PHYSICAL REVIEW E 73, 011913 (2006)

Characterizing polygonality in biological structures
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Several systems involve spatial arrangements of elements such as molecules or cells, the characterization of
which bears important implications to biological and physical investigations. Traditional approaches to quan-
tify spatial order and regularity have relied on nearest neighbor distances or the number of sides of cells. The
current work shows that enhanced performance can be achieved by considering angular regularity. Voronoi
tessellations are obtained for each basic element and the angular regularity is then estimated from the differ-
ences between the angles defined by adjacent cells and a reference angle. In case this angle is 60°, the
measurement quantifies the hexagonality of the system. Other reference angles can be considered in order to
quantify other types of spatial symmetries. The performance of the angular regularity is compared with other
measurements including the conformity ratio (based on nearest neighbor distances) and the number of sides of
the cells, indicating its improved sensitivity and discrimination power. The performance evaluation included
synthetic (progressively perturbed hexagonal lattices) and real data (retinal mosaics). The good performance of
the hexagonality measurements are illustrated also with respect to the problem of quantifying local spatial
order in structures involving regions with different organizations as well as systems of points characterized by

gradients of local order.
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I. INTRODUCTION

Several important properties of biological systems are di-
rectly related and even determined by the spatial distribution
of their constituent elements. For instance, the distribution of
ganglion cells through the mammals retina is known to ac-
curately sample the visual field with just the right amount of
overlap. Similarly, the adjacency of cells is important for cell
signaling, while the spatial distribution of cells actively ex-
pressing some specific gene is immediately related to tissue
and organ formation. Other examples, where the spatial dis-
tribution of the elements is critical, involve the spread of
pathological agents such as viruses and bacteria as well as
the spatial arrangement of diseased cells and lesions.

Typically, spatial order in biological systems involves
structured/symmetric arrangements of points such as in hex-
agonal systems. These structures can be understood as regu-
lar lattices, characterized by fixed spacing and angles be-
tween the constituent points. Even in the cases where the
boundaries between the elements are not available, they can
be obtained from the Voronoi tessellation considering the
original points as seeds (e.g. [1]). The ubiquity of polygonal
organization in biological systems is related to the special
packing and physical properties allowed by ordered systems
(e.g. [2]). For instance, it is known that the hexagon is the
regular polygon with a maximum number of sides which can
be used to tile the plane. The immediate advantage of such a
regular tiling is the maximization of the number of neighbors
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of each element with immediate implications for cell signal-
ing [3], resolution, and isotropy in sensory acquisition (e.g.,
photoreceptors, retinal neurons, and omatidea), structural
properties (e.g., choral, cell membrane, striate muscle fibers,
and other structures), to name but a few cases. Interesting
combinations of pentagons and hexagons are also often
found in three-dimensional biological structures such as pol-
len, viruses, and radiolaria structures.

Because spatial regularity plays such a key role in defin-
ing the specific structural and functional properties of bio-
logical systems at micro, meso, and macroscopic spatial
scales, it becomes of paramount importance to quantify in an
objective and accurate way the degree of spatial organization
of such systems. Among the previous works aimed at auto-
mated quantification of spatial distributions, the most fre-
quently adopted approach involves counting the number of
sides of each cell [4,5]. Another traditional approach which
can be used to quantify polygonality involves the use of the
distance between nearest neighboring points as well as a de-
rived measurement such as the conformity ratio (e.g. [6—8]).
A comparison of methods for characterization of spatial
properties of retinal mosaics has been presented by Cook [6],
with an emphasis on nearest-neighbor distances.

The present paper starts by identifying the main properties
required from a good measurement of spatial order and fol-
lows by describing each of the considered measurements,
whose properties are then evaluated for the characterization
of global and local spatial order. The analysis of the potential
of the measurements to characterized global properties takes
into account simulated (hexagonal lattices with progressive
perturbations) as well as real data (retinal mosaics of photo-
receptors). The possibility to use the measurements to quan-
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FIG. 1. Two possible measurements mapping the property P
into Q.

tify local order around each point is also addressed with re-
spect to the identification of regions with distinct spatial
order and the analysis of a system involving the progressive
(radial) variation of spatial order.

