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The purpose of this study is to characterize experimentally the whole shape of the growth cells displayed in
directional solidification and its evolution with respect to control parameters. A library of cells is first built up
from observation of directional solidification of a succinonitrile alloy in a large range of pulling velocity, cell
spacing, and thermal gradient. Cell boundaries are then extracted from these images and fitted by trial functions
on their whole profile, from cell tip to cell grooves. A coherent evolution of the fit parameters with the control
parameters is evidenced. It enables us to characterize the whole cell shape by a single function involving only
two parameters which vary smoothly in the control parameter space. This, in particular, evidences a continuous
evolution of the cell geometry at the cell to dendrite transition which denies the existence of a change of branch
of solutions at the occurrence of sidebranching. More generally, this global determination of cell shape comple-
mented with a previous determination of the position of cells in the thermal field �the cell tip undercooling�
provides a complete characterization of growth solutions and of their evolutions in this system. It thus brings
about a relevant framework for testing and improving theoretical and numerical understanding of cell shapes
and cell stability in directional solidification.
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I. INTRODUCTION

Out-of-equilibrium systems involving different thermody-
namic phases usually seek to recover equilibrium by displac-
ing phase interfaces. Examples of this can be found in sys-
tems dominated by capillary forces �e.g., dewetting
transition�, energy release �e.g., premixed combustion�, or
liquid-solid transformation �e.g., crystal growth�. In these is-
sues, growth interfaces stand as free boundaries, not pre-
scribed in advance, which fix boundary conditions to the
fields which govern the different phases in contact. In par-
ticular, their geometry takes part in the determination of the
exchange flux between the different phases and thus in the
way these systems adapt themselves to the out-of-
equilibrium conditions. Accordingly, solving for the shape of
growth interfaces is mainly solving for the behavior of the
corresponding systems in out-of-equilibrium regimes.

The purpose of this work is to experimentally determine
the shapes of the steadily growing cells displayed in direc-
tional solidification from the cellular regime to the near den-
dritic regime. By “shape,” we do not understand here the
form of truncated parts of cells but, instead, their whole pro-
file from their tip to their grooves. Our goal will then be to
determine their geometry by a single, simple but relevant
algebraic function, parametrized by the control parameters of
the system through deterministic, analytic, combinations.

Here, the term “simple” means that the search for the
shape function will not be ascribed to detailed mathematical
considerations about possible cell profiles in definite regions
but, instead, will be guided by a heuristic analysis of the
system. In particular, the family of trial functions will in-

volve parameters all relying on physically meaningful fea-
tures and whose number will be kept to the minimum. Inter-
estingly, the latter feature will provide these parameters with
the opportunity of referring not only to optimal analytical
values but also to relevant physical considerations. In the
same spirit, requiring that the fit parameters express as “ana-
lytic combinations” of the control parameters means that we
do not simply seek to recover the shape of each cell sepa-
rately with ad hoc fit parameters but that we aim, instead, at
determining a global representation of the geometry dis-
played by the growth system as its control parameters are
varied. To this goal, the generating function which gives a
global parametrization of the whole family of cellular inter-
face shapes will have to display coherent variations of its fit
parameters with the control parameters of the system. This,
of course, will be all the more easy to achieve that the num-
ber of its fit parameters will be small.

The advantages of a global determination of steady inter-
face shapes are many. Beyond the fact that this has never
been achieved to-date, the need for such a determination is
stressed by the formal difficulties encountered in deriving the
shapes of steady cells analytically and in comparing them to
the observed ones on a rational basis. In particular, calling �
the cell spacing, V the pulling velocity, D the diffusivity of
the dominant impurity, and Pe=�V /D the resulting Péclet
number, analytical determinations of cell shapes in term of
Saffman-Taylor fingers �Ivantsov paraboloids �1�� have been
achieved in the low Péclet number limit Pe�1 where cells
are diffusively coupled �2� �respectively in the large Péclet
number limit Pe�1 where cells are isolated �3��. However,
in the intermediate Péclet number regime, Pe=O�1�, that is
relevant to experiments, direct analysis of forms �4� as well
as analysis of their resulting position in the thermal-gradient
�5� have rejected these two families of forms as suitable can-
didates for modelling the cellular shapes. Matched
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asymptotic expansions have then been performed to concili-
ate analyses specific to definite cell regions �6,7�. However,
they have addressed either the large velocity regime which
pertains to strong sidebranching �7� or the small Péclet num-
ber regime Pe�1 �6� which is hardly reached by experi-
ments and, in both cases, provided no explicit determination
of cell shapes. Despite the important progress they bring to-
wards a global solution for directional growth, they thus do
not offer an easy access to a direct comparison with steady
experimental shapes.

In this context, an empirical determination of steady cell
shapes is thus likely to improve our understanding of growth
shapes by providing a definite synthetized expression for the
shape library. In particular, it should then worth comparing
this library to numerical simulations or theoretical determi-
nations in similar growth conditions or directly use it to nu-
merically investigate, on appropriate shapes, the stability of
cells or of cell arrays. Also, on the theoretical side, this glo-
bal determination of the free-boundary solution of the
growth system may be expected to stimulate improved
analysis of growth equilibrium and of the resulting large
scale properties of growth interfaces.

Our analysis of the shape library will provide an accurate
and global determination of two fitting parameters with a
strong geometrical significance: the radius of curvature � at
the cell tip and the width L of the solid phase in between the
grooves. Here the term “global” means that these parameters
are determined, not from parts of a single cell but, instead,
from the whole cell shapes observed in the whole studied
regimes. On the other hand, a detailed comparison between
the steady shapes found in the cellular regime and the mean
shapes observed in the near dendritic regime will enable us
to state whether a change of branch of solution arises at the
occurrence of sidebranching. Both results will clarify the cell
geometry, its evolution with control parameters and the na-
ture of the cell to dendrite transition.

The article is organized as follows. The experimental con-
text is reported in Sec. II and the methodology applied for
pointing out a global shape function is discussed in Sec. III.
The determination of this function and of its parameters is
reported in Sec. IV. It involves an individual optimization, a
collective optimization, a validation and a test for robustness.
A synthesis of the evolution of cell shape and cell position
with control parameters is reported in Sec. V. Section VI is
devoted to a discussion about of these results and Sec. VII to
a conclusion about the implications of this study.

II. EXPERIMENT

A. Experimental setup

Following Jackson and Hunt �8�, the experimental setup is
designed so as to pull a thin sample of mixture within a
thermal gradient at a fixed velocity �Fig. 1�. Special care has
been taken to satisfy the steadiness of the pulling velocity
and the spatial uniformity of the sample depth, of the thermal
gradient, and of the crystal orientation �9�.

The pulling stage is provided by a linear ball-screw moni-
tored by a micro-stepper motor. The relative accuracy of the
pulling velocity is �V /V=3% over a screw pitch �5 mm�. It

is controlled in real time by a Michelson interferometer. Both
heaters and coolers are made of two metallic blocks, 1 cm
thick, 5�5 cm2 wide that sandwich the sample. Heating is
provided by a resistance sheet or a Peltier device, both elec-
tronically regulated to better than 10−1 K. Thermal blocks
are nominally maintained at a temperature of 10 °C and
100 °C. They are separated by a gap g which has been set to
5 mm or 10 mm, thereby yielding a thermal gradient of
78 K cm−1 or 140 K cm−1 �10�.

Samples are made of two glass plates 45 mm�100 mm
that sandwich 50 	m thick spacer sheets. They are filled
with succinonitrile purchased from Sigma Chemical Co., St.
Louis whose purity is at least 99.6 mass%. They are glued on
their sides so as to achieve airtightness. To avoid end effects,
only bulk cells are studied in a central region, 25 mm large,
that stands 10 mm away from each boundary. As the typical
cell spacing is 100 	m, about 250 cells standing at a distance
of 100 cells from the boundaries can thus be studied.

A nuclear magnetic resonnance �NMR� study has revealed
an ethylenic bond �5�. This points to ethylene as the domi-
nant impurity of the mixture. In particular, the fact that IR
spectroscopy revealed no trace of chemical bonds character-
istic of water denies any measurable contamination of our
samples by this substance. The solutal diffusivity of the im-
purity in the liquid phase D has been deduced from accurate
measurement and analysis of the temperature of cell tips �5�:
D=1.35±0.05�10−5 cm2 s−1. The partition coefficient k of
the mixture has been determined from measurements of the
melting and solidifying temperatures of planar fronts: k
�0.29±0.05. The corresponding value of the ratio D /k has
been confirmed by the study of the relaxation time D / �kV2�
of a planar front to an equilibrium position in the thermal
field. The liquidus slope m and the mean solute concentration
c
 have not been measured separately, but their product,
mc
, which amounts to the difference between the liquidus
temperature of the mixture, TL, and the melting temperature
of pure succinonitrile, T0, has been measured to 2.0 K. It
corresponds to a temperature difference TL−TS=mc
�1
−k� /k of about 5 K between liquidus and solidus in the mix-
ture. This yields critical velocities Vc=DG / �TL−TS� for pla-
nar destabilization ranging from 2 	m s−1 at G=78 K cm−1

to 4 	m s−1 at G=140 K cm−1, as confirmed experimentally.
Notice finally that, according to the thermodynamical rela-
tionships for dilute alloys, the ratio m / �1−k� only depends
on the solvent, succinonitrile here. In particular, literature
shows that its value ranges from 2.45 K mol %−1 �11� to
2.50 K mol %−1 �12�. Taking the average value and our de-
termination of k yields m�1.75±0.15 K mol %−1 and finally
c
=1.15±0.1 mol %. Given the molar weight M =80.09 g of
succinonitrile and its concentration 99.6 mass%, the mea-
sured impurity concentration c
 corresponds to a mean molar
mass M�=27±5 g, in agreement with ethylene �28 g�. This
corroborates the conclusion of the NMR and IR analyses.

