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We report observations of stable, localized, linelike structures in the spatially periodic pattern formed by
nematic electroconvection, along which the phase of the pattern jumps by �. With increasing electric voltage,
these lines form a gridlike structure that goes over into a structure indistinguishable from the well-known grid
pattern. We present theoretical arguments that suggest that the twisted cell geometry we are using is indirectly
stabilizing the phase jump lines, and that the phase jump lines lattice is caused by an interaction of phase jump
lines and a zig-zag instability of the surrounding pattern.
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I. INTRODUCTION

Usually, topological defects in the phase of periodic spa-
tial modulations have co-dimension two. They are pointlike
in two dimensions �2D�, linelike in three dimensions �3D�,
and in one dimension �1D� they reduce, for dynamical sys-
tems, to short events, localized in space and time �1�. Here
we report the observation of stable, self-organized phase de-
fects that extend to linelike objects in 2D: Phase jump lines
�PJL� stretched parallel to the wave vector of the modulation,
characterized by a change of the phase of the spatial modu-
lation by � on a short distance �Fig. 1�.

The phenomenon was observed in the periodic pattern of
convection rolls forming in thin layers of the nematic liquid
crystal MBBA �4-methoxybenzylidene-4�-butylaniline� un-
der the influence of an electric ac field ��ẑ� that is oriented
normal to the �x-y� layer and the alignment of the nematic
director. Electroconvection �EC� in nematic liquid crystals
has been studied extensively. After early studies by Dubois-
Violette and others �2� aimed at understanding the basic
mechanism of convection, EC later became popular as a
model for pattern formation in anisotropic systems. Depend-
ing on the experimental conditions, the convection rolls are
aligned either preferentially normal to the symmetry axis �x̂�
of the system—defined by the direction at which the nematic
director is anchored at the boundaries—or oblique at some
preferred angle. In the oblique-roll case, two convective
modes related to each other by a reflection at the x axis
coexist �3,4�. Near the onset of convection, descriptions in
terms of one �normal rolls� or two �oblique rolls� time-
dependent Ginzburg-Landau equations could be established
�5�. These equations are of potential type and predict a re-
laxation to a simple equilibrium state.

The more puzzling was the rich dynamics of the system
observed for stronger electric fields, with scenarios such as
those named “fluctuating Williams domains,” “chevron pat-

terns,” “abnormal rolls,” “grid patterns,” or “defect lattices”
being reported �6–19�. Only in recent years it became clear
that most of these observations can be understood by the
non-relaxational interaction of the convective mode�s� with
only one additional, weakly damped mode that describes an
in-plane rotation of the nematic director. A Ginzburg-
Landau-type model for the nonrelaxational coupling of these
two �or three� modes�32�, called standard model below, ex-
plains most of the experimentally observed scenarios at least
qualitatively, and predicts a few more �20,21�.

There are several indications in the literature that hint at
the existence of stable PJL in nematic electroconvection. For
example, for the defect-chaotic regime of normal rolls called
“fluctuating Williams domains” it is well known that the
“shape” of topological defects, particularly near the events of
defect creations and annihilations, can be highly anisotropic.
Their extension in x direction is considerably larger than in y
direction. As such this deformation could be explained by the
anisotropy of the linear dispersion relation of the convective
mode, which can be removed by a simple rescaling of the x
axis. But in some cases the defects stretch considerably and
are then more naturally characterized as “phase jump lines”
�22–24�. These structures seem to be related to weakly un-
stable saddles corresponding to the stable PJL reported here.
Stable PJL have also been seen in numerical simulations of
the standard model �25�. Yet, a general theory is missing, and
it remains unclear if or under which conditions stable PJL
would be observable in electroconvection.

In our experiments, the conventional EC setup was modi-
fied by twisting the nematic within the layer. Instead of an-
choring the nematic director at the surfaces of the layer par-
allel to the x axis, the anchoring direction is rotated by a
fixed angle in opposite directions at the two surfaces
�26–29�. This geometry seems to be favorable for PJL.