II. REQUIREMENTS

Before considering possible indicators of spatial order and
evaluating their performance, it is important to identify the
main features which could be expected from a good mea-
surement. Such features are discussed in the following.

Let us consider that the property P to be measured is a
function of a given parameter s [9], so that P=P(s), and that
the act of measuring P involves mapping it into the quantity
Q[ P(s)]=0(s). For instance, s can be the intensity of spatial
perturbation added to a perfectly hexagonal lattice (see Sec.
IV A), P the spatial order of the system under analysis, and
Q its measurement. Note that typically we do not have access
to the values of P, otherwise there would be no need to
consider its measurement. Figure 1 illustrates mappings from
the property P into two possible measurements Q(s). Al-
though this example assumes that P is upper and lower
bounded, some situations may imply unlimited values of
P,in ot P, Situations such as that depicted in Fig. 1 can
always be normalized, by shifting the function along the x-

and/or y-axes, such that ﬁmm=émm=0 and ﬁmw:émw;L
defining a linear relationship. The mapping in Fig. 1(b) can
also be linearized by using an additional transformation of
the curve itself.

Sensitivity/Linearity. One important feature of any mea-
surement is its ability to respond to variations of the mea-
sured quantity. Because measurements can be normalized,
sensitivity should be considered in relative terms along the
interval of the measurement of interest. For instance, the
mapping in Fig. 1(a) is more sensitive than that in 1(b) for
small values of P(s), but it becomes less sensitive for large
values of P(s). The sensitivity of the measurement in Fig.
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FIG. 2. The geometrical construction and symbols used in the
definition of the angular hexagonality are presented in (a). The ref-
erence points are shown as black dots, and the neighbors of seed k
are enumerated in clockwise fashion from 1 to N,. Although rather
distinct, the two point distributions in (b) and (c) yield identical
statistics of shortest distances, and hence the same conformity ratio.

1(a) is the same for any value of P(s). One can observe that
the increase of sensitivity along one of the regions of the
mapping can only be achieved at the expense of a loss of
sensitivity at another region. Unless some specific interest of
achieving enhanced sensitivity at some specific range of val-
ues is to be considered, measurements should ideally be lin-
ear. In the specific case of spatial order quantification, one is
frequently interested in the cases of small deviations from
perfect order. In such cases, it is interesting to obtain greater
sensitivity for higher values of spatial order.

Generality, Uniformity, and Invariance. It is usually inter-
esting that the measurement of P be monotonic (increasing
or decreasing), well-defined, and with uniform properties
along the whole interval of measurements. This implies an
absence of singularities (e.g., a tendency to go to infinity for
some values of P) as well as uniform sensitivity. The linear
mapping meets all such requirements. In cases such as the
quantification of the spatial order of geometrical systems, it
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FIG. 3. The poligonalities for S=120, 90, and 60° obtained for
a single point surrounded by N uniformly distributed angles (i.e.,
a=27/N). Observe that the sharp peaks clearly identify each type
of symmetry. For instance, the perfect hexagonal arrangement of
neighbors for N=6 implies the sharp peak of the poligonality as-
suming B=60° at that respective position.

is also important that the measurements be invariant to trans-
lation, rotation, and scaling.

Discriminative Power. Although Fig. 1 considered a de-
terministic mapping from P into Q, it often happens that
measurements taken over different realizations of a system
for the same parameter s yield different values. This is often
the case with spatial order. For instance, the spatial order of
the photoreceptors in the retina of two similar animals (i.e.,
the same age, gender, etc.) from the same species will un-
avoidably be characterized by distinct, even though similar,
values. In turn, such a stochastic variation of Q implies that
in certain situations two realizations of a system, respective
to different parameters s, will yield the same measurement
value. In other words, the stochastic variability of Q will
tend to limit its discriminative power. Given two instances of
s, i.e., s; and s,, the discriminative power will vary inversely
with the overlap between the statistical density functions
produced by Q(s;) and Q(s,). Such an overlap can be esti-
mated by considering the average and standard deviation of
those two densities, which is the procedure adopted in the
present paper.