FIG. 1. Sketch of experimental setup.
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Succinonitrile being a plastic crystal, its growth is favored
along its crystalline axes. To ensure measurement reproduc-
ibility and concentrate on the sole effect of macroscopic con-
trol parameters, the preferred growth directions must then be
kept as uniform as possible on the sample. For this, a definite
orientation has then been chosen and applied on the whole
sample by selecting and enhancing those monocrystal do-
mains whose crystalline axes were parallel to the pulling
direction, the thermal gradient, and the cell depth �9�. In
order to avoid spurious variations of experimental condi-
tions, all the forms investigated here were obtained in the
same sample.

To preserve a large zone free of instrumental disturbance
around the front, an exploded optical setup has been used so
as to work with large frontal distances. Magnifications from
2 to 40 were available. The images of the growth front have
been recorded via a CCD camera on a time-lapse video re-
corder, and then digitalised at a resolution of 768�512
pixels on 256 gray levels. After binarization, the liquid-solid
interface appears as a thick line, about five pixels large �Fig.
2�a��. It is then skeletonized �Fig. 2�b�� to reduce the front to
a single pixel thick line �Fig. 2�c��, which has further to be
fitted by a relevant mathematical function. For this, it ap-
pears convenient to apply a symmetry on half of the front to
obtain a single-valued function �Fig. 2�d��.

B. Cellular regime; dendritic regime

Above the critical value Vc, the planar front destabilizes
onto an array of cells whose typical spacing is of order a
hundred microns �Fig. 3�. Their grooves, initially shallow,
grow with the pulling velocity, and become deeper than three
cell spacings above about 3 /2 Vc. In this long-groove re-
gime, too large or too thin cells are unstable by the various
modes of instability of one-dimensional cellular patterns
�13�. Above a critical value Vs�� ,G� dependent on the cell
spacing � and on the thermal gradient G, cells develop side-
branches �Figs. 4�a�, 5�c�, and 6�b�� �9� whose amplitudes
rise with the pulling velocity �Figs. 4�c� and 6�c��. However,
they remain shorter than � /10 for V�2.5Vs. This will be

taken here as the definition of the moderately dendritic re-
gime: Vs�V�2.5Vs.

The present study has taken place from within the domain
of long-groove stable cells 3 /2 Vc�V�Vs to the moderately
dendritic regime Vs�V�2.5Vs. The scanning ranges of cell
spacing and of pulling velocity have been 50��
�170 	m,8�V�24 	m s−1 and two thermal gradients
have been investigated: G=78 K cm−1 to 140 K cm−1. Scale
ranges have thus extended over a factor 3 for both � and V
and a factor 2 for G. Within them, tip cells got more and
more sharp as the pulling velocity or the cell spacing were
increased or the thermal gradient decreased. This is apparent
in Figs. 3–6 where a set of cell shapes representative of the
database are compared for increasing cell spacing, velocity,
or thermal gradient.

C. Steadiness and uniformity

To be meaningful, the determination of cell shapes must
not depend on uncontrolled or undetermined conditions.

FIG. 2. Image processing on
an experimental picture. A snap-
shot of a cell �a� is smoothed, bi-
narized �b�, and skeletonized �c�.
A symmetry is then applied on
half of the curve so as to obtain a
single-valued representation �d�.

FIG. 3. Cell geometry at G=140 K cm−1. Evolution with cell
spacing at fixed velocity and gradient ��a� to �b��, and with velocity
at fixed spacing and gradient ��b� to �c��. Increasing velocity sharp-
ens tip cell. Changing spacing nearly keeps the tip geometry un-
changed. �a� �V ,� ,G�= �12,50,140� �	m s−1 ,	m,K cm−1�; �b�
�V ,� ,G�= �12,90,140� �	m s−1 ,	m,K cm−1�; �c� �V ,� ,G�= �24,
90,140� �	m s−1 ,	m,K cm−1�.
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This, in particular, calls for uniform mixture, steady states,
and uniform cellular patterns. The two first requirements will
ensure that neither the growth history nor the initial condi-
tions take part in the cell geometry; the latter requirement
will allow the cell shape to be representative of its own spac-
ing without explicit reference to its environment.

Following microsegregation, the solidified mixture exhib-
its inhomogeneities of impurity concentration on character-
istic scales of the order of the cell sizes � �the diffusion
length lD� on the directions normal �parallel� to the thermal
gradient. When melted again, these inhomogeneities relax by
diffusion in the liquid phase in a time of order �2 /D�lD

2 /D�
�14�. In both cases, the longest of these characteristic times is
of the order of 20 s. As samples are fully melted during a
much larger time, about 1 h, before solidifying, segregation

induced inhomogeneities can be considered to have died out
before each solidification run.

Cell steadiness is achieved when the concentration field
around the cell interface satisfies an advection-diffusion
equilibrium. The characteristic time of this process is the
advection-diffusion time �D= lD

2 /D=D /V2. However, as the
cell interface is a free boundary, its slow evolution toward
steadiness implies a change of its undercooling that must be
taken into account. Then, the characteristic time toward
shape equilibrium gets larger. An estimation of its order of
magnitude may be given by the period T of the coupled
evolution of cell shape and tip position that is displayed in
the 2
−O oscillatory instability �15�. This time-scale, which
actually corresponds to the longest one evidenced in the
present system, has been measured in the same mixture. To-
gether with �D, it enables us to evaluate the relevance of our
waiting times.

Each study has been performed on cells that were main-
tained at fixed velocity for long times: at least 45�D�8 T for
V=8 	m s−1 and up to 250�D�27 T for V=24 	m s−1. In
practice, following a change of velocity, cells evolved but
eventually displayed steadiness over most of the observation
period. In particular, the length of steadiness extended at
least over 20�D, i.e., 3.5 T. This ensures that all observed
cells actually reached a significant state of steadiness.

In the deep cell regime investigated here, uniformity of
cell spacing along the front is naturally obtained by phase
diffusion beyond a sufficient waiting time based on relevant
characteristic times and initial conditions �14�. In practice,
observation reveals that, above a dozen of diffusion time
scales D /V2, cell spacing uniformity over the domain under
study is achieved. Then, moderate changes of velocity pre-
serve it insofar as instabilities are avoided.

Although most steady states have been obtained from a
previous one by slight variations of control parameters, in-
stabilities were sometimes triggered in order to induce a
change of cell spacing. Then, a larger waiting time than usual
was necessary to reach steadiness again. Besides that, an-
other practical mean for selecting thin �thick� cells has con-
sisted in quickly �slowly� raising the pulling velocity over a

FIG. 4. Cell geometry at G=78 K cm−1. Evolution with cell
spacing at fixed velocity and gradient ��a� to �b��, and with velocity
at fixed spacing and gradient ��b� to �c��. Increasing velocity sharp-
ens tip cell. Changing spacing nearly keeps the tip geometry un-
changed. �a� �V ,� ,G�= �8,170,78� �	m s−1 ,	m,K cm−1�; �b�
�V ,� ,G�= �8,120,78� �	m s−1 ,	m,K cm−1�; �c� �V ,� ,G�= �20,
120,78� �	m s−1 ,	m,K cm−1�.

FIG. 5. Cell geometry at ��90 	m. Evolution with gradient at
fixed velocity ��a� to �b��, and with velocity at fixed gradient ��b� to
�c��. Increasing gradient flattens tip cell. Increasing velocity sharp-
ens tip cell. Decreasing gradient from 140 K cm−1 to 78 K cm−1

then shows similar effect on cell form than increasing velocity
from V=12 	m s−1 to V=24 	m s−1. �a� �V ,� ,G�= �12,95,78�
��	m s−1 ,	m,K cm−1�, �b� �V ,� ,G�= �12,90,140��	m s−1 ,	m,
K cm−1�, �c� �V ,� ,G�= �24,90,140�= �	m s−1 ,	m,K cm−1�.

FIG. 6. Evolution of cell form with cell spacing at fixed velocity
and thermal gradient: V=20 	m s−1 ,G=140 K cm−1. �a� �
=85 	m; �b� �=100 	m; �c� �=115 	m. Increasing cell spacing
yields from the cellular domain �a� to the moderately dendritic do-
main �c� by crossing marginal states regarding sidebranching �b�.
�a� �V ,� ,G�= �20,85,140� �	m s−1 ,	m,K cm−1�; �b� �V ,� ,G�
= �20,100,140� �	m s−1 ,	m,K cm−1�; �c� �V ,� ,G�= �20,115,
140� �	m s−1 ,	m,K cm−1�.
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noticeable range. Then, combination of dynamical selection
and of instabilities led to uniform states over a larger range
of available spacings.

D. Representation variables and control parameters

Exploiting the information conveyed in cell shapes re-
quires correlating them to the variables which describe the
steady uniform states to which they refer. As in thermody-
namics, this calls for identifying a set of variables capable of
univocally characterizing the corresponding states. This set
certainly includes the following.
Mixture variables: the capillary length d0, the solute diffusiv-
ity D, the partition coefficient k, the melting temperature of
pure succinonitrile T0, and its drop T0−TL=mc
 in the actual
impure mixture.
Growth variables: the thermal gradient G in which the
sample is placed and the pulling velocity V at which solidi-
fication is forced to proceed in average.
Morphological variables: the space left to the cell in between
its neighbors, i.e., the cell spacing �.

We shall assume hereafter that these variables are neces-
sary and sufficient for identifying completely the steady
states of uniform patterns. They then correspond to the rep-
resentation variables of the steady uniform states under
study. A criterion for the relevance of this assumption will
consist of the coherence of the evolution of data with vari-
ables since no coherence can be obtained with superfluous or
lacking variable.

