kinds of sampling method. �a� Node sampling:
Select the circled nodes, keep three links among them, and the
isolated node is removed. �b� Link sampling: Select the three
circled links and six nodes attached to them. �c� Snowball sampling:
Starting from the circled node, select nodes and links attached to
them by tracing links.

TABLE I. The numbers of nodes n and links l for each real
network.

Network n l Ref.

PIN 5077 16 449 �5,33�
Internet AS 10 515 21 455 �34�

arxiv.org 49 983 245 300 �6�
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the number of nodes in sampled networks is not fixed but
only the probability � with which individual nodes are se-
lected is given �14,17�, Eq. �2� should be written as

p��k� = �
ns=k+1

n

�
k0=k

n−1

p�k0�f�ns��k0

k
��

n − k0 − 1

ns − k − 1
�

� n − 1

ns − 1
� , �3�

where the probability that ns number of nodes are chosen is
f�ns�= � n

ns
��ns�1−��n−ns. If the number of nodes is fixed,

f�ns�=��ns−�n� and Eq. �3� becomes Eq. �2� with ns=�n.
Even if the number of nodes is not fixed, when the system
size is large enough to use the approximation f�ns����ns

−�n�, we can safely use Eq. �2�. Equation �2� can be further
reduced by n! / �n−m�!�nm for n�m. Suppose n ,ns�k0 ,k.
Then

�n − k0 − 1

ns − k − 1
�
� n − 1

ns − 1
� � ns

k�n − ns�k0−k/nk0

= �ns

n
�k�1 −

ns

n
�k0−k

= �k�1 − ��k0−k, �4�

which leads to the formula previously used in Refs.
�14,17,25�

p��k� = �
k0=k

�

p�k0��k0

k
��k�1 − ��k0−k. �5�

The sizes of all the four networks studied in this paper are
larger than 5000, and we have checked that Eqs. �2� and �5�
give practically the same values of p��k� and are indistin-
guishable in the graphs. For much smaller networks, on the
other hand, Eq. �2� actually predicts the degree distribution

of sampled networks better than Eq. �5�. In Fig. 3, we com-
pare the simulation results for two small networks, the nema-
tode C. elegans neural network �37� with 297 nodes and
2359 links and the Zachary karate club network �38� with 34
nodes and 77 links, with those two equations by substituting
the original degree distribution p�k�=nk /n, where nk is the
number of nodes with degree k. The figure clearly shows that
Eq. �2� is more accurate.

The above equations turn out to be applied to the link
sampling with the same sampling fraction � as well. Here we
can use the technique in Ref. �36� to solve the bond perco-
lation or epidemic model. Suppose a node, which originally
had k0 links before sampling, comes to have k links. Because
the random link sampling chooses links uniformly, the prob-
ability of the node having k out of k0 links is p�k �k0�
= � k0

k
��k�1−��k0−k. Consequently the probability that a node

in the sampled network has degree k from all the possible
original degree k0 is p��k�=�k0=k

� p�k0�p�k �k0�, which leads us
back to Eq. �5�. The fact that those two sorts of sampling are
described by the same equation is also supported by Fig. 2
showing the similar degree exponent changes for both node
and link sampling.

As Stumpf et al. point out in Refs. �14,17�, Eq. �5� for a
power-law degree distribution p�k��k−� yields deviation of
p��k� from the original power-law form for quite small sam-
pling fraction �. For moderate values of �, however, the

FIG. 2. Changes of degree exponent � for each network’s
sampled networks according to the sampling fraction �, averaged
over ten independent realizations. Empty squares ��� stand for
node sampling, filled squares ��� for link sampling, and empty
triangles ��� for snowball sampling. The horizontal dashed lines
are the values for the original exponent of each network, and the
solid lines represent the values obtained by Eq. �5�.