III. METHODS

Let the image containing the biological system under
analysis be represented in an N, X N, image A. Each element
of the system is identified by an integer label i, while its
spatial position is indicated in terms of the coordinates
[x(i),y(i)] of some reference point or seed, often correspond-
ing to the centroid of the elements [see Fig. 2(a)]. The
nearest-neighbor distance between a point i and a set of
points S is defined as the smallest distance between i and
each of the points in S. The Voronoi tessellation of the sys-
tem of reference points can be obtained by assigning to each
pixel A(i,j) the label of the nearest reference point. One of
the nice features of Voronoi tessellations is that they can be
used to establish boundaries and adjacencies between the
original reference points. More specifically, given a reference
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FIG. 4. Examples of simulated hexagonal lattices with perturba-
tions 5=2 (a) and 4 (b). The hexagonality index is expressed by the
gray levels at each Voronoi cell, in the sense that whiter cells indi-
cate a higher spatial order. Note the border elements in black,
whose hexagonality is not considered. The minimum and maximum
gray levels in each image are normalized between black and white
for the sake of better visualization.

point k, each of its Voronoi neighbors will correspond to a
reference point i such that the Voronoi cells of k and i share
a common side. In order to avoid border effects, the Voronoi
cells which are adjacent to the image background (i.e., the
border cells) are henceforth identified and excluded from the
calculations.

Number of sides of Voronoi cells. An interesting measure-
ment which can be immediately obtained from Voronoi tes-
sellations corresponds to the number of sides of each Voronoi
cell, a measurement which has been called hexagonality (e.g.
[4,5]). Henceforth N, represents the number of sides of the
cell associated to the reference point k. An hexagonal system,
for example, will produce all cells with six sides, except for
the cells at the border of the system.

Angular regularity. For each Voronoi cell &, starting at an
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FIG. 5. The average + standard deviation of the number of Voronoi cell sides (a), coefficient of variation of first shortest distance (b),
conformity ratio of first shortest distance (c), first shortest distances (d), average of angle differences (e), and hexagonality indices (f), in
terms of the perturbation intensity & considering all simulations. For the sake of better visualization, the standard deviations are shown to five

times their original values.

arbitrary neighbor i, one determines the successive N, neigh-
bors as one turns around the cell in a clockwise fashion and
calculates the angles «; defined by the adjacencies [see Fig.
2(a)]. The angular polygonality of a given point k can then
be expressed in terms of the sum of angle differences for
each point, i.e.,

Nk
3= o~ B, (1)
i=1

where B is a specific angle of interest. In case one is inter-
ested in quantifying the angular hexagonality of a point sys-
tem, (3 should be taken as 60°. Similarly, in case one wants
to check for orthogonal arrangement, /3 should be 90°. Other
values of B varying in the interval 0 <<£<180° can also be
used in order to check for other types of angular distribu-
tions. However, only 60, 90, and 120° allow full regular
tiling of the plan. Note that the sum of the angle differences
varies from 0 to infinite (i.e., a point surrounded by an infi-
nite number of points). Although it would be possible to
consider the average of angle differences [i.e., divide the sum
of angle differences in Eq. (1) by the number of neighbors of
each point], such an alternative would lead to similar mea-
surements as the number of neighboring cells increase, there-
fore reducing the discriminative power.

An alternative measurement of spatial order, yielding the
measurement henceforth called the polygonality index, can
be defined as a function of the sum of difference angle as
follows:

1

N P ——
Eiikl |ai_B| +1

()

Figure 3 shows the polygonalities of a single point sur-
rounded by N points (uniform angle spacing). This measure-
ment, which was first considered for hexagonality character-
ization in [17], is bound between 0 (lack of spatial order) to
1 (perfect polygonality).