Among the representation variables, the morphological
variable, i.e. the cell spacing, is unusual since it has long
been considered as dependent on the remaining variables,
especially the pulling velocity V and the thermal gradient G.
This is actually wrong since, for the same mixture variables
and growth variables �V ,G�, a continuous range of cell spac-
ing � can be achieved on steady uniform states �Fig. 11�.
This means that cell spacing must be considered as an addi-
tional variable of cell states, not prescribed by the others.
Retaining it in the present study is then mandatory since cell
spacing obviously parametrizes cell shapes.

In practice, representation variables do not have all the
same status. Mixture variables �d0 ,D ,k ,m ,c
 ,T0� are usu-
ally fixed insofar as the nature of the dominant impurity and
its concentration c
 are kept constant. This is the case here
since the same mixture has been used at low enough tem-
peratures �below 100 °C� and on short enough cumulative
times �about one day� for preventing chemical or thermal
dissociation �14�. Accordingly, we shall omit referring ex-
plicitly to them in the following. On the opposite, as V and G
are changed as desired by experimentalists, we shall call
them control parameters. The last variable, �, is somewhat
specific since it can be changed in the available cell range
but by a procedure which do not enable a direct monitoring.
The important thing, however, is that scanning different
growth histories gives access to all the available desired val-
ues. For this reason, we shall keep calling it control param-
eter in the following.

III. METHODOLOGY

A. Issue

Our purpose consists in determining a relevant analytical
representation for the collection of cellular shapes displayed

in the experiment. This corresponds to projecting the shape
library onto a multiparameter family of functions that is a
priori both unknown and approximate regarding the actual
cell shapes. In addition, our goal is not only to determine
analytical curves close to our cell shapes, but also to gain
relevant informations on the growth system from the way the
parameters of the shape function vary with the control pa-
rameters of the experiment.

This issue calls for optimizing the choice of a multipa-
rameter function in a suitable framework. Here the term
“suitable” means that the definition of the analytical form of
the family of functions and the nature and the number of its
parameters are essential for reaching a significant represen-
tation of the cell shape library. In particular, the kind of
functions retained should involve only nonlinearities that can
be physically interpreted and only parameters that are neces-
sary to weight their relative importance. This being satisfied,
the evolution of the optimal parameters with the control pa-
rameters is likely to convey a physically relevant meaning,
provided definite tendencies are displayed.

These concerns are motivated in particular by the fact that
analytical optimization of a multiparameter function natu-
rally introduces couplings between the optimal values of
each parameters. Following them, different choices of pa-
rameters may give forms that approach a given shape equally
well. This, together with the slight experimental discrepan-
cies in cell shape observations may then yield large drifts of
optimal parameters within the set of equally well fitting pa-
rameters. This sensitivity to perturbations would then prevent
the emergence of a coherent evolution of a given fit param-
eter considered separately. A well-known illustration of this
issue is given by the fitting of data by power-laws f�x�
=axb. There, in a given bounded domain of x, a wide set of
couples of parameters �a ,b� may give hardly discernable
curves. This means that only the selected couples of param-
eters �a ,b� can be meaningful, but none of their parameters a
or b taken solely.

To avoid this difficulty, we shall restrict ourselves to the
minimum number of fitting parameters required to describe
the variety of physically distinct parts of a cell shape. We
shall also take care to consider a range of control parameters
wide enough for evidencing definite tendencies in the varia-
tions of the fitting parameters.

B. Analysis of cell shapes: relevant cell parts and parameters

Observation of cell shapes shows a curved region at the
cell tip, a flat region at the cell grooves, and a matching
region in between �Fig. 7�a��. These regions have long been
identified in literature as region I, region III, and region II,
respectively �16�. Notice that regions I and III rely on well
defined parameters, respectively, the curvature radius at cell
tip � and the width L of the solid phase channel. On the
opposite, the transition region II involves no specific geo-
metrical feature that could be easily taken as a reference for
the whole shape. Accordingly, whereas the three parameters
� ,L ,� do appear necessary to convey the geometric features
of the form, the definition of an additional parameter seems
physically more obscure. For this reason, we shall only retain
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the three morphological parameters � , L and � for fitting the
cell shape. In addition to them, the cell length H from cell tip
to the end of cell grooves parameterizes, beyond the actual
observation window, the height of the whole cell domain.

Notice that, in the low or large Péclet number limit, Pe
�1 or Pe�1, theoretical analyses restrict the possible
choices of optimization functions to a one-parameter family.
In particular, at large Péclet number, Pe�1, where the dif-
fusive scale lD is small compared to cell spacings � , lD��,
the impurity concentration field behaves as if the cell was
isolated in an infinite medium. Then, as in free growth, equi-
librium between advection and diffusion points to a parabol-
iclike profile for the cell tip �3�, to an Ivantsov-like parabo-
loid �1�, parameterized by the curvature radius � at cell tip:

z =
x2

2�
. �1�

However, this scale-invariant form fails to handle the limits
of the cell geometry, i.e. the asymptotic width L of the solid
phase. On the other hand, at low Péclet number, Pe�1, the
diffusion scale englobes many cells: �� lD. Diffusion is thus
the dominant phenomenon to set a cell shape compatible
with the prescribed cell boundaries. For steady cells, the in-
terface shape then satisfies a geometry analogous to that
found in viscous fingering �2�, i.e., a Saffman-Taylor-like
geometry parametrized by the relative finger width 
 �17�:

�
x

�
= 
 arccos�exp� �

1 − 


z

�
�	 . �2�

However, as this corresponds to a one-parameter family of
forms, the relative tip curvature radius �̃=� /� is then pre-

scribed by the relative cell width L̃=L /� : �̃
 �̃�L̃�. On the
opposite, in the present intermediate Péclet number regime

Pe=O�1�, at least two independent nondimensional param-

eters, e.g., ��̃ , �̃�, are a priori required to model the cell
shape. Accordingly, the dimensional fitting functions will in-
volve the three lengths �� ,L ,�� as geometrical parameters.

C. Global optimization

We seek a family of functions f�,L,��·� parametrized by
the tip curvature radius �, the solid phase width L, and the
cell spacing �, which could be capable of accurately fitting
the whole cell shape. We shall be guided in this by several
requirements that are reported below. Once the family of
fitting functions is chosen, the optimal function will be de-
termined first on each cell by an individual optimization, i.e.,
a fitting procedure, and then on the family of cells by a
collective optimization of the way the fit parameters �� ,L ,��
vary with the control parameters �V ,� ,G�.

1. Individual optimization

We first assume a fit function at least twice differentiable
everywhere. Although this property is required for the exis-
tence of a curvature radius, it may be invalid in crystal
growth as shown by the joint theoretical �18,19� and experi-
mental �20� determination of the shape of the 3D freely
growing xenon dendrite: z�x5/3 in the frame �x ,z� taken
with an origin at the dendrite tip. Here, we shall assume that
thermal gradient or the presence of neighboring cells regu-
larize such curvature singularity at the tips.

We then notice that the grooves actually vanish at a large
but finite distance H from the tip �Fig. 7�b�� so that this
length should a priori parametrize the fitting function. How-
ever, as the groove end stands far beyond the height Z of the
window within which the cell is studied, H�Z, groove van-
ishing can hardly be anticipated from the sole observations
of the cell in this window �Fig. 7�. Thanks to this, we shall
assume that the observed part of the cell behaves as if the
groove width remained constant in the asymptotic limit z
→
 : limz→
 f�,L,��z�=L. This turns out assuming that the
length H−Z of the matching zone between the groove ends
and the apparent asymptotes of the cell sides is of no impor-
tance for the observed cell form �Fig. 7�.

The way the cell interface approaches its asymptotes in
the long groove limit is set by the Scheil equation. For a
miscibility gap �c= �TL−TS� /m varying linearly with the im-
purity concentration c
, the distance to the asymptote de-
creases algebraically as a power law; for a constant miscibil-
ity gap, it decreases exponentially. In the present experiment,
the miscibility gap varies linearly with concentration but the
observed asymptotes at x= ±L are only virtual since the in-
terface does actually reach the cell boundaries x= ±� at z=
−H beyond the observation window �Fig. 7�. This in particu-
lar means that the Scheil domain likely stands beyond the
observed asymptotes so that no definite tendency, algebraic
or exponential, has to be imposed to the way the observed
interface approaches them.

The present issue thus involves a number of characteristic
lengths �� ,L ,� , lD , lT ,d0� among which one of them can be
taken as a gauge for nondimensionalizing the others. We

FIG. 7. Typical image of cell �a� and definition of the geometri-
cal axis, the set of variables, and the different cell regions used
to study it �b�. The cell corresponds to �V ,� ,G�= �12,110,
78� �	m s−1 ,	m,K cm−1�. Variables � , L , � , Z, and H denote tip
curvature radius, cell width, cell spacing, height of the observation
window, and groove height. The cell width refers to the apparent
asymptotes of cell grooves as seen from the observation window of
length Z. Regions I, III, and II refer to cell tip, cell groove, and the
matching region in between. Observation directly provides the cell
spacing � and the window height Z. Fitting gives the curvature
radius � and the cell width L. The actual groove height remains
indeterminate.
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choose the cell spacing � as this standard length and we note
nondimensional lengths with a tilde: x̃=x /� , z̃=z /� , �̃

=� /� and L̃=L /�. This yields us to seek functions f �̃,L̃�.�
relying the interface data points �x̃i , z̃i�i=1,…,N:

x̃i = f �̃,L̃�z̃i� . �3�

Taking the mean interface direction x as the ordinate and
the cell axis z as the abscissa provides horizontal asymptotes
that are much easier to fit to a good accuracy with a usual
fitting procedure than vertical asymptotes �Fig. 2�c��. To
avoid bivalued graphs, a reflexion of the upper branch, x
�0, z�0 onto the x�0, z�0 domain is applied: z→−z for
x�0 �Fig. 2�d��. In this framework, requiring that � and L
correspond to tip curvature radius and to cell width implies:

f �̃,L̃�z̃��z̃→0 sgn�z̃��2�̃
z
 , �4�

lim
z̃→±


f �̃,L̃�z̃� = sgn�z̃�
L̃

2
. �5�

These constraints nevertheless allow for a large variety of
test functions, most of which are incompatible with an accu-
rate fitting of region II.

