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We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional
interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results
are obtained from analysis of steady-state profiles generated by integrating a spatially discretized form of the
Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in
its dependence on the system size and the “sampling interval” used in the measurement for both “steady-state”
and “finite” initial conditions. Analytic results for the scaling functions are obtained from a path-integral
treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A “deterministic
approximation” is used to obtain closed-form expressions for survival probabilities from the formally exact
analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical
data.
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I. INTRODUCTION

Temporal first-passage properties, expressed in terms of
persistence and survival probabilities �1�, have recently
found many applications �2–5� in the study of the dynamics
of fluctuating interfaces. Experimental realizations of one-
dimensional �1D� fluctuating interfaces are provided by mon-
atomic steps on vicinal surfaces. Recent experimental studies
�6–9� have shown that temporal persistence and survival
probabilities for fluctuating steps can be measured, and that
these probabilities provide a convenient way of characteriz-
ing their dynamics. The temporal persistence probability is
defined in this context as the probability that the height at a
particular point of the interface does not return to its initial
value over a certain period of time. For many simple models
of interface dynamics, this probability exhibits a power-law
decay in time �2–4�. This power-law behavior has been con-
firmed in experiments �6–9�. In contrast, a closely related
quantity, the temporal survival probability that measures the
probability that the height does not return to its average
value over a certain period of time is found, both theoreti-
cally �5� and experimentally �8,9�, to decay exponentially at
long times.

In studies of fluctuating interfaces, it is natural to consider
spatial analogs of these temporal first-passage quantities,
namely the spatial persistence and survival probabilities.
These probabilities have been studied analytically �10� and
numerically �11� for several models of interfacial dynamics.
For �1+1�-dimensional interfaces, the stochastic variable of
interest is the “height” h�x , t� that represents the position of
the interface at point x and time t. In this paper, we consider
the interface profile h�x , t0� where the time t0 is in the long-
time, steady-state regime and, for notational convenience,
suppress the time argument t0 of h from now on. To define
spatial persistence probabilities, let p�x0 ,x0+x� be the
probability that the height h�x� does not return to its

“initial” value h�x0� at the point x0 within a distance x mea-
sured from x0 along the interface. The “steady-state” spatial
persistence probability P�x� is then defined as the average of
p�x0 ,x0+x� over all possible choices of the initial point x0 in
a steady-state configuration of the interface. A second persis-
tence probability PFIC�x�, the so-called spatial persistence
probability for “finite initial conditions” �FIC� �10�, is de-
fined as the average of p�x0 ,x0+x� over initial points x0 at
which both the height h�x0� and its spatial derivative h��x0�
are finite. It was shown in Refs. �10,11� that for several mod-
els of fluctuating interfaces, both P�x� and PFIC�x� exhibit
power-law decay for large x, but the exponents that describe
this power-law behavior may be different in the two cases.
Experimental measurements of the steady-state spatial per-
sistence probability for interfaces �combustion fronts in pa-
per� believed to be described by the Kardar-Parisi-Zhang
�KPZ� equation �12� have been reported recently �13�. The
behavior of PFIC�x� was not investigated in this work.

In analogy with the temporal case, the spatial survival
probabilities are defined in terms of the probability
p��x0 ,x0+x� that the interface height between points x0 and

x0+x does not cross its average value h̄ �rather than the
initial value h�x0��. The steady-state and FIC spatial survival
probabilities, Q�x� and QFIC�x�, respectively, are then ob-
tained by averaging p��x0 ,x0+x� over x0 in the two different
ways mentioned above: in the first case, the average is done
over all points x0, while, in the second case, the average is
performed over only the points at which the height and its
spatial derivative are finite. Numerical results for the x de-
pendence of these two spatial survival probabilities for 1D
interfaces with KPZ and Edwards-Wilkinson �EW� �14� dy-
namics were reported in Ref. �11�. It was found there that the
spatial dependence of Q�x� is neither power law nor expo-
nential, while QFIC�x� exhibits a power-law decay similar to
that of the FIC persistence probability PFIC�x�. While the
power-law behavior of QFIC�x� was expected �10�, the x de-
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pendence of Q�x� found in the numerical work of Ref. �11�
was not understood theoretically.