In the following we first describe the details of the twisted
EC setup, and describe the observed PJL and structures they
form. We then discuss some theoretical ideas that support
these observations.*Electronic address: tatsumi@daisy.phys.s.u-tokyo.ac.jp
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II. EXPERIMENTAL SETUP

The nematic liquid crystal MBBA doped with 0.1 wt. %
tetra-n-butylammonium bromide to stabilize the conductivity
was sandwiched between two glass plates covered with
transparent indium tin oxide thin-film electrodes. The lateral
extensions of the liquid crystal layer were 2 cm�2 cm and
its thickness d=50 �m. The surfaces of the plates were
coated with polyvinyl alcohol and rubbed in order to attain a
planar anchoring of the nematic molecules. The temperature
of the cell was controlled at 25±0.01 °C. A standard wave-
generator was used to apply ac voltages V=O�100V� at fre-
quencies f up to several kHz to the electrodes. The structure
of the cell is shown schematically in Fig. 1. The anchoring
direction for each plate is represented by an arrow. By rotat-
ing the anchoring direction by an angle �=� /4 out of the x
axis at the lower plate, and in opposite direction by the same
amount at the upper plate, the nematic director is twisted
along the z axis in the ground state �41� �Fig. 1�.

III. EXPERIMENTAL RESULTS

The control parameters of the system are the externally
applied voltage and its frequency. A phase diagram of the
observed patterns is shown in Fig. 2. The cutoff frequency fc,
where the conductive mode of electroconvection is super-
seded by the dielectric mode, was above 1 kHz. Measure-
ments were performed for f � fc, i.e., in the conductive re-

gime. As the voltage was increased, normal rolls with a wave
vector parallel to the x axis �at an angle of � to each anchor-
ing direction� were observed. Besides the well-known states
including normal rolls �parallel rolls�, grid pattern �rectangu-
lar cells�, and dynamic scattering modes �3D turbulent
states�, we found stably aligned phase jump lines �PJL� in a
wide frequency range of the conductive regime.

Figures 3�a�–3�c� show the shadow-graph image of PJL
observed under a polarization microscope �polars �x�. PJL
can have finite length. At the endpoints of PJL the phase
difference between the adjacent domains gradually decreases
to zero. As the voltage is increased, the typical distance L
between PJL in the y direction decreases.

In order to determine L, which is below expressed in
terms of the wave number Kª2� /L, quantitatively, two
methods were employed. The first makes direct use of the
Fourier transforms of recorded images �Figs. 3�b��,�c���. The
other method is to count the number n �42� of PJL along a
line of length E parallel to ŷ, which gives K=2�n /E. For
high voltage, the Fourier analysis was preferred. At lower
voltages we used the counting method, since the small num-
ber of PJL would not lead to sharp peaks in the Fourier
transform. We verified that in the intermediate range the re-
sults of the two methods coincide.

In Fig. 4 the measured wave number K is plotted against
the normalized distance �= �V2−Vc

2� /Vc
2 from the threshold

of convection Vc. The data indicate that K goes to zero fol-
lowing a square-root law:

K = c�� − �1�1/2 �1�

with �1�0. For f =400 Hz we obtain c=50.5 mm−1 and
�1=0.22 and for f =600 Hz data is well described by
c=95.3 mm−1 and �1=0.31.

Some observations indicate that there are at least two dif-
ferent regimes of PJL. At low �, the spacing between PJL is
very irregular �Figs. 3�a� and 3�b�� and the PJL continue to

FIG. 1. �Color online� Top, rubbing direction and the anchoring
direction of the nematic. Bottom, a typical phase jump line at
400 Hz, 13.10 volts. The white bar corresponds to 100 �m.