FIG. 3. Degree distribution for sampled networks of �a� C. el-
egans neural network with �=120/297 and �b� Zachary karate club
network with �=20/34, obtained from the node sampling. Empty
circles are simulation results from 1000 sampling processes. Solid
lines correspond to Eq. �2� and dashed lines to Eq. �5�. Insets show
the part of large degrees, where the difference between two formu-
lae is prominent, for each graph.
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deviation is not significant and we observe that the tangent of
p��k� in the log-log plot actually becomes steeper from Eq.
�5�, consistent with our numerical observation about the node
and link sampling as shown in Fig. 2. To extract the degree
exponents from Eq. �5�, first we calculate the degree distri-
bution of the original networks by p�k�=nk /n. Substituting
that p�k� into Eq. �5�, we obtain the degree distribution p��k�
of the sampled networks corresponding to a given sampling
fraction �. The degree exponents from those p��k� in Fig. 2
show good agreement with the values from numerical simu-
lation for both node and link sampling cases.

On the contrary, it is found that a degree exponent de-
creases for snowball sampling as we decrease the sampling
fraction. By the definition of snowball sampling, hubs are
more likely to be selected by this method. Furthermore, once
a hub is picked, every node connected to the hub is selected
in the next step unless it belongs to the previous layer. This
characteristic of snowball sampling tends to conserve the de-
grees of easily selected hubs, which leads to the decrease of
degree exponents by holding the “tail” of the power-law de-
gree distribution. Figure 4 shows the degrees in a sampled
network obtained by snowball sampling, and the nodes with
large degree on the y=x line clearly indicates a tendency to
choose hubs and conserve their degrees. Therefore, the
snowball sampling underestimates the degree exponent. In
Ref. �11�, they show that the traceroute sampling can under-
estimate the degree exponent of a scale-free network by un-
dersampling the low-degree nodes relative to the high-degree
ones. In spite of the difference between the snowball and
traceroute sampling, both of these methods overrepresent
hubs and have the same “crawling” character used to identify
the nodes. We infer that the decrease of degree exponents for
both sampling methods is caused by these similar features.

We also check two closely related quantities, namely the
average degree and the average path length �APL� in the
sampled networks. APL is the average of shortest paths be-
tween all the pairs of nodes in a network, often used as a
measure of network efficiency. In Fig. 5, we present APL of
the giant component in the sampled networks obtained by the
numerical simulation. For snowball sampling, APL decreases
according to the decreased system size of sampled networks.

On the other hand, for node and link sampling, the APL of a
sampled network is larger than that of the original network
for not-so-small sampling fraction, even though the size of
the sampled network itself is smaller than the original one.
As presented earlier, for node sampling, the number of links
is proportional to the square of the number of the nodes,
which leads to �k�=2l /n	n, where l and n are the numbers
of links and nodes in a sampled network, respectively. This
suggests that the average degree in a sampled network de-
creases as the sampling fraction becomes smaller. Obviously,
for a given network, APL decreases as the average degree
increases. The diminishment in the average degree, therefore,
seems to have a stronger effect on APL than the overall sys-
tem size in this case. Similar behavior of the average degree
and APL is observed for link sampling, but in this case it
seems that the “treelike” structure of sampled networks, re-
lated to the clustering coefficient discussed later, is respon-
sible for that behavior.

B. Betweenness centrality distribution

Betweenness centrality �BC or load�, which measures the
centrality of a node by the traffic flow in a network, of node
b is defined as

gb = �
i�j

Cb�i, j�
C�i, j�

, �6�

where C�i , j� is the number of all the shortest pathways be-
tween a pair of nodes �i , j� and Cb�i , j� is that of the shortest
pathways running through a node b �20�. It is known that the
BC distribution follows a power-law p�g��g−
 for scale-
free networks �19,20�.

Similar to the degree distribution, the BC distribution of
sampled networks also follows power-law well as do the
original networks. Figure 6 shows the change of the BC ex-

FIG. 4. Change of nodes’ degree in BA network for snowball
sampling. The sampling fraction is 10 000/30 000.