The search for suitable fitting functions has been per-
formed on generating functions g�·� defined this way:

f �̃,L̃,n�z̃� = sgn�z̃�
L̃

2
gn��1/2n� , �6�

� = 2�̃
z̃
�L̃/2�−2, �7�

where n is an additional real parameter and where g�·� is a
C2 function which involves an asymptotic limit of 1 and
which vanishes at the origin with a derivative equal to unity.
In the present study, attention has been restricted to the fol-
lowing functions:

g�s� = tanh�s� , �8�

g�s� =
2

�
arctan��

2
s	 , �9�

g�s� = 1 − exp�− s� . �10�

Each of these g�·� functions has been used to fit each of
the shapes of the cell library. Soon in the fitting process, the
generating function �8� has been recognized as giving more
satisfactory fits than the two others �Sec. IV A�. It has thus
been selected to proceed for the search for a geometrical
representation of cell shapes. Fitting each cell then gave the

value of the optimal fit parameters ��̃ , L̃ ,n� at each triplet of
control parameters �V ,� ,G�.

2. Collective optimization

The individual optimization has further been extended to

a collective optimization by fitting the fit parameters ��̃ , L̃ ,n�
with the control parameters �V ,� ,G� using power laws �Sec.

IV B�. However, analysis of the variation of exponent n
showed incoherent evolutions with V and G and a large cou-

pling with the other fit parameter L̃. For these reasons, n has
been fixed to definite values for which new optimal values of

��̃ , L̃� have then been determined.
The collective optimization turned out to extract the

dominant tendency of the variation of the fit parameters with
the control parameters. This determination has even been
made simpler by rounding the values of the exponents of the
power laws. In all cases, the resulting two-parameter func-

tion f �̃,L̃,n�·� with fixed n and variable �̃
 �̃�V ,� ,G� and L̃


 L̃�V ,� ,G� has been checked against cell shape so as to
validate the overall procedure.

Altogether, these results provide a definite analytical rep-
resentation of cell shapes with respect to the control param-
eters �V ,� ,G� �Sec. V� in a way that allows physical inter-
pretation of shape evolution with respect to them �Sec. VI�.

IV. GLOBAL DETERMINATION OF CELL SHAPE

A. Individual optimization

We address the optimal determination of the shape of
definite cells, either steady or moderately dendritic. For this,
we fit each observed cell by the three functions �8�–�10� with

fitting parameters ��̃ , L̃ ,n�.
Figure 8 compares, for a given cell, the optimal fits ob-

tained for these three functions. It appears that all of them fit
this cell quite satisfactorily �Fig. 8�a��. In particular, enlarge-
ments of definite regions �cell tip, cell groove, and in be-
tween, Figs. 8�b�–8�d�� reveal a mismatch between fits and
data that is smaller than data resolution. Accordingly, none of
these fit functions are to be eliminated from comparison with
this definite cell and more generally from comparison with
any other.

That different functions fit a given form equally well may
be surprising at first glance. This however results from the
fact that they all involve here asymptotes and a parabolic
shape at the tip that are adjusted to data by definite param-
eters, � and L. Accordingly, deviations from experimental
profiles can only occur at the third order in the transition
region between tip and grooves or within the asymptotic de-
cay toward the asymptotes. The former effect is weak since
the transition region is finite and the latter effect is rendered
below the resolution by adjustment of parameter L. All func-
tions therefore provide an accurate fit to data, the noticeable
differences between their asymptotic tendencies being re-
jected in practice beyond the observation window.

Turning attention to the fit results over the cell library, we
observe that, in average, the exponential function �10� pro-
vides slightly weaker fit quality factors. For this reason, we
shall focus attention on the remaining functions g�s�
=tanh�s� �8� and g�s�=2/� arctan�� /2s� �9�. It then appears
that, in average over the cell library, they, respectively, yield

L̃=0.9�1 and L̃=1.15�1. The latter value is incoherent
since, by definition, the solid phase width L must be smaller

than the cell spacing � : L̃�1 �Fig. 7�b��. This means that for
function �9� the infinite groove limit H→
 is singular since
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the degenerate problem H=
 provides a solution that is
meaningless. This leads us to privilege function �8�, g�s�
=tanh�s�, for seeking a meaningful representation of cell ge-
ometry.

B. Collective optimization

When scanning the cell library, all the optimal fitting pa-

rameters ��̃ , L̃ ,n� referring to function �8� vary. Each of these
triplets indicates the best values found for accurately repro-
ducing a definite cell shape. This, however, does not corre-
spond to a sharp selection of the fitting parameters taken
separately since, usually, other triplets can also fit the given
shape nearly equally well �see Sec. III A�. This follows

from the fact that, in the vicinity of a triplet p= ��̃ , L̃ ,n�,
other triplets p+�p will provide close values of function
f �̃,L̃,n�z� insofar as �p belongs to the plane normal to �pf�z�
where �p= �� /��̃ ,� /�L̃ ,� /�n� : �f �̃,L̃,n�z�=�p.�pf�z�=0. Al-
though this cannot be satisfied at any z by a given �p, this
means that, in average, a bounded two-dimensional surface
of parameters actually fit almost equally well a given data
set. Accordingly, spurious variation of each parameter can be
expected, thereby preventing us from interpreting each of
them separately. This, in particular, will be the case for the

exponent n �Figs. 9 and 10� and, accordingly, for the other fit
parameters determined for a freely varying n.

To palliate this caveat, we seek to reduce the number of fit
parameters so as to eliminate the incoherent component of
their variations from one cell to the other. For this, we fix
one of the fit parameters and extract the averaged evolution
of the two remaining ones with control parameters �V ,� ,G�.
However, whereas fixing parameters n or L̃ to a definite
value can be compatible with data, fixing �̃ cannot since �̃
largely varies on cell library �see cell forms on Figs. 3–6 and
data variations in Figs. 9 and 10�. Accordingly, we shall re-
strict ourselves to exploring the implications of fixing n or L̃
in the following.

The simplest way of fixing the width of the solid phase L
to an objective value turns out to set it at the cell spacing
value: L=�, i.e., L̃=1. This corresponds to placing the as-
ymptotes of the fit function at the cell boundaries and, thus,
to denying the existence of grooves in the asymptotic limit
z→
, as is actually the case in practice. However, whereas
disappearance of grooves actually occurs in practice far from
the boundaries of the observation windows, H̃�1, placing it
at infinity turns out assuming here that the limit H̃→
 is
regular in the present instance.

The status of exponent n is special in that it monitors the
nature of the nonlinearity of cell geometry. In particular,

FIG. 8. Optimal fits of a given cell by the three functions �8�, �9�, and �10�. Dots correspond to data and full line, large dashed line,
and short dashed line to fits by functions �8�, �9�, and �10�, respectively. The cell corresponds to �V ,� ,G�= �12,50,
140� �	m s−1 ,	m,K cm−1� and the fit results are �� ,L ,n�= �14.5,46.9,0.82� for function �8�, �� ,L ,n�= �13.5,49.8,0.52� for function �9�,
and �� ,L ,n�= �15.1,46.5,0.51� for function �10�. �a� Full cell. �b� Enlargement of cell tip �region I�. �c� Enlargement of the transition region
�region II�. �d� Enlargement of the asymptote �region III�. All functions �8�, �9�, and �10� fit the cell equally well but the average of the fit
quality factors over the cell library is slightly smaller for function �10�. One also notices that parameter L is close to � for function �9� here
and is actually larger in average over the cell library: L=1.15�. Both statements lead us to privilege function �8� for representing shapes over
the cell library.
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changing it mimics a change of branch of solution, a thing
that cannot reasonably occur several times within our mod-
erate scale range. Accordingly, we shall find it more relevant
to restrict the analysis to a definite kind of nonlinearity, i.e.,
a definite n, that will be either naturally given by the fit
results or imposed by fixing n in specific domains.

On the other hand, directional solidification is based on
largely separated length scales, d0�10−2 	m, lD�102 	m,
lT�103 	m, whose values nondimensionalized by �

�102 	m amount to d̃0�10−4 , l̃D�1, l̃T�10. Accordingly,

the nondimensional morphological scales �̃ and L̃ may be

viewed as combinations of small �d̃0�, moderate �l̃D�, and

large �l̃T� numbers. For this reason, one expects them to ex-
press as a multiplicative algebra rather than as an additive
algebra of these variables, i.e., in terms of power laws of

�d̃0 , l̃D , l̃T� or, equivalently, of �V ,� ,G�. In practice, we shall
consider power law variations of � ,L, and �−L:

� = c�VeV�e�GeG, �11�

L = cLVfV� f�GfG, �12�

� − L = c�−LVgV�g�GgG. �13�

As the cell width L can only be positive and smaller than the
cell spacing � ,0�L��, the representations �12� and �13�
are limited to bounded ranges in practice. In particular, rela-
tions �12� and �13� will appear not to apply above and below
a velocity bound respectively. Altogether, they will be useful
however to extrapolate our findings beyond the present ex-
perimental range. Although they are equivalent in this range
up to experimental uncertainty, it will appear more conve-
nient in the following to use relation �12� instead of �13� to
discuss the main features and implications of cell form evo-
lution. This is why we shall report in the following in more
detail the way it has been determined.