FIG. 2. Phase diagram of our experiments. Solid circles repre-
sent the onset voltage of convection rolls �Williams domain�; open
square represents the onset voltage of PJL; open circle represents
the onset of the PJL grid pattern �GP�; solid square represents the
onset voltage of the dynamic scattering mode �DSM1�. The inset
shows the part of the phase diagram that we discuss in this paper.
The points a, b, and c in the inset corresponds to Figs. 3�a�–3�c�.
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move, although very slowly. At high �, where the spacing
between PJL is smaller, it becomes also more regular �as can
be seen from the sharp peaks in the Fourier transform of Fig.
3�c� shown in Fig. 3�c���, and a steady state is reached. We
refer to the resulting structure as a PJL grid. The onset volt-
age of PJL grids is well above the onset of PJL �Fig. 2�. At
this point the K vs � relation also starts to deviate signifi-
cantly from the square-root law valid for smaller �, as shown
in Fig. 4. The deviation is towards larger K, i.e., towards
denser PJL, contrary to what one would expect from a repul-
sive interaction between PJL. The PJL grids are visually in-
distinguishable from the well-known grid pattern �30� con-
sisting of two overlapping sets of oblique rolls. If the two
structures are indeed identical this means that we found a
new route from normal rolls to oblique rolls, different from
the conventional transition via a zig-zag instability. But fur-
ther investigations are required to confirm this hypothesis.
For the low-� range, on the other hand, some first steps to-
wards a better understanding have been made.

IV. THEORY

A clear theoretical picture of PJL, including the condi-
tions for their existence as well a description of their inter-
action with the surrounding roll pattern and with each other,
has not yet emerged. Even though other mechanisms leading
to stable PJL appear to exist �31�, the simulations of Zhao
�25� strongly suggest that the observed PJL can be described
by the standard model for normal-roll electroconvection. We
shall here investigate three aspects related to this problem
that help to understand why PJL stabilize in twisted cells and
how they are forming PJL grids.

The standard model has originally been derived for non-
twisted cells, which have a higher symmetry than our system
�32�. In twisted cells, symmetry under reflection is lost, and

test-particles move on spirals within convection rolls, rather
than circles. We thus verified that the remaining discrete
symmetries of the basic state under �i� a rotation by � around
the y axis, i.e., x→−x, 	→−	, and i→−i �20� and �ii� a
rotation by � around the z axis, i.e., x→−x, y→−y, and i
→−i are sufficient to ensure the form of the standard model.

The standard model �20,21,32–34� is given by


�tA = i�A�y	 + �� + �x
2�x

2 + �y
2�y

2 + 2iqc�y
2C1	�y

− C2qc
2�y

2	2 − g�A�2�A , �2a�


1�t	 = − h	 + K3�x
2	 + K1�y

2	 + 2� Im�A*��y − iqc	�A� .

�2b�

It describes the interaction of two spatiotemporally slow
variables: The complex amplitude A of the convection pat-
tern 	�Aeiqcx+c.c.�, and the amount 	 of in-plane rotation of
the nematic director. By the requirements of structural stabil-
ity and according to theoretical and experimental results for
the untwisted geometry, the time constants 
 and 
1, the
coherence lengths �x, �y, the critical wave number qc, the
geometry factors C1 and C2, the Landau coefficient g, the
damping constant h, and the two elastic constants K1 and K3
are all positive. The sign of � depends on the applied fre-
quency and the experimental geometry and is difficult to
determine a priori. The value of � is always found to be
negative and we shall assume this hereafter. It is easily seen
that with negative � convection rolls �A�0� have a destabi-
lizing effect on 	. This effect is crucial for most of the com-
plex patterns observed in electroconvection, and PJL are no
exception.

A. Stabilization of PJL

After scaling out the natural � dependence of A, 	 and
length and time scales ��x	�y 	A			�1/2, �t	��, the

FIG. 3. �Color online� The upper row shows images of convection patterns with PJL, the lower row the modulus of the corresponding 2D
Fourier transforms. These three pairs of figures represent the transition from PJL to GP. �a� corresponds to 13.93 V ��=0.47�, �b� to 15.91 V
��=0.91�, and �c� to 19.23 V ��=1.79�, all at 400 Hz. The length of the scale bars is 200 �m.
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standard model �2� can be reformulated by the following,
equivalent system of PDE:


�tA = �1 + �x
2 + �y

2 + 2iC1	�y − C2	2 − �A�2�A + i�A�y	 ,

�3a�

�t	 = − h	 + �y
2	 + K3�x

2	 − 2���Im�A*��y − i	�A� .