FIG. 5. Changes of APL for each network’s sampled networks
according to the ratio � of the size of giant component in the
sampled networks to that of the original ones, averaged over ten
independent realizations. Empty squares ��� stand for node sam-
pling, filled squares ��� for link sampling, and empty triangles ���
for snowball sampling. The horizontal dashed lines are the values
for the original APL of each network, and the other lines are guides
to the eyes.
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ponent, also obtained by Eq. �1�, for each network and each
sampling method. Similar to the degree exponent case, in
general, BC exponents increase for node and link sampling
and decrease for snowball sampling as the sampling fraction
gets lower. Figure 6 bears a resemblance to Fig. 2 except for
the case of arxiv.org, for which the BC exponent seems to be
conserved for all the sampling methods. The correlation be-
tween degree and BC of nodes �39�, shown in Fig. 7, could
explain the same direction of changes of degree and BC ex-
ponents. For assortative networks such as arxiv.org here,
however, it is known that the degree-BC correlation is not
clear �40�, which explains the different behavior in Fig. 6�d�.
Therefore, at least empirically, we expect overestimation of a
BC exponent by node and link sampling and underestimation
by snowball sampling.

C. Assortativity

The assortativity r, which measures the correlation be-
tween degrees of node linked to each other, is defined as the

Pearson correlation coefficient of degrees between pairs of
nodes �28�. Positive values of r stand for the positive degree-
degree correlation which means that nodes with large de-
grees tend to be connected to one another. Most social net-
works have this positive degree correlation �assortative
mixing�, including the arxiv.org network considered in this
paper. On the other hand, most biological and technological
networks show negative degree correlation r�0 �disassorta-
tive mixing�, including PIN and Internet AS network here. If
there is no degree correlation among nodes �neutral�, as in
the case of BA model, the value of r is in the vicinity of 0.

The change of assortativity for each network and each
method is shown in Fig. 8. For node and link sampling, no
noticeable changes of assortativity in the sampled networks
are observed. Random choice of nodes or links appears to
conserve assortativity well for these two methods. Sampled
networks from snowball sampling, however, are shown to be
more disassortative than the original networks. This pattern
is common no matter whether the original network is assor-
tative �arxiv.org�, disassortative �PIN and Internet AS�, or
neutral �BA�.

There is another way to check the degree correlation,
which is measuring the quantity �knn�k��=�k�k�p�k� �k�, i.e.,
the average degree of nearest neighbors of nodes with degree
k �41�. Assortative mixing is represented by a positive slope
of the �knn�k�� graph, while the others by horizontal �neutral�
or a negative slope �disassortative�. Figure 9 shows the
changes of these slopes for �knn�k�� graphs of the sampled
networks from two kinds of original networks by snowball
sampling. The slope decreases, i.e., moves toward the nega-
tive value as the sampling fraction gets lower for both disas-
sortative Internet AS and assortative arxiv.org.

We suggest that the more disassortative nature of sampled
networks compared with the original ones is due to the last
layer of snowball sampling method. In contrast to the con-
served structure of the inner layers, a considerable number of

FIG. 6. Changes of BC exponent 
 for each network’s sampled
networks according to the sampling fraction �, averaged over ten
realizations. Empty squares ��� stand for node sampling, filled
squares ��� for link sampling, and empty triangles ��� for snowball
sampling. The horizontal dashed lines are the values for the original
exponent of each network, and the other lines are guides to the eyes.

FIG. 7. Degree and BC of nodes in a sampled network of BA
network by node sampling. The sampling fraction is 10 000/30 000.
The value of BC is rescaled by the number of nodes.

FIG. 8. Changes of assortativity r for each network’s sampled
networks according to the sampling fraction �, averaged over ten
realizations. Empty squares ��� stand for node sampling, filled
squares ��� for link sampling, and empty triangles ��� for snowball
sampling. The horizontal dashed lines are the values for the original
assortativity of each network, and the other lines are guides to the
eyes.
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links are lost for the nodes in the last layer. Meanwhile, hubs
are likely to be selected for snowball sampling. This separa-
tion of “core” and “periphery” part is seen in Fig. 4, and the
connections between hubs and nodes of the last layer can
reduce the value of assortativity. The simulation shows that a
sampled network containing the entire last layer is more dis-
assortative than the one where only parts of the last layer are
kept, which supports the hypothesis that the effect of the last
layer induces disassortative mixing. Therefore, we have to be
careful when measuring the assortativity for the network
from the snowball sampling.