The above statement implicitly considers the fluctuations
of � or L with control parameters that are not linked to a
general trend as spurious consequences of a coupling be-
tween fit variations. We shall then seek to reduce them by
appropriately fixing a fit parameter.

The details of the procedure applied for this collective
optimization is reported in the Appendix. It led us to let �
and L freely vary but to fix n to a definite value, n=0.5 or
n=1. On the other hand, three domains have been distin-
guished for extracting power laws from the parameter varia-

FIG. 9. Typical variations of exponent n, solid phase width L, and curvature radius � with V at fixed � and G. �a� G=140 K cm−1;�
=90 	m. �b� G=78 K cm−1;�=130 	m.

FIG. 10. Typical variations of exponent n, solid phase width L, and curvature radius � with � at fixed G and V. �a� G
=140 K cm−1;V=12 	m s−1. �b� G=78 K cm−1;V=16 	m s−1.
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tions: the steady cell or weakly dendritic domain �Figs. 12�a�
and 12�b��, the moderately dendritic domain �Fig. 12�c�� and
their merge. These are displayed in Fig. 11 where all the
states observed in this study are reported.

The first domain includes the weakly dendritic forms that
are displayed in the vicinity of the sidebanching transition
�Fig. 12�b��. They correspond to sidebranch amplitudes A
small compared to the cell spacing � :A�� /20. In compari-
son, the moderately dendritic domain is defined by � /20
�A�� /10 �Sec. II B�. Merging the pure steady cell domain
and the weak sidebranching domain has been found conve-
nient to enhance the quality of the fits by enlarging the range
of variables �V ,G� and the data number. Its relevance will be
legitimized by the absence of transition in the fit results at
the occurrence of sidebranching.

The results of the fits are exemplified in Fig. 12 on three
different kinds of cells: a steady cell �Fig. 12�a�� a weakly

dendritic cell �Fig. 12�b�� and a moderately dendritic cell
�Fig. 12�c��. For all of them, the forms reconstructed from
�6� with generating function g�s�=tanh�s� �8� and n=0.5 are
plotted. We have not plotted the forms obtained with expo-
nent n=1 since they are hardly discernable from those ob-
tained at n=1/2 with the naked eye. However, the quality
factor of the fits indicate that fitting with n=0.5 is more
accurate than fitting with n=1. For this reason, we shall re-
tain from now on the value n=1/2 for exponent n.

C. Validation

Table I reports the prefactors and exponents found for �
and � in the various regimes considered here and for n
=1/2. Interestingly, fitting on the steady or weakly dendritic
domain gives exponents that are close to those obtained on
the moderately dendritic regime or on the whole data do-
main. Thanks to this homogeneity of the fit results in the cell
library, we shall consider the fit on the whole data domain as
relevant for cell shapes in the cellular to moderately dendritic
regime. In addition, in order to facilitate the interpretation of
the shape determination, we shall consider the values of the
exponents rounded to 10% and the corresponding recom-
puted prefactors:

c� = 0.095 � 102 	m s−1/4 K−1/2,

eV = −
1

4
, e� =

3

4
, eG =

1

2
, �14�

cL = 0.66 � 	m−1/10 s1/10, fV =
1

10
, f� = 1, fG = 0.

�15�

In comparison, the exponents and prefactors of the power
law �13� relevant to �−L read:

FIG. 11. Representation of the states composing the cell library
in the �V ,�� space. Full symbols refer to thermal gradient G
=140 K cm−1,Vc=4 	m s−1 and open symbols to G=78 K cm−1,
Vc=2 	m s−1. Circles, squares, and triangles, respectively, refer to
steady cells, weak sidebranching, and moderate sidebranching.

FIG. 12. Comparison between the actual cell shapes �heavy lines� and those reconstructed from �6� with generating function g�s�
=tanh�s� �8�, n=0.5 and rounded parameters �14� and �15� �light lines�. Using the optimal parameters � and L instead of the rounded values
would yield forms not distinguishable with the naked eye from those actually plotted. �a� �V ,� ,G�= �12,105,78� �	m s−1 ,	m,K cm−1�; �b�
�V ,� ,G�= �20,105,140��	m s−1 ,	m, K cm−1�; �c� �V ,� ,G�= �20,125,78��	m s−1 ,	m,K cm−1�.

A. POCHEAU AND M. GEORGELIN PHYSICAL REVIEW E 73, 011604 �2006�

011604-10



c�−L = 1.21, gV = − 0.55, g� = 1.1, gG = − 0.25.

�16�

They yield values of cell widths L which, in the present
experimental range and to the experimental uncertainty, are
identical to those given by �12� and �15�. Notice that, as �
−L is about a tenth of �, relation �13� turns out fitting L at
the next order in � compared to relation �12�. This is why
the corresponding exponents show so little correlation.

To validate the result of the collective optimization, we
now compare the observed forms with those reconstructed
by the fit �6� and �8� with parameters corresponding to rela-
tions �14� and �15�. Figure 12 reveals quite a good agreement
for steady cells �Fig. 12�a�� or weakly dendritic cells �Fig.
12�b��, the distance from fits to data being less than five
pixels. Encouraged by this agreement, we extrapolate the
analytical representation of cells to the moderately dendritic
regime. As shown in Fig. 12�c�, the analytical form here too
satisfactorily reproduces the actual shapes of the growth
forms. In particular, the dendrite tip is accurately reproduced
and the analytical curves of mean shapes lay well within the
bumps of the dendrite sides.

V. CELL EVOLUTION WITH CONTROL PARAMETERS

The evolution of cells with control parameters involves
both the evolution of their position in the thermal field, i.e.,
equivalently the cell tip undercooling, and the evolution of
their shape from their tip to their grooves.

Cell tip undercooling �t has been accurately determined
in a previous experimental study for the same mixture and in
the same setup �5�. It appeared to evolve according to the
Brody-Bower-Flemings criterion �21�:

�t =
Vc

V
, �17�

where �t denotes the relative position zt of cell tip in the
thermal gradient, in between the positions of the solidus line
zS and of the liquidus line zL:

�t =
zL − zt

zL − zS
. �18�

These positions �zS ,zL� at the nominal solutal concentration
c
 of the mixture are set by thermodynamical relationships.
In particular, their distance reads: zL−zS=D /Vc= lT. This, to-
gether with �17� and �18�, provides the localization of cell
tips:

zL − zt = D/V = lD. �19�

On the other hand, the present study has provided a
simple global analytical determination of the shape library
following which, for given control parameters �V ,� ,G�, the
cell geometry x�z� satisfies:

x =
L

2
tanh1/2�8

�z

L2	 �20�

with � and L given by power laws �11� and �12� with pre-
factors and exponents �14� and �15�. This parametrization
provides an implicit determination of the function x
=F�V,�,G��z� that describes the cell geometry �x ,z� in the con-
trol parameter space.

Taken together, the determinations �17�, �18�, and �20�
provide a complete determination of cells, both in position
and shape, and for any control parameters. They thus give us
the opportunity of easily addressing the evolution of the
growth solution with control parameters at fixed solutal con-
centration c
.

A. Single parameter variation

The effects on cell shape of the variation of a single con-
trol parameter, V , �, or G, are illustrated in Fig. 13. It is
found that increasing either V �Fig. 13�a�� or � �Fig. 13�b��
sharpens cell tips but that increasing G �Fig. 13�c�� makes
them rounder. As the sharpness of cell tip refers to the re-
duced curvature radius � /L, this tendency is consistent with

TABLE I. Tables correspond to fit results with generating function �8� and n=1/2. They report the
prefactors and the exponents of the power law variations �11� and �12� of the fit parameters � and L in the
three kinds of domains: steady or weakly dendritic domain, the moderately dendritic domain, and the whole
domain. The last column indicates the rounded values of the exponents on the whole domain and the
corresponding prefactors.

Steady or weakly Moderately

� dendritic dendritic Whole library Rounded values

c� 0.073 0.040 0.0747 0.095

eV −0.25 −0.2 −0.25 −1/4

e� 0.8 1 0.85 3/4

eG 0.5 0.4 0.45 1/2

L
Steady or weakly Moderately

Whole library Rounded values
dendritic dendritic

cL 0.828 0.255 0.655 0.66

fV 0.1 0.1 0.1 1/10

f� 0.95 1.1 1.0 1

fG 0 0.1 0 0
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the scaling laws �11�, �12�, �14�, and �15� following which:

�

L
= 0.144 V−0.35�−1/4G1/2. �21�

In particular, small � /L, i.e., large V , �, or 1 /G means sharp
cell tips, as displayed in Fig. 13.

B. Combined parameter variations

Combined variations of the control parameters �V ,� ,G�
enable modifications of cell spacing ���, cell shape �� /��,
and cell position in the thermal field �zL−zt= lD� at the same
nominal solutal concentration c
. Interestingly, as the rela-
tionship between the control parameter space �� ,V ,G�
and the spacing-shape-position space �� ,� /� ,zL−zt�
� �� ,V−1/4�−1/4G1/2 ,V−1� is bijective, any choice of cell
spacing, cell shape and cell position can be achieved by suit-
ably selecting the control parameters. This means in particu-
lar that cell position, cell spacing and cell shape are three
independent features of growth cells that can be set indepen-
dently one of the other.