�3b�

The coefficients and variables in system �3� are not identical
to those denoted with the same symbols in system �2�, but
are related to these by simple scaling transformations. For all
coefficients but h this relation is independent of �. The coef-
ficient h in Eq. �3b� scales as �−1, i.e., h plays the role of the
main control parameter in the rescaled equations �3�. As h
decreases, the first instability of the homogeneous solution
A=1, 	=0 is to abnormal rolls at h=2��� if ��0 and to
zig-zag modulations at h=2����1+�� if ��0.

The system also has a steady-state solution

	 = 0, A = tanh�y/
2� �4�

that describes PJL. For large h, i.e., close to the threshold of
convection, PJL are unstable. This can be seen by consider-

ing the limit h→� where 	=0 is fixed. Then solution �4� is
unstable to the linear mode �A= i sech�y /
2� with growth
rate 
−1 �35�. However, by lowering h the additional degree
of freedom 	 can stabilize the PJL by an interaction through
the last term in Eq. �3b�. For a discussion of this process, we
linearize the system �3� with respect to perturbations of so-
lution �4� of the form �A= �ar�y�+ iai�y��exp��t�,
�	= f�y�exp��t�, which leads to

0 = �− �
 + 1 − 3 tanh2 y

2

+ �y
2�ar, �5�

and

0 = �− 
2C1 sech2 y

2

+ � tanh
y

2

�y� f

+ �− �
 + sech2 y

2

+ �y
2�ai, �6a�

0 = �− � − h − 2���tanh2 y

2

+ �y
2� f

− �
2���sech2 y

2

− 2���tanh
y

2

�y�ai. �6b�

We are looking for eigenfunctions of these equations which
are bounded for y→ ±�. Equation �5� is decoupled from
Eqs. �6a� and �6b�. Apart from the translational mode ar
=�y tanh�y /
2�, Eq. �5� has bounded solutions only with

��−3/2 and does not contribute to the linear stability
problem. The y axis can be divided into an inner region �y�
�5 near the PJL, and two outer regions where the system �6�
simplifies. For y�0, for example, the substitutions sech
→0, tanh→1 lead to

0 = �− �
 + �y
2�ai + ��yf , �7a�

0 = �− � + 2���� + �y
2�f − 2����yai, �7b�

where we introduced the abbreviation �=1−h /2���. In gen-
eral, the eigenmodes of Eq. �6� must be calculated numeri-
cally. For example, this can be done by “shooting” solutions
starting at y=0 with ai=1, f = f0, ai�= f�=0 into the y�0
outer region such as to match ai�y1� ,ai��y1� , f�y1� , f��y1� for
sufficiently large y1 with a bounded outer solution. We shall
here only be interested in the cases where the PJL stabilize
prior to any destabilization of the homogeneous state, i.e., for
the cases that ��−� and ��0. The bounded outer solutions
are then generally given by linear combinations of the two
solutions of Eq. �7� of the form ai , f 	exp��y� with ��0
and

�2 =
��


� + �
+ O��2� �8�

or

�2 = − 2����� + �� + O��� , �9�

respectively. The value of � where the PJL stabilize can be
found by considering the limit �→0+ of the systems �6� and

FIG. 4. �Color online� The relation between � and the inverse
distance K between PJL. The upper panel corresponds to f
=400 Hz, the lower one to f =600 Hz. The dashed lines are fits to
the square-route law �1�. The insets show �–�1 vs K on a log-log
scale. The onset of convection is at 11.50 volts for 400 Hz and at
21.41 volts for 600 Hz.
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�7�. Two particularities of this limit will be used here, �i� the
outer solution corresponding to Eq. �8� goes over into a
simple phase shift �f =0, ai=const�. Thus, f contains only
contributions from the component corresponding to Eq. �9�
and must satisfy

�yf = − 
− 2����� + ��f . �10�

�ii� By Eq. �7a� the quantity

u = �yai + �f �=0� �11�

is conserved along y in the outer region �25�. When ��−�
and �10� holds, this implies u=0 for bounded solutions.
Equations �10� and �11� are necessary and sufficient condi-
tions for the inner solutions to be bounded when continued to
y→�. When the shooting method is used, the two conditions
can be satisfied by adjusting the initial value f0 of f at y=0
and the value of the control parameter �.