D. Clustering coefficient

The clustering coefficient Ci of node i is the ratio of the
total number y of the links connecting its nearest neighbors
to the total number of all possible links between all these
nearest neighbors �3�,

Ci =
2y

ki�ki − 1�
, �7�

where ki is the degree of node i. The clustering coefficient of
a network is the average of this value over all the nodes C
=�iCi /n, where n is the number of nodes. Most real net-
works have much larger value of clustering coefficient than
model networks such as ER or BA network due to, e.g., the
community or modular structure.

In Fig. 10, we show the change of clustering coefficient
for each original network and each sampling method. For
node and snowball sampling, there is a little change of clus-
tering coefficient depending on networks. On the other hand,
link sampling prominently reduces the clustering coefficient.
This effect is obvious since the random omission of links, the
reverse process of link sampling, “opens up triangles fast” as

stated in Ref. �9�. The link sampling, therefore, underesti-
mates clustering coefficient of a network.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the changes of well-known
quantities in complex networks for randomly sampled net-
works. Three kinds of sampling methods are applied, and
three representative real-world networks, along with the BA
model, are used as the original networks for numerical inves-
tigation. We have measured four typical quantities in
sampled networks, which shows some characteristic patterns
in changes of the quantities for each sampling method. Based
on properties of sampling methods, possible explanations for
such changes as well as the mathematical analysis are pro-
vided. We have also analyzed other networks than the scale-
free ones such as Erdős-Rényi random network �42� and the
growing network without the preferential attachment �22�,
and the results show that the form of the degree distribution
is conserved for the node and link sampling in those cases,
consistent with the previous work �17�.

Table II summarizes the results. To check the generality of
the results, we also investigated the randomized version of

FIG. 9. �knn�k�� distribution for sampled networks of �a� PIN,
�b� arxiv.org by snowball sampling.

FIG. 10. Changes of clustering coefficient C for each network’s
sampled networks according to the sampling fraction �, averaged
over ten realizations. Empty squares ��� stand for node sampling,
filled squares ��� for link sampling, and empty triangles ��� for
snowball sampling. The horizontal dashed lines are the values for
the original clustering coefficient of each network, and the other
lines are guides to the eyes.

TABLE II. The changes of quantities in networks by each sam-
pling method. As the sampling fraction gets lower �⇓ at the very
right of each sampling method indicates this�, ⇑ stands for increase,
⇓ for decrease, � for the same, and � for depending on networks.

Degree
Exponent

�

BC
Exponent



Assortativity

r

Clustering
Coefficient

C

Node ⇓ ⇑ ⇑ � �
Link ⇓ ⇑ ⇑ � ⇓

Snowball ⇓ ⇓ ⇓ ⇓ �
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each network in a similar fashion. The randomized networks
were constructed by shuffling the links while conserving
only the degree distribution �28�. We found the same results
with the original networks. The results in Table II, therefore,
seem to hold for scale-free networks in general and provide
criteria for sampling method when some specific quantity is
supposed to be investigated by the sampling. From another
viewpoint, bias of some quantities can be predicted if a spe-
cific sampling method used to identify a network is known.
If we are interested in the assortativity of a network, for
example, node or link sampling can give fairly accurate val-
ues. For a clustering coefficient, on the other hand, the link
sampling method should be avoided.

Sampling problems should be taken into account for real
network research, but not much work has been done so far.
Exploration of other characteristics of complex networks or

using other sampling methods, rigorous analytic approaches,
and establishing solid principles by more systematic investi-
gation could all be important research topics for the future.
We hope this work can make a contribution to this direction
of research.
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