To illustrate this, we show in Fig. 14�a� that, keeping the
cell spacing � constant, the same shape can be found either
close or far from the liquidus line. This is achieved by choos-
ing V so as to meet the required distance lD from the cell tip
to the liquidus line and then by adjusting G so that the shape
parameter � /� stay unchanged. Similarly, still for a constant
cell spacing �, the position of a cell can be made unchanged
while its shape gets rounder �Fig. 14�b��. This is simply ob-
tained by keeping the same V, thus the same distance zL−zt
= lD to the liquidus line but by changing the thermal gradient
G so as to monitor the change of the shape variable � /�.

A similar remark can also be made on the usual nondi-
mensional variables, tip undercooling �t, Péclet number Pe,
and shape variable � /� since this triplet is made of variables
as independent as the control parameters: ��t , Pe ,� /��
� �G /V ,V� ,V−1/4�−1/4G1/2�. Then, keeping the same tip un-
dercooling and the same Péclet number, the cell shape may
actually be changed �Fig. 14�c�� by varying G , V, and �−1 so
as to keep G /V and �V constant. In the same spirit, the same
form can be obtained at the same tip undercooling but at
different Péclet numbers �Fig. 14�d�� provided one keeps the

same ratio G /V and adjusts � so that the shape variable � /�
remains unchanged.

As all these cells refer to steady states, their incoming
impurity flux �Vc
 must be balanced by the impurity flux
absorbed along their interface:

�Vc
 = �
I

�1 − k�cIV · n ds , �22�

where I denotes the interface, cI its impurity concentration,
and n its normal. This conservation relation helps under-
standing the relationship between the cell shape and the con-
centration at the cell tip or equivalently, with the control
parameters. In particular, a change of the location of a cell
while keeping the same shape is obtained by changing the
distance to the liquidus line with V and by recovering the
same concentration at the cell tip by varying the position of
the solidus line with G. Similarly, changing a cell shape
while keeping its distance to the liquidus position is obtained
by changing the thermal gradient G but keeping the same
velocity V. As the solidus line has moved, the concentration
at the cell tip, and thus along the cell interface, has then
changed. However, this is counterbalanced by the change of
shape so that the net absorbed flux along the interface �22�
remains the same.

The relationships �19� and �20� giving the position and the
shape of cells can be recast by using the characteristic
lengths of directional growth: the cell spacing �, the diffu-
sion length lD=D /V, the thermal length lT=D /Vc and the
capillary length d0. Plugging relations �11� and �12� in �20�
yields:

zL − zt = lD, �23�

x =
�

2
cx� lD

d0
�−1/10

tanh1/2�cz� lD

d0
�9/20� �

d0
�−1/4� lT

d0
�−1/2 z

�
	 ,

�24�

where the nondimensional prefactors cx and cz read:

cx = cL� D

d0
�1/10

, �25�

FIG. 13. Evolution of cell shape with �a� pulling velocity V : V=8,16,24,32 	m s−1 with �=100 	m and G=100 K cm−1; �b� cell
spacing � : �=60,80,100,120 	m with V=15 	m s−1 and G=100 K cm−1; �c� thermal gradient G : G=40,60,80,100 K cm−1 with V
=15 	m s−1 and �=100 	m. In figures �a� and �c�, cell tip position in the thermal gradient varies from cell to cell. To allow an easy
comparison of their shapes, they have been translated so as to display the same apparent tip position.
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cz = 8
c�

cL
2 �TL − TS�1/2d0

−3/10D−9/20, �26�

with cL=0.66 	m−1/10 s1/10 �15�, c�=0.095�102	m s−1/4

K−1/2 �14� and TL−TS=m�c where �c=mc
�1−k� /k denotes
the miscibility gap. Expressed with respect to the Péclet
number Pe=�V /D, the reduced pulling velocity �=V /Vc,
and the surface tension parameter �=d0lT /�2, cell shape
then reads:

x =
�

2
cx��Pe2

�
�1/10

tanh1/2�cz�
3/10Pe7/20�−4/5 z

�
	 . �27�

Notice that relations �24� and �27� apply insofar as cell
width L is smaller than cell spacing �. Otherwise, they must

be replaced by relation �20� complemented with power laws
�11� and �13�.

Determinations �24� and �27� are exhaustive with respect
to variables V ,� ,G, but undetermined regarding the impu-
rity concentration c
 which was fixed in our experiment. As
a result, prefactors cL and c� can only be given numerically
for the particular values of mixture variables used here,
whereas they should expressed with respect to these vari-
ables to complete the determination. Nevertheless, dimen-
sionality and physical considerations may together provide
additional information on the way prefactors vary with vari-
ables. Assuming the relevance of the minimal model of so-
lidification, nondimensional prefactors cx and cz should ex-
press with respect to its variables others than �V ,� ,G�, i.e.,
D ,k ,m ,c
 ,d0. The only dimensionally correct possibility is

FIG. 14. Evolution with control parameters of cell spacing �, cell shape � /�, and distance of cell tip to the liquidus position zL−zt

= lD=D /V with respect to the liquidus line zL−zt: �a� same spacing and form but distinct positions �b� same spacing and position but distinct
shapes. Evolution with control parameters of cell tip undercooling �t, cell form � /�, cell spacing �, and Péclet number Pe=�V /D: �c� same
tip undercooling �t and Péclet number Pe but distinct forms and spacings �d� same tip undercooling �t and form but different Péclet numbers
Pe and spacings. Units for �V ,� ,G� are �	m s−1 ,	m,K cm−1�.
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then a dependence on the temperature ratio mc
 /T0 and on k.
However, physical analysis shows that both variables can
only enter the minimal model through the combination
m�c /T0= �TL−TS� /T0 so that cx and cz can only be a func-
tion of them:

cx 
 cx�TL − TS

T0
�, cz 
 cz�TL − TS

T0
� . �28�

Note that, in contrast with the set of relevant length scales,
the range of variation of �TL−TS� /T0 is short in practice. The
argumentation supporting power law relationship then does
not hold for it.

VI. DISCUSSION

A. Nature of the shape determination

The present determination of cell shapes has addressed
cell parts going from the rounded tip region to the nearly flat
regions of cell sides. It has thus referred to a largely non-
linear geometry going from a curved domain to asymptoti-
cally straight domains. In addition, in these working win-
dows, the cell shape has been fitted not by parts but as a
whole.

One of the major advantages of this procedure has been to
negligibly depend on extrinsic parameters as the height of
the observation window for instance �Fig. 7�. This contrasts
with fitting procedures that may be used to extract a tip cur-
vature radius from the study of a tip region only. There, the
width of the selected tip region is a priori of prime impor-
tance for the result since the tip region is known to be neither
circular, nor parabolic �4,22�. At best, only the window
widths for which the sensitivity of the measured tip radius is
minimal can yield a relevant result �22�. On the opposite,
here, the height Z of the observation window has minute
influence on the fit since it only monitors the length of a part
of the cell that is nearly straight. Then, the problem of setting
out this extrinsic parameter is simply avoided. This is espe-
cially interesting for states for which defining a relevant ob-
servation window would have been delicate, as when mod-
erate sidebranches are emitted. Here, the relevance of the
fitting procedure can be extrapolated to them, thereby pro-
viding a rational comparison between steady and moderately
dendritic forms on the same basis.

In the present solidification issue, the resulting analytical
representation �20�, �24�, and �27� shows that cell shapes
correspond neither to a pure Saffman-Taylor form, nor to a
pure parabolic form even at the tip, but to a finger with a
rounded tip and straight sides. The details of the representa-
tion �20�, �24�, and �27� address neither the very vicinity of
the tip which is at the dominant order circular, neither the far
sides that are straight up to exponentially small deviations,
but the intermediate region II in which a matching between
these two asymptotic tendencies is achieved �Fig. 7�. It is
thus actually there that the differences between the fitting
functions �8�, �9�, and �10� or between the different fits of
function �8� are the largest. From this point of view, the
present determination of cell shapes points to the compatibil-
ity between a rounded tip and a straight finger, the former

being monitored by � and the latter by L. The resulting rep-
resentation �20�, �24�, and �27� then indicates how the
present advective-diffusive phase-change system sets the
compromise. In this sense, the present work somewhat cor-
responds to an empirical version at intermediate Péclet num-
ber of the matching procedure undergone by Dombre and
Hakim �6� at small Péclet number Pe�1 or by Spencer and
Huppert far from the cellular onset V /Vc�k−1 �7�.

B. Accuracy of the shape evolution

Although the representation �20� has been selected, other
fitting functions �9� and �10� or other values of the retained
exponent n=1/2 gave pretty close results that have only
been rejected because of an overall slightly larger dispersion
�Appendix, part 3� or values of fit parameter incompatible
with a physical interpretation �Sec. IV A�. In practice, these
other determinations may be considered as also representa-
tive of the cell library. They thus enable us to measure the
accuracy of our selection procedure.

In particular, the present determination �20� with � and L
given by �14� and �15� can be used with confidence as far as
the close determinations �8� with parameters �n ,� ,L� given
in Figs. 9 and 10 or with n fixed to unity provide similar
results. Then, both determinations actually give a relevant
expression of cell form, even if the determination �14�, �15�,
and �20� stands as the optimal one.

On the opposite, if a given issue reveals some noticeable
difference depending on which of these determinations is
chosen, then our procedure would have to be considered as
not accurate enough in this instance. This, could arise on
issues very sensitive to cell form, as for instance those in-
volving noise amplification. Then, a finer analysis might
have to be performed to determine the cell geometry to the
level of accuracy required.

C. Relevance of fit parameters

By definition, the tip curvature radius �̂ is given by dif-
ferentiating the square of the representation function f �̃,L̃�·� at
the tip:

�̂ = ��

2

d2f �̃,L̃

dz̃2 �
0

. �29�

It is therefore a local variable, only dependent on the cell

form at its tip. Similarly, the cell width L̂ is given by the
distance between cell grooves at the end of the observation
window:

L̂ = 2�f �̃,L̃�Z̃� . �30�

It is therefore a local variable too, only dependent on the cell
form at the window boundary.