Conformity ratios. Once all nearest-neighbor distances
have been calculated, for instance, by using the simple and
effective algorithm described in [6], the conformity ratio of
distances can be defined [8] as the ratio between the mean
and standard deviation of all nearest-neighbor distances.
More organized systems should therefore imply higher con-
formity ratios.

Coefficient of variation. The exact inverse of the confor-
mity ratio, the coefficient of variation is also considered in
this work because of its traditional use in statistics.

Note that the conformity ratio of the nearest distances
present a singularity (tends to infinity) when the shortest dis-
tances for every point in the system is equal, as with regular
lattices. The coefficient of variation does not present singu-
larities, but will produce null values for any regular lattice (a
null standard deviation of the shortest distance will imply a
coefficient of variation equal to zero).

Although it would be possible to define conformity ratio
and coefficient of variation of angles differences, such mea-
surements would be completely unable to cope with situa-
tions such as that considered in Fig. 3, i.e., involving N equal
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FIG. 6. The histograms of the number of Voronoi cell sides (first column), nearest-neighbor distances (second column), and hexagonality
indices (third column) obtained for 50 realizations of each of the configuration, with progressive perturbation intensities &.

(or similar) angles around a point. In these cases, the stan-
dard deviation of the angle values is null, implying confor-
mity ratio equal to zero and a coefficient of variation equal to
infinity. Such a property also implies lack of sensitivity for
systems characterized by a high level of spatial order. Con-
trariwise, the sum of angle differences or a hexagonality in-
dex will produce distinct values for any number of equally
spaced neighboring points. For such reasons, and also be-
cause of poor performance in preliminary experimental in-
vestigations conducted by the authors, the coefficient of
variation and the conformity ratio of angle differences will
not be considered further in this paper.

Although all the above measurements are invariant to
translation, rotation, and scaling of the system under analy-

sis, any measurement derived from the minimum distance
statistics will fail to distinguish between situations such as
those illustrated in Figs. 2(b) and 2(c), which yield identical
statistical densities of the shortest distances and therefore
equal conformity ratios. This important limitation of the
shortest distance measurement stems from the fact that it
only takes into account the most immediate neighborhood
around each point, overlooking spatial properties at higher
spatial scales. Therefore, a natural means to try to obtain
better discriminative power while using distance statistics
consists in considering successive shortest distances, such as
the second, third, etc., shortest distances. Such a possibility
is also explored in this work.

TABLE 1. The linearity, sensitivity, and discriminative power of the considered measurements of spatial

order.

Measurement Linearity Sensitivity Discriminative power
number of sides very small very low very low

coef. of variation high almost constant higher for small perturbations
conformity ratio small higher for small perturbations higher for large perturbations
shortest distance high almost constant higher for large perturbations
sum of angle diffs. high almost constant higher for small perturbations
hexagonality index medium slightly higher for small perturbations high and almost constant
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FIG. 7. The average coefficient of variation and sum of angle
differences obtained for each of the cone mosaics. Note that the §
and M/L cone populations can be completely separated by consid-
ering the sum of the angle differences isolately, which is not pos-
sible in the case of the coefficient of variation. On the other hand,
the latter allowed the identification of a high variability of the M/L
cone arrangements as far as that measurement is concerned.

A severe limitation of the method of counting the number
of Voronoi cell sides follows from the fact that the number of
cell sides will not change except for gross perturbations of
the particle system. However, this measurement can be po-
tentially useful when the structures under analysis involve
large perturbations.

IV. RESULTS

This section describes a systematic performance compari-
son of methods used to quantify the spatial order of point
distributions, including nearest distances, the number of
Voronoi sides, conformity ratio, and the coefficient of varia-
tion of the nearest distance, sum of angle differences, and
hexagonality index. This evaluation considers the quantifica-
tion of global and local spatial order in a systems of points.
While the former case addresses the problem of assigning a
single measurement to the whole system of points, the latter
situation involves the quantification of the spatial order
around each point of the system. The global evaluation is
performed for simulated data (regular hexagonal lattices with
progressive spatial perturbations) and real data concerning
agouti (Dasyprocta agout) retinal photoreceptor mosaics.
The obtained results clearly corroborate the superiority of the
sum of difference angles and the hexagonality index, espe-
cially regarding their linearity, sensitivity, and discriminative
power. The investigation of the potential of the considered
measurements for quantifying local spatial order involves the
identification of regions with different levels of order as well
as a system where the spatial order varies radially.