With C1�1 we could find neutrally stable modes of PJL
with ��−� for all parameter sets tested, in particular for
positive as well as negative �. For example, Fig. 5 shows the
neutrally stable mode of the PJL for parameters �=−0.6, �
=0.3, C1=1.1, and 
=0.5. These parameters are suggested by
numerical calculations for similar systems �32�. For this case
we verified that there is no unstable mode, i.e., Fig. 5 shows
the critical mode of a PJL. �For smaller ���, e.g., with �=
−0.06, there is another mode with positive growth rate. Then
the feedback loop through 	 is too weak to stabilize the
PJL.�

As C1 is lowered, the critical � approaches −� and the
decay of the f component in the far field becomes flatter, as
described by Eq. �10�. Thus ai increases/decreases approxi-
mately linearly over a wide range according to Eq. �11�. For
�→−�, one expects the critical mode to converge to an
unbounded secular solution with constant �yai and f in the
outer range.

It turns out that for C1=1 the linearized equations �6�
have the analytic solution

f = 1, ai = 
2�1 − �� + �y tanh
y

2

. �12�

For �=−� this solution satisfies conditions and �10� and �11�
and is of the expected form. Combined with our numerical
calculations, we conclude that the critical � reaches −� ex-

actly when C1=1. Thus, for ��0, the PJL can stabilize prior
to the zig-zag instability at �=−� only if C1�1.

For ��0 the first instability of the homogeneous state
and the far field in system Eq. �6� is towards abnormal rolls
at �=0. In contrast to the zig-zag instability at �=−�, the
outer equations �7� have for �=0 no secular solutions with
�=0. Instead, the solution space corresponding to �=0 �Eq.
�8�� is spanned by two linearly independent constant solu-
tions, the pure phase shift �ai , f�= �1,0� and the pure director
rotation �ai , f�= �0,1�. Since both are bounded, bounded so-
lutions of Eq. �6� for �=0 are obtained whenever the contri-
bution to the outer solutions corresponding to Eq. �9� with
��0 vanishes. When the shooting method is used, this can
be achieved by adjusting a single parameter, e.g., f0. Thus, at
the abnormal-roll instability �=0, a neutrally stable linear
mode of the PJL can always be found.

By the interaction of f and ai in the core region, a certain
linear combination of the constant outer modes is singled
out, characterized by a specific ratio r=ai / f �for y→ +��.
When C1=1, for example, the analytic solution Eq. �12�
gives r=
2. A perturbative analysis of the outer equations
�6� for small �	�y 	� under the constraint ai / f =r+O���
yields a solution with ai , f 	exp��sy� �as y→ +�� where

�s =
2r
����

2r2���
 − �
+ O��2� �13a�

with the growth rate

� =
2�����

2r2���
 − �
+ O��2� . �13b�

When �s�0 this solution is bounded and an eigenmode of
the PJL. Since � /�s=� /r
+O��2�, this mode can be stable
only for r�0, which is the case only for values of C1 much
smaller or much larger than 1. Usually one would assume
r�0. With −2���r2
���0, for example, �13� then de-
scribes an unstable linear mode that becomes neutrally stable
as � approaches zero from below.

In conclusion, these considerations show that within the
framework of the model �3� a stabilization of PJL of the form
�4� prior to any destabilization of the homogeneous state—as
we seem to observe it in the experiments—is possible, but
likely only for C1�1 and ��0.

B. The effect of the twisted anchoring on C1

In order to test if the twisted anchoring used in our ex-
periment can cause a higher value of C1, we analyzed a
model for the z dependence of director twist 	̂�z� and con-

vection mode Â�z� and their interaction �31,36�. Keeping
only terms that are relevant for determining C1, the model
reads in appropriate dimensionless units


�tÂ = �u − �P − 	̂�2 + �z
2�Â , �14a�

�t	̂ = �z
2	̂ + 2��Â�2�P − 	̂� . �14b�

The coefficient u in Eq. �14a� is a control parameter that
depends on the applied voltage. P corresponds to the angle

FIG. 5. Typical neutral mode of a phase jump line at the critical
control parameter. Solid, �yai; dashed, −�f .
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of the wave vector of a plane-wave convection mode to the x
axis and the term −�P− 	̂�2 in Eq. �14a� describes the pref-
erence of the convective modes to align normal to the direc-
tor. The last term ��z