In this paper, we present the results of a detailed numeri-
cal and analytic study of the spatial survival probabilities for
1D interfaces with EW dynamics in the steady state. The
primary motivation for this study is to develop a theoretical
understanding of the numerical results reported in Ref. �11�.
On a more general level, studies of temporal and spatial first-
passage properties of fluctuating interfaces are believed to be
important in understanding the role of thermal fluctuations of
the edges of components in the stability of nano-scale de-
vices. The 1D EW equation is believed �15� to describe ther-
mal fluctuations of steps on a vicinal surface under experi-
mental conditions for which the dominant source of
fluctuations is the attachment/detachment of atoms to/from
the steps. Since the statistics of height fluctuations in the
steady state of the 1D KPZ equation is the same as that for
the 1D EW equation, our results also apply to experimental
realizations of 1D KPZ interfaces.

The 1D EW equation has the form �14�

�h�x,t�
�t

= �
�2h�x,t�

�x2 + ��x,t� , �1�

where � is a kinetic parameter and ��x , t� is a
Gaussian random noise with ���x , t��=0, ���x , t���x� , t���
=2D���x−x����t− t��, D� being a measure of the strength of
the noise. The parameters � and D� should satisfy the
fluctuation-dissipation relation if this equation is supposed to
describe equilibrium fluctuations �e.g., in the case of steps on
a vicinal surface�, but they are independent parameters in a
general nonequilibrium situation. We consider a finite system
of size L, so that 0�x�L, and use periodic boundary
conditions. It is easy to see that the spatial average

h̄�t���1/L��0
Lh�x , t�dx executes a simple random walk in

time. In our calculations, we subtract the spatial average
from the variables h�x , t�, so that, from now on, it is implied
that h�x , t� represents the height at point x measured from the

instantaneous spatial average. Thus, h̄�t� is equal to zero by
definition. As we shall see later, this condition plays an im-
portant role in the analytic calculation.

The spatial survival probabilities studied here are defined
as follows. Let Q�x ,L 	h0� denote the probability that the
steady-state spatial profile of the interface starting at h0 at
x=0 �and ending at h0 at x=L, i.e., with periodic boundary
condition� does not cross 0 up to a distance x where
0�x�L. Then, the steady-state spatial survival probability
is given by

Q�x,L� = 

−�

�

Q�x,L	h0�Pst�h0,L�dh0, �2�

where Pst�h0 ,L� is the steady-state height distribution. The
FIC survival probability is defined as

QFIC�x,L,w� =



−w

w

Q�x,L	h0�Pst�h0,L�dh0



−w

w

Pst�h0,L�dh0

, �3�

where w�W�L�, the steady-state width of the interface. In
our numerical work, steady-state profiles for systems of dif-
ferent L are generated by integrating a spatially discretized
form of the EW equation to long times, and these profiles are
used to calculate the survival probabilities. The spatial dis-
cretization implies that there is a finite sampling interval �x
that represents the spacing between successive points at
which the height variable is sampled in the calculation of the
survival probabilities. Clearly, the value of �x must be an
integral multiple of the spacing of the spatial grid at which
the height variable is defined. This sampling interval �x is
analogous to the “sampling time” that represents the interval
between two successive measurements of a stochastic pro-
cess in studies of temporal persistence. The fact that a finite
value of the “sampling time” may modify the persistence
properties of a stationary stochastic process was first pointed
out in Ref. �16�. In the context of fluctuating interfaces, it is
known from numerical �4,5� and experimental �9� studies
that the temporal survival probability in interfaces exhibits a
nontrivial dependence on the sampling time. In our numeri-
cal study, we find that the spatial survival probabilities also
depend on the value of the sampling interval �x. The depen-
dence of the survival probability Q on x, L, and �x is found
to be described by a scaling function of x /L and �x /L:
Q�x ,L ,�x�= fd�x /L ,�x /L�. This is similar to the scaling be-
havior found in Ref. �11� for spatial persistence probabilities.
As shown there, the dependence of the FIC survival prob-
ability QFIC on x, L, �x, and w is also described by a scaling
function of x /L, �x /L, and w /L� where �=0.5 is the expo-
nent for the dependence of the steady-state width W�L� on L
�W�L�	L��.