A. Simulated data

In order to investigate the performance of the above mea-
surements under a controlled situation, hexagonal lattices
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(b)

FIG. 8. A system of points characterized by two domains with
different levels of spatial order (a). The lower domain (darker gray)
is more ordered (perturbation amplitude §=2) than the upper do-
main (6=4). A system of points whose spatial order decreases ra-
dially, such as in the mammals retina, is shown in (b).

with progressive spatial perturbation intensities were ob-
tained by using mathematic computational means. More spe-
cifically, a hexagonal lattice with 621 points and edges of
length A=10 pixels were generated in a 480X 480 pixels
image and the position of the points were progressively per-
turbated with uniformly distributed displacements of magni-
tude 6=1,2,...,10. A total of 50 realizations of each con-
figuration (i.e., each perturbation intensity) were performed
in order to enhance statistical representation. Figure 4 shows
two of the considered simulated hexagonal lattices, the re-
spective Voronoi tessellations and hexagonality indices ob-
tained for perturbation intensities =2 and 4, respectively.
The histograms of the number of Voronoi cell sides, the co-
efficient of the variation of the shortest distances, the confor-
mity ratio of the shortest distances, shortest distance values,
the average angle difference (in degrees), and the hexagonal-
ity indices for each of the perturbation intensities are shown
in Fig. 5.
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It is clear from these results that the number of Voronoi
cell sides, shown in Fig. 6(a), is largely invariant to the per-
turbation intensity. In the cases where the latter is large
enough to induce changes, it acts mainly by increasing the
dispersion of the measurements while keeping an almost
constant average value. The coefficient of the variation in
Fig. 6(b), first the shortest distance in 6(d), and sum of angle
differences in 6(e), all resulted in an almost linear mapping
between the perturbation intensity and the measurement. All
these cases, and especially the coefficient of the variation,
are also characterized by an increase of dispersion for larger
perturbations. The conformity ratio resulted the most nonlin-
ear relationship, providing greater sensitivity for smaller per-
turbations. However, the measurement dispersions are also
substantially larger in such cases, which limits the discrimi-
native power of this measurement. The hexagonality index,
shown in Fig. 6(f), accounts for an almost linear mapping,
with a slight increased sensitivity for small perturbations. In
addition to these interesting features, this measurement is the
only one characterized by an almost constant standard devia-
tion which, combined with the almost linear mapping char-
acterizing this measurement, it implies a constant discrimi-
native power along all the considered perturbation
intensities. The linearity, sensitivity, and discriminative
power of the measurements of spatial order are summarized
in Table L. It follows from such results that the hexagonality
index is particularly suitable in cases of higher spatial order,
while the sum of the angles provides an interesting alterna-
tive for analysis of less ordered systems.

The properties of the number of sides, shortest distance,
and hexagonality index are confirmed by an analysis of the
histograms in Fig. 6, which show the distribution of such
measurements for several perturbation intensities.

B. Biological data

In order to further evaluate the performance of the con-
formity ratio and the sum of the angle differences, these two
measurements have been applied to characterize the regular-
ity of the spatial distribution of two types of cones in agouti
photoreceptor mosaics. The choice of the sum of angles in-
stead of the hexagonality index was motivated by the fact
that such systems involve relatively high levels of disorder.