2� describes the diffusion of hydrody-
namic variables along z. In Eq. �14b� the first term describes
the stiffness of the in-plane director to twist and the second
term the torque generated by misaligned rolls on the director.
We assume layers of thickness 2 without loss of generality

and impose the boundary conditions Â�±1�=0 and, corre-

sponding the twisted anchoring, 	̂�+1�=b, 	̂�−1�=−b. The
isotropy of the system is broken only by the boundary con-
dition. In the bulk, isotropy is preserved, which is reflected
by the equivariance under P→P+�, 	̂→ 	̂+�. The model
can be derived analytically in the limit that the wavelength of
the roll pattern is much smaller than the layer thickness �31�.
However, since this condition is not satisfied for our experi-
mental system, we expect the model to describe the experi-
ment only qualitatively.

The coefficient C1 entering the 2D description �3� can be
obtained by the following method. Noting that in the basic

state �Â=0� the director relaxes to 	̂=bz, and that the fun-

damental mode of linear excitations of 	̂ is 	̂1=cos��z /2�,
we assume a weakly excited 	̂=bz+�	̂1 and search numeri-
cally for the threshold value ucrit of the control parameter u at

which the lowest eigenmode Â�z�= Âcrit�z� of Eq. �14a� be-
comes critical ��t=0�. The orientation P of the roll wave
vector is chosen such as to minimize ucrit. This corresponds
to letting A=exp�iPy� in Eq. �3a� with P=C1	. Following
general prescriptions �e.g., Refs. �37,38��, the value of C1 is
then given by the ratio of projections of two components of
the right-hand side �rhs� of Eq. �14b� onto its adjoint eigen-
vector �
	̂1�,

C1 =

�
−1

1

	̂12��Â�2Pdz

�
−1

1

	̂12��Â�2	̂dz

�15�

in the limit �→0.
Without twist �b=0� we reproduce the analytic result �43�

C1=256/ �27�2�=0.96 �31,39�. With increasing twist b, the
value of C1 increases, until it reaches a maximum C1=1.14
at b=8.1 �Fig. 6�. The result is independent of all other sys-
tem parameters. The effect is of purely geometric nature.
Since the sample thickness is the only relevant length scale
in our system, i.e., there is no large ratio of length scale, the
value of b corresponding to the � /4=O�1� twist is also O�1�,
and it is plausible to assume an increased value of C1 also in
our experiments. To obtain the precise value of C1, detailed
electrohydrodynamic calculations would be required.

C. Coupling to zig-zag modulations

Simulations �25� show that PJL can also coexist with zig-
zag modulations of the roll pattern. The PJL are then located
at preferred phase angles of the zig-zag modulation. Thus,

the distance L between neighboring PJL will be controlled by
the wavelength � of the zig-zag modulation. Even though
they are not clearly visible in the experiments, small zig-zag
modulations are probably also controlling the distance be-
tween PJL in PJL grids.

To test this hypothesis, the wavelength of zig-zags is es-
timated. For an easy comparison with experiments, dimen-
sional units are used in this calculation. In the absences of
strong variations of the pattern amplitude �A�, the dynamics
of the roll pattern can be described in terms of the phase
�=arg A�mod 2�� of the pattern alone. Together with the
coupling to 	, this description becomes �33,40�


�t� = �x
2�x

2� + �y
2�y

2� + ��y	 + r	2�y	 , �16a�


1�t	 = 2����� − �AR�	 − g	3 + K3�x
2	 + K1�y

2	 − 2�����y�

�16b�

with positive r ,g, the threshold of abnormal rolls
�AR=h / �2���� and all other parameters identical to those en-
tering Eq. �2�. While the derivation of the nonlinear terms in
this system hinges on the assumption of that spatial and tem-
poral variations of � and 	 are slow on the scales �x,y�

−1 and

�−1, which is strictly satisfied only for small �−�AR and �,
the linear part is valid uniformly in ��0 and �, as long as
the Ginzburg-Landau description �2� is valid.