The link between these geometrical variables and fit pa-
rameters follows from the properties �4� and �5� of f �̃,L̃�·�:

�̂ =
�

2
2�̃ = � , �31�

A. POCHEAU AND M. GEORGELIN PHYSICAL REVIEW E 73, 011604 �2006�

011604-14



Z̃ � �̃: L̂ � 2�
L̃

2
= L . �32�

Compared to the local nature of �̂ and L̂, the values of the

fit parameters ��̃ , L̃� are adjusted so that the fitting function
matches the cell form all along the cell. They are thus deter-
mined in a nonlocal way which contrasts with the local char-
acter of the tip curvature radius and of the cell spacing to
which they a priori reduce in the corresponding regions. In
particular, the values of the nonlocal fit parameters �� ,L�
obtained here differ from those of the analogous fit param-
eters determined in reduced tip or grooves domains �22�.
This results from the fact that fit parameters different from
the optimal values for specific regions are nevertheless more
suited in intermediate regions and, finally to the whole shape.
In addition, nonlocal fit parameters obtained from different
fit functions �8�, �9�, and �10� also differ one from the other,
although they yield representations that match a given form
equally well. This comes from the fact that different fit func-
tions correspond to different statistical weights along the
shape and thus to different kinds of determinations of opti-
mal parameters.

According to these statements, the shape determination
�20� should be considered as a whole. In particular, consid-
ering fit parameters solely should only be done with caution
since their meaning a priori makes sense only within the
whole shape representation. With this in mind, we analyze
below the curvature radius �.

D. Tip curvature radius

In order to determine the sensitivity of the value of the
curvature radius �̂=� to the fitting function, we compare be-
low the values obtained for four different kinds of fits per-
formed on the whole library.
The form �6� with the generating function �9� and free pa-

rameters �n , �̃ , L̃�. This gives parameters �33�.
The form �6� with the generating function �8� and free pa-

rameters �n , �̃ , L̃�. This gives parameters �34�.
The form �6� with the generating function �8�, free param-

eters ��̃ , L̃� and fixed parameters n=1/2 or n=1. This gives
Table I for n=1/2 and parameters �35� for n=1.

Although noticeable variations could be feared, one ob-
tains close parameters for the power law �11� that describes
��V ,� ,G�:

eV = − 0.28, e� = 0.73, eG = 0.44, �33�

eV = − 0.28, e� = 0.71, eG = 0.47, �34�

eV = − 0.26, e� = 0.79, eG = 0.49. �35�

The weakness of these variations means that the fit parameter
� is robust with respect to the present fitting procedures. This
is coherent with the fact that it showed no coupling with the
spurious variations of the other parameters L ,n �Fig. 10�.
This gives confidence for comparing it to the tip curvature
radius determined in a more local way, i.e., from parabolic
fits performed around the cell tips �22�.

Parabolic fits actually depends on the size of the fitting
window applied around cell tips �4,22�. This, a priori, makes
their determination dependent on an extrinsic parameter, and
thus somewhat arbitrary. However, it appears that in a given
range of window sizes, the determination of curvature radius
is stable. Considering the corresponding values as the rel-
evant ones, we obtained the following rounded values for the
power law exponents: �eV ,e� ,eG�= �−1/3 ,3 /4 ,1 /2� �22�.

These rounded exponents are the same as those found by
the present global fit except for the exponent eV which is
slightly smaller. This indicates that, once one has found the
narrow tip region in which parabolic fits performed in differ-
ent windows provide the same result, the resulting curvature
agrees with that which could result from a global fit of the
whole shape. However, the difference between the two pro-
cedures is that one has to pay a large attention to the fitting
window in the former whereas the latter is independent of
such consideration.

The rounded exponents �14� and �15� yield:

� = 0.095V−1/4�3/4G1/2, �36�

�

L
� 0.144V−1/3�−1/4G1/2, �37�

L = 0.66V−1/10� . �38�

This confirms that increasing thermal gradient at otherwise
unchanged parameters �V ,�� makes tip fatter, as expected
from the tightening of the isothermal lines. However, the
effect is less than proportional to the thermal gradient, i.e.,
less than the tightening of the thermal field. On the other
hand, the negative value of the exponent of the velocity for �
corroborates the fact that the quicker the cell, the thinner it
is. This remains true relatively to the cell width L, since the
sharpness � /L�V−1/3 of the cell also decreases with velocity.
This form evolution is however less pronounced than in free
growth where ��V−1/2 instead �1,18�.

Relation �36� also shows that � varies with the cell spac-
ing �, but less than proportionally: �̃=� /���−1/4. Accord-
ingly, there is no pure geometrical similarity even at the
same thermal gradient G or at the same pulling velocity V.
On the other hand, the cell width L follows the cell spacing:

L̃=L /���0. This is at variance with Saffman-Taylor forms
�2� in which the reduced curvature radius �̃=� /� and the

reduced cell width L̃=L /�=
 are linked one to the other

according to ��̃�1− L̃�= L̃2. For similar reasons, this is also
incompatible with a Saffman-Taylor shape matching a Scheil
profile �6�:

�x̃ = �1 + �
 − 1��1 + �0z̃�−��arccos�exp�−
�z̃

1 − 

�	 ,

�39�

where �0 and � stand as fixed parameters. In particular, at a
fixed bound Z�� of the observation window �Fig. 7�b��, the

observed reduced cell width L̃ would still be linearly related
to the parameter 
:
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L̃ = 1 + �
 − 1��1 + �0Z�−� �40�

so that the same conclusion as for a pure Saffman-Taylor
form would be reached. More generally, the absence of simi-
larity between � and L denies the existence of a one param-
eter family for representing cell shapes in the present param-
eter range.

E. Regularity of the shape evolution

In the above fitting procedure, no significant difference
between steady or weakly dendritic cells and moderately
dendritic cells could be noticed with regard to the depen-
dence of fitting parameters with control parameters �see
Table I�. In particular, all forms were accurately fitted with
the same function �20� with parameters varying according to
the same power law �11� and �12� and the same prefactors
and exponents �14� and �15�. This means that, regarding the
cell shape, steady and moderately dendritic cells belong to
the same branch of solution. In particular, no step in the
parameters n ,L ,�, nor in their evolution with the control
parameters �e.g., in the exponents of their variation� could be
detected. The former �latter� continuity attests of the absence
of first-order �second-order� transition at the occurrence of
sidebranching.

This regularity of the shape evolution between steady
cells and moderately dendritic cells means that, to the
present accuracy, there exists no shape transition at the cell-
dendrite transition, i.e., no change of branch of solution. This
corroborates the evidence of sidebranching as a dynamical
phenomenon superimposed to the cell shape on either of the
crystal directions �9�.

The absence of transition for cell shape must not be con-

fused with the sudden variation of the mean cell spacing �̄
that has been reported at the cell to dendrite transition �16�.
In particular, the latter addresses not cell shapes but cell
spacings seen in average. In addition, whereas the present
shape evolution refers to the steady states of cells displaying
a definite spacing, the observation of mean cell spacing
variation relies on an average over the different cells of an
interface and over different runs, i.e., over different cell spac-
ings and different dynamical conditions. Accordingly, it re-
fers to the length of the available range for cell spacing and
to the cell spacing distribution in it. Our study then shows
that, even if the range of available cell spacings suddenly
varies, the cell form for each of them taken separately does
not. Accordingly, the branch of solution for directional
growth remains the same, even if the spacing range and/or
the distribution of spacings vary.

Although this result clarifies an important solidification
feature at the cell to dendrite transition, it a priori leaves
undetermined the nature of the sudden variation of cell spac-
ing evidenced there �16�. However, experimental determina-
tion of the cellular instabilities as a function of cell spacing
and of pushing velocity reveals a striking coincidence: a
drastic elimination of a large range of small cells occurs at
velocities for which large cells begin to emit sidebranches
�13,23�. Accordingly, two uncorrelated events occur along
the cellular interface at the same pushing velocity: one yields

evidence of sidebranch emission, i.e., of dendrites; the other
implies a sudden increase of the mean cell spacing by elimi-
nation of a large range of small cells. Taken together, they
might give the impression of a link between them whereas
they actually refer to instabilities of different nature.

F. Perspective

The cell shape representation obtained here synthetically
handles the form evolution of cells in the control parameter
space. This should potentially offer relevant interactions with
simulation and theory.

At first, this determination opens the path for a detailed
comparison with numerical simulations of directional solidi-
fication cells, in either two or three dimensions, one-sided or
two-sided models, and length scales d0 and lT close or
weakly distant from those of our experiment. This could be a
way of evaluating the importance of the simplifications made
to the minimal model of solidification or to its parameters.
On the other hand, the accurate experimental forms that fol-
low from our determination should be tested against instabil-
ity so as to obtain agreement with experimental �13� or the-
oretical instability diagrams. This, in particular, should worth
being done for the sidebranching instability which could be
quite form-sensitive according to noise-amplification mecha-
nisms �24�.

On the other hand, although the analytical fit function �8�
simply corresponds to a partially arbitrary choice, the result-
ing determination �20�, �11�, and �12� provides the actual
steady cell shapes from tip to grooves in a large region of the
control parameter space. This shape and its evolution are
thus representative of the equilibrium between advection,
diffusion and impurity rejection within the minimal model of
directional solidification. Recovering this shape evolution
from a theoretical side would thus provide us with a valuable
improvement of our understanding of the balances that drive
the shapes of these growth interfaces. In this spirit, a com-
parison of our experimental determination of cell shape with
the predictions of the theories of Dombre and Hakim �6� or
Spencer and Huppert �7� extended to our regime would be
especially interesting. The former comparison could state
whether, as indicated in Sec. VI D, a matching between a
Scheil profile and a Saffman-Taylor profile fails in capturing
cell shapes in directional solidification. As the determination
of Spencer and Huppert relies on no surface tension �7�, the
latter comparison would be expecially interesting to con-
clude about the importance of surface tension effects regard-
ing cell shape in directional solidification.