The agouti (Dasyprocta agout), is a hystricomorph rodent
whose diurnal habit and well-developed visual streak yield
an interesting model for comparative studies of the visual
system (e.g. [10,11]). The organization of mosaics formed by
short-wavelength-sensitive cones (S cones) and middle- to
long-wavelength-sensitive cones (M/L cones) photorecep-
tors in the agouti’s retina have been analyzed. For this pur-
pose we used two polyclonal antibodies that have been
shown to label S cones (JH455) or M /L cones (JH492) in a
range of mammals, using immunocytochemical methods
largely according to the procedures described elsewhere [12].
Using a 40X oil immersion objective, 25 fields taken with
250 X250 um for M/L cones and 23 fields with 500
X500 um for S cones were acquired along the vertical dor-
sal axis of the retina with the aid of an optical microscope
(Eclipse E600, Nikon, Japan) equipped with a high-
resolution video camera (Nikon 4500). The raw images of
the cones were captured at the level of the inner segments.
For carrying out the analysis, x and y coordinates were iden-
tified by using the Scion Image Software (ScionCorp).

Figure 7 shows the average coefficient of variations
(x-axis) and the sum of the angle differences (y-axis) ob-
tained for each of the considered photoreceptor areas. It is
clear from this figure that the two cone populations are
clearly separated by considering the sum of the angle differ-
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(d)

FIG. 10. Local order identification of the system of points in Fig. 8 by using the first (a), second (b), and third (c) shortest distances and
the hexagonality index (d). The squares with holes correspond to the points whose measurements were more likely to belong to the lower

domain (higher spatial order.)

ences, while substantial overlap is observed for the coeffi-
cient of the variation. The obtained separation is even more
definite than previous results obtained for the same data set
by using the lacunarity measurement of translational invari-
ance [13]. The fact that the conformity ratio allowed the
characterization of a higher variability of the M cones sug-
gests that additional insights can be obtained by using com-
binations of these two measurements. A similar lack of dis-
crimination was observed for the conformity ratio.

In order to investigate the effect of using successive short-
est distances from each point, the conformity ratios and the
coefficient of the variations were obtained considering the
second to the fifth shortest distances. Discriminant analysis
[14-16] was then applied in order to identify the contribution
of each of such measurements to the overall separation be-
tween the two types of mosaics. The results indicated that the
sum of the angles is the only measurement among all pos-
sible linear combinations of the considered features which
allows all the mosaic types to be correctly identified. The use
of the conformity ratios and the coefficients of the variation

for several shortest distances is always implied in misclassi-
fications of the mosaics.

C. Characterization of local spatial order

Although we have so far concentrated on the character-
ization of the global properties of the spatial order in systems
of points, another relevant problem involves the quantifica-
tion of local order around each point. This issue is particu-
larly important because, provided one can quantify the spa-
tial order around a small neighborhood of each point, it
becomes possible to study how such a measurement varies
along the whole system of points. A particularly interesting
example of such cases, which often appears in complex sys-
tems, is the existence of multiple spatial domains character-
ized by varying levels of spatial order. This situation is illus-
trated in Fig. 8(a), including two simulated regions with
different levels of spatial order. These domains, separated by
an oblique border at the middle of the image, were obtained
by perturbing a hexagonal lattice with 6=2 and 4, respec-
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(b)

FIG. 11. Distribution of local order for the simulated retina in
Fig. 8 by using the shortest distance (a) and the hexagonality index
(b). The Voronoi cells belonging to the borders of the structure have
been disconsidered.

tively. Such a relatively small variation of spatial order was
intentionally imposed in order to imply a more demanding
discrimination task on the measurements.

Another interesting situation is characterized by the pro-
gressive variation, along space, of the spatial order. A typical
example of such systems is the spatial distribution of photo-
receptors in the mammals retina. Higher spatial order, actu-
ally almost perfectly hexagonal, is observed for those recep-
tors near the central part of the retina, becoming less and less
ordered as one moves toward the retina periphery. Figure
8(b) illustrates this type of point system, derived from a hex-
agonal lattice by adding perturbation values increasing lin-
early with the distance from the center of the system of
points.