For stationary solutions that depend only on y ��t ,�x=0�
Eq. �16a� can be integrated to

�y
2�y� + �	 + r	3/3 = J = const. �17�

In the simple case that rolls are not tilted on the average
���y��y =0� the integration constant J vanishes. Using Eq.
�17� to eliminate � from Eq. �16b� then yields an equation for
	 of the form �40�

K1�y
2	 = − 2���„�1 + �/�y

2�� − �AR…	 + g����	3. �18�

While the wavelength of zig-zag modulations can become
arbitrarily large when the nonlinearity in Eq. �18� becomes
effective, the wavelength of small-amplitude modulations is
sharply determined as

FIG. 6. The geometry factor C1 in dependence of the twist b for
the simple model �14�. The dashed-dotted line at C1=1 is a guide to
the eye.

TATSUMI, SANO, AND ROSSBERG PHYSICAL REVIEW E 73, 011704 �2006�

011704-6



� = 2�
 K1

2�����1 + �/�y
2�� − �AR�

= 2�
 K1�ZZ

2����AR�� − �ZZ�

�19�

where �ZZ=�AR/ �1+� /�y
2� denotes the threshold of the zig-

zag instability. In order to estimate the value of 2����AR/K1,
recall that the linear part of Eq. �16b� holds also for �=0 �no
convection�. In this case the relaxation of small in-plane ro-
tations of the director is easily described by the linearized
Leslie-Erickson equations. For the untwisted case, for ex-
ample, they reduce to


1�tny = �k33�x
2 + k11�y

2 + k22�z
2�ny . �20�

Considering only the slowest mode of the system for fixed
boundary conditions at z= ±d /2, ny =	 cos��z /d�, and pro-
jecting onto the corresponding adjoint cos��z /d�, yields


1�t	 = �k33�x
2 + k11�y

2 − k22
�2

d2 �	 . �21�

Comparing Eqs. �16b� and �21� shows that 2����AR/K1
=�2k22/d2k11. For MBBA at 25 °C, for example, the ratio
k11/k22 is �1.6. For the twisted geometry one would expect
some mixture of k11, k22, and k33 to enter K1 instead of just
k11, but since in the projection onto the adjoined mode the
central part z�0 dominates, and there the director is still
aligned parallel to x̂, these corrections are presumably small.
Assuming a relation L=m� between zig-zag wavelength �
and PJL distance L, one obtains the result

L = 2dm
 k11�ZZ

k22�� − �ZZ�

⇔ K =
�

dm

k22

k11

� − �ZZ

�ZZ
. �22�

Even when �ZZ is fitted from the measured data for K, Eq.

�22� makes a nontrivial prediction because �ZZ appears at
two different positions in the formula.

Using the fitted experimental curves, we find that Eq. �22�
holds with m=2.1 for the 400 Hz data and with m=0.94 for
the 600 Hz data. That is, in both cases we find a value of m
of order one. In view of the coarseness of the theoretical
estimates, and allowing for some experimental error, we con-
clude that the observations fully supports the hypothesis that
the lattice constant of the PJL grid is controlled by small
zig-zag modulations. The mechanism by which the ampli-
tude of zig-zag modulations or, equivalently, the zig-zag
wavelength is kept small remains unclear, however.

V. CONCLUSION

In this study, we reported the observation of stable PJL
and described a process by which these PJL form a lattice
that finally evolves to a structure indistinguishable from the
well known grid pattern as the applied voltage increases. We
argued that the stabilization of PJL is presumably an indirect
effect of the twisted geometry of the nematic in the basic
state. The twist leads to values of the coefficient C1�1,
which in turn enables the stabilization of PJL prior to a de-
stabilization of the roll pattern.

Moreover, in the case C1�1, there is also the possibility
of obtaining effects involving higher-order instabilities and
reorganizations of the whole structure. In fact, such kinds of
processes had been observed in former studies �18�. There
the creation of defect lattices has been investigated, while we
discussed the creation process of PJL grids. Because these
two experiments are not conducted under the same experi-
mental conditions, the final states are not the same. However,
the transition processes resemble each other. This indicates
that our analysis might also apply to experiments involving
defect lattices �18�.
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