VII. CONCLUSION

The shape of steady cells stands as one of the most im-
portant features in directional solidification. In particular, cell
shape partly determines the flux between the various thermo-
dynamic phases and, thus, the conditions required to main-
tain steady growth states or to trigger the occurrence of in-
stabilities on cells or on cell arrays. At the intermediate
Péclet regime that is relevant to experiments, cell shapes
largely differ from those proposed at asymptotic Péclet num-
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ber regimes on a theoretical basis. In the absence of a rel-
evant theory, a direct determination of cell geometry, what-
ever it is, then stands as a relevant goal. We have achieved it
in directional solidification of a succinonitrile alloy.

For this, a fitting procedure has been applied on each cell
among a large experimental library. Different fit functions
were used with enough few parameters to avoid spurious
fluctuations of them from cell to cell. In addition, fitting of
forms has been achieved on the whole observed profile, start-
ing from cell tip and ending at cell grooves. The average
evolution of the fitting parameters with the control param-
eters of the system have then been considered, yielding a
final representation of cell forms which has been validated
on the whole cell library.

By this procedure, cell forms and their evolution have
been determined in large domains of both the real space and
the control parameter space. The resulting generating func-
tion �20�, �24�, and �27� then simply gathers the evolution of
cell shape in this system. Beyond this, it calls for theoretical
and numerical investigations capable of understanding its
structure. This in particular offers a stimulating opportunity
for better modeling the equilibrium between advection, dif-
fusion, rejection and surface tension on free boundaries and
for validating instability mechanisms such as that which pre-
vails in sidebranching. Finally, similar procedures applied on
other kinds of growth systems would enable one to compare
the form of their interfaces on the same rational basis, so as
to determine whether directional solidification and other in-
terface growth systems share similar properties or refer to
specific dynamics.
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APPENDIX

We analyze the results of the independent fits of cell
shapes so as to evidence coherent evolutions of the fitting

parameters ��̃ , L̃ ,n� with the control parameters �V ,� ,G�.
The coupling between fitting parameters, that is inherent to
the fitting procedure, will yield us to fix one of them so as to
make the selection of the optimal parameter sharper.

1. Fitting parameters „�̃ , L̃ ,n…

Fitting relation �8� on the steady or moderately dendritic
cells of the library yields in Figs. 9 and 10 the following
behavior.

�i� Exponents n fluctuate in between 0.4 and 0.8 with no
definite tendency. In particular, its variation with V at fixed n
and G �Fig. 9� shows nonmonotonous evolutions whose
forms differ depending on G and �: a “hat” form at G
=140 K cm−1 ,�=90 	m and a decrease followed by a pla-
teau at G=78 K cm−1 ,�=130 	m. This sensitivity to G
seems more an artifact than an actual change of behavior of
the growth phenomenon. This is confirmed by the variation
of n with � at fixed V and G �Fig. 10� which shows large
sudden variations that are correlated with those exhibited by

L, especially in Fig. 10�b�. Notice finally that, in average
over the cell library, exponent n takes a mean value close to
0.5.

�ii� The fit parameter L shows coherent evolutions with V
and �. At fixed � and G , L appears somewhat constant with
respect to V �Fig. 9�. At fixed V and G , L shows a monoto-
nous growth with � including fluctuations that are correlated
to those shown by exponent n, especially in Fig. 10�b�.

�iii� The fit parameter � shows coherent evolutions with
V and �. At fixed � and G , � regularly decreases with V
�Fig. 9�. At fixed V and G , � regularly increases with � �Fig.
10�.

This analysis shows that � varies smoothly among the
shape library. This contrasts with L and n which involve
sharp variations, especially n which displays the largest in-
coherent variations. These sudden changes of n with V at
fixed � and G might point to characteristic velocities in the
observed data range. Instead, we shall consider them as irre-
alistic variations brought about by the coupling with the two
other fit parameters: L and �. This interpretation is supported
by the evidence of correlations between the fluctuations of n
and L with � at fixed V and G �Fig. 10�.

On the other hand, the fact that L is quasiconstant with
respect to V at fixed � and G is also puzzling since one
would have expected a monotonous variation. This, together
with the correlation of the variations of L and n with �, leads
us to also suspect the variable L to partly result from a cou-
pling with exponent n.

Following these statements, we address below the impli-
cations of separately fixing the two parameters L and n and
look for determining which is the most meaningful. The

value of L will be fixed to the definite value � : L̃=1. The
value of n will be fixed to the simplest value consistent with

its average: n=0.5 for free L̃ and, as found below, n=1 for

L̃=1.

2. Fitting parameters „�̃ ,n… with L̃=1

Fixing L̃=1, i.e., L=�, we obtain fits of cell shapes that
are less satisfactory than previously, especially in region II.
Beyond the fact that reducing fit parameters can only weaken
the quality of optimization, this indicates that other values

than L̃=1 would well be worth being addressed, so that L̃
should be let free.

Although the fits at L̃=1 will not be further analyzed, they
nevertheless provide useful indications of the relevant values
to consider for fixing n. These values have been found to
fluctuate from cell to cell, but around a mean close to unity
that is about twice the value found from the three-parameters
fit of Appendix, part 1. This indicates a relevant common
value for n that is twice than before: n=1.

3. Fitting parameters „�̃ , L̃… with n=0.5 or n=1

Following the result of the above fits, there appears two
relevant common values for n on the whole library: n=0.5
�Appendix, part 1� or n=1 �Appendix, part 2�. Imposing
them, we obtain fits that approximate each cell form at nearly
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the same level of accuracy as when the exponent n was al-
lowed to freely vary. In particular, the discrepancy between
the actual forms and the fitted forms is always below three

pixels whatever the region of the shape is considered �Figs.
12�a� and 12�b��, provided of course that no sidebranch is
emitted �Fig. 12�c��.

�1� A. Papapetrou, Z. Kristallogr. 92, 89 �1935�; G. P. Ivantsov,
Dokl. Akad. Nauk SSSR 58, 56 �1947�.

�2� P. Pelcé and A. Pumir, J. Cryst. Growth 73, 337 �1985�.
�3� E. A. Brener, M. B. Geilikman, and D. E. Temkin, Zh. Eksp.

Teor. Fiz. 94, 241 �1988� �Sov. Phys. JETP 67, 1002 �1988��.
�4� P. Kurowski, C. Guthmann, and S. de Cheveigné, Phys. Rev. A

42, 7368 �1990�.
�5� A. Pocheau and M. Georgelin, J. Cryst. Growth 206, 215

�1999�.
�6� T. Dombre and V. Hakim, Phys. Rev. A 36, 2811 �1987�.
�7� B. J. Spencer and H. E. Huppert, Acta Mater. 45, 1535 �1997�;

B. J. Spencer and H. E. Huppert, J. Cryst. Growth 200, 287
�1999�.

�8� J. D. Hunt, K. A. Jackson, and H. Brown, Rev. Sci. Instrum.
37, 805 �1966�.

�9� M. Georgelin and A. Pocheau, Phys. Rev. E 57, 3189 �1998�.
�10� The existence of thermal boundary layer prevents the thermal

gradient at the front G to be inversely proportional to the gap
g.

�11� C. Huang and M. E. Glicksman, Acta Metall. 29, 701 �1981�.
�12� L. M. Williams, M. Muschol, X. Qian, W. Losert, and H. Z.

Cummins, Phys. Rev. E 48, 489 �1993�.
�13� M. Georgelin and A. Pocheau, in Dynamics and Morphogen-

esis of Branching Structures from Cells to River Networks,
edited by V. Fleury, J-F. Gouyet, and M. Leonetti �EDP Sci-
ences, Springer, New York, 1999�, pp. 409–415.

�14� J. T. C. Lee and R. A. Brown, Phys. Rev. B 47, 4937 �1993�.
�15� M. Georgelin and A. Pocheau, Phys. Rev. Lett. 79, 2698

�1997�.
�16� B. Billia and R. Trivedi, Handbook of Crystal Growth

�Elsevier Science, New York, 1993�, Vol. 1, Chap. 14.
�17� P. G. Saffman and G. I. Taylor, Proc. R. Soc. London, Ser. A

245, 312 �1958�.
�18� M. Ben Amar and E. Brener, Phys. Rev. Lett. 71, 589 �1993�;

E. Brener, Phys. Rev. Lett. 71, 3653 �1993�.
�19� E. Brener and D. Temkin, Phys. Rev. E 51, 351 �1995�.
�20� U. Bisang and J. H. Bilgram, Phys. Rev. E 54, 5309 �1996�.
�21� T. F. Bower, H. D. Brody, and M. C. Flemmings, Trans. Met-

all. Soc. AIME 236, 624 �1966�; H. D. Brody and M. C. Flem-
mings, Trans. Metall. Soc. AIME 236, 615 �1966�.

�22� M. Georgelin and A. Pocheau, J. Cryst. Growth 268, 272
�2004�.

�23� A. Pocheau and M. Georgelin, J. Phys. IV 11, 169 �2001�.
�24� P. Pelcé, and P. Clavin, Europhys. Lett. 3, 907 �1987�; J. S.

Langer, Phys. Rev. A 36, 3350 �1987�; S. K. Sarkar, Phys.
Lett. A 117, 137 �1986�.

A. POCHEAU AND M. GEORGELIN PHYSICAL REVIEW E 73, 011604 �2006�

011604-18