Note that the conformity ratio and the coefficient of varia-
tion cannot be used for quantifying local order, as the stan-
dard deviation of the shortest distances for a single point
becomes equal to zero. Therefore, we limit the subsequent
analysis to the hexagonality index, the sum of angle differ-
ences, and the first to third shortest distances. Figure 9 shows

PHYSICAL REVIEW E 73, 011913 (2006)

the average + standard deviation considering all individual
points in each of the 50 realizations of the systems of the
points (the same data set used for the evaluation of global
order quantification) for each perturbation intensity. Except
for the higher dispersions, these results are similar to those
obtained by averaging globally over each realization shown
in Fig. 5.

Figure 10 presents the results of local order identification
of the domains in Fig. 8(a) by using the first (a), second (b),
and third (c) shortest distances as well as the hexagonality
index (d). In order to obtain the results in Fig. 10, the above
measurements were obtained for each point and the Bayesian
decision theory (e.g. [14,17]) was then applied in order to
obtain the best threshold for separating between the two
groups. The points identified as belonging to the higher order
group are represented as the squares with holes in Fig. 10.
Two particularly interesting results can be inferred from the
obtained results; (i) the use of successive distances tend to
reduce the correct identification of the regions and (ii) the
hexagonality index provided the best overall classification of
points. The former effect suggests further insights about the
fact that the consideration of further shortest distances does
not tend to contribute significantly to the characterization of
global order (see Sec. IV B).

Figure 11 presents the quantification of the local spatial
order of the simulated retina by using the shortest distance
(a) and the sum of the difference angles (b). The enhanced
sensitivity of the latter measurement is again corroborated by
the more clearly defined gradient of hexagonality values as
one moves radially from the center of the structure towards
its border. The higher uniformity of the spatial order of the
central cells is also more clearly identifiable by using the
sum of angle differences.

V. CONCLUDING REMARKS

The important problem of quantifying the spatial order of
systems of points has been addressed. A series of require-
ments expected from a good measurement of spatial order
were identified, allowing the discussion and comparison of a
series of traditional (number of neighbors, nearest distances
between pairs of points, conformity ratio, and the coefficient
of variation of nearest distances) as well as the hexagonality
index and the sum of angle differences measurements.

The potential of such measurements has been investigated
with respect to the quantification of global and local spatial
order. In the former case, which involves assigning a single
measurement to the whole system of points in order to char-
acterize its order, the measurements were first compared with
respect to simulated data, namely hexagonal lattices with
progressive perturbation intensities &. The obtained results
allowed the objective characterization of the linearity, sensi-
tivity, and discriminative power of each considered measure-
ment with respect to different levels of spatial order and
hexagonality. The hexagonality index was verified to account
for good linearity and slightly enhanced sensitivity for higher
spatial orders, with a nearly constant high discriminative
power. The sum of angle differences also yielded interesting
properties including good linearity and discriminative power.
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The identification of the type of retinal mosaics in the agouti
was also considered as a practical problem involving the es-
timation of spatial order [17,18]. Because such systems in-
volve relatively low spatial order, the sum of angle differ-
ences was used instead of the hexagonality index.
Conformity ratios and the coefficient of variations involving
the first to fifth nearest distances were also calculated and
used as subsidy for distinguishing between the two types of
mosaics. Discriminant analysis has shown that the sum of the
angle differences was the only feature allowing perfect clas-
sification.

The possibility to use the considered measurements to
quantify local spatial order was also addressed with respect
to progressively perturbed hexagonal lattices, yielding simi-
lar results as for the global analysis, but with substantially
higher dispersions of measurement values for each perturba-
tion intensity. Two important applications of local order es-
timation, namely the identification of regions and the analy-
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sis of systems of points involving gradients of spatial order,
were also addressed. Such applications further corroborated
the good features of the sum of the angle differences and the
hexagonality index as estimators of spatial organization.
Such results imply that representative information and in-
sights about ordered biological systems can be obtained by
revisiting previous investigations reported in the literature
while considering a combination of the sum of angle differ-
ences and hexagonality index measurements. Future works
should include the extension of the angular polygonality
measurements to higher dimensions and applications to the
characterization of texture and gene expression patterns.
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