In our analytic study, we consider the spatial survival
probabilities when the height variable is sampled continu-
ously, i.e., the limit �x→0, and calculate the scaling function
f�x /L�� fd�x /L ,0�. This calculation is based on a mapping
of the spatial statistics of a steady-state EW interface to the
temporal statistics of 1D Brownian motion. The requirement

that the average height h̄ of the interface must vanish trans-
lates in this mapping to the constraint that the total area
under the curve that represents the Brownian process in the
distance-time plane must be zero. This “zero-area” constraint
plays a very important role in the analytic calculation—the
form of the scaling function f�u� depends crucially on
whether this constraint is imposed in the analytic treatment.
Without this constraint, we can determine f�u� exactly, but
the form of the scaling function obtained this way differs
drastically from the numerical result. In particular, the scal-
ing function does not go to zero as u→1, whereas the nu-
merically obtained scaling function decreases rather fast to 0
as u approaches 1. When we take into account the zero-area
global constraint, determining the scaling function f�u� ana-
lytically becomes much more nontrivial. We are able to set
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up an exact path integral technique that allows us, in prin-
ciple, to compute this function exactly in terms of some com-
plicated integrals. However, we cannot get an exact closed
form expression for f�u� to compare with the simulation
data. We then make a simple “deterministic” approximation
that allows us to obtain a a closed form expression for f�u�
which we then compare with the numerically obtained scal-
ing function. The agreement is fairly good, given the drastic
nature of the deterministic approximation. Our approximate
analytic result for the FIC survival probability also shows
similar agreement with the numerically obtained results.

The rest of this paper is organized as follows. In Sec. II,
we describe our numerical results for the spatial survival
probabilities. The analytic calculations with and without the
“zero-area” constraint are described in detail in Sec. III. In
this section, we also present a comparison of the analytic
results for the survival probabilities with the numerical re-
sults presented in Sec. II. Section IV contains a summary of
the main results and a few concluding remarks. Some details
of the steady-state properties of finite 1D EW interfaces with
periodic boundary conditions are presented in the Appendix.

II. NUMERICAL RESULTS

In the numerical work, we consider a spatially discretized
dimensionless form of the 1D EW equation defined in Eq.
�1�. The height variable is defined on a 1D lattice of unit
spacing with periodic boundary conditions. Let hi be the
height at lattice site i with i=1,2 , . . . ,L. The time depen-
dence of the height variables is given by

dhi�t�
dt

= �hi+1�t� − 2hi�t� + hi−1�t�� + �i�t� , �4�

where the �i�t�’s represent uncorrelated Gaussian noise with
��i�t��=0 and ��i�t�� j�t���=2�ij��t− t��. Equation �4� is thus
a discretized version of the continuum EW equation �1� with
the choice �=1 and D�=1. These equations are integrated
forward in time using the simple Euler method �17�. Thus,
we write Eq. �4� as

hi�t + �t� − hi�t� = �t�hi+1�t� − 2hi�t� + hi−1�t�� + ��tri�t� ,

�5�

where each ri�t� is an independent Gaussian random number
of zero mean and variance equal to 2. We use a value of �t
small enough �i.e., �t=0.01� to avoid any numerical instabil-
ity. Steady-state interface profiles are generated by carrying
out the integration from flat initial states �hi=0 for all i� to
sufficiently long times �much longer than the time at which
the width of the interface saturates�. As mentioned in Sec. I,
we always subtract the instantaneous spatial average of the
height variables from the individual variables �hi
 so that the
condition �i=1

L hi=0 is always satisfied.
The steady-state spatial survival probability Q�x� is mea-

sured as the probability that the interface height variable
does not cross zero as one moves along the interface from an
initial point x0 to the point x0+x �since the height variables
are defined on a lattice of unit spacing, both x0 and x are
integers between 0 and L.� This probability is averaged over

all initial points x0 in a steady-state configuration and also
over many �typically 104� independent realizations of the sto-
chastic evolution that generates the steady-state profiles. The
minimum value of the sampling interval �x used in the mea-
surement of Q�x� is obviously the lattice spacing which is
equal to unity. However, it is also possible to use a larger
sampling interval, equal to a positive integer m, in the mea-
surement of Q�x�—this is done by considering only the
heights at the lattice sites i=km, k=1,2 , . . ., while checking
whether the height crosses zero between the points x0 and
x0+x. The measured survival probability exhibits a weak de-
pendence on the value of �x. The FIC survival probability is
measured in a similar way, except that the initial points x0 are
chosen to be only those at which the height lies between −w
and +w, with w�W�L�, the steady-state width of the inter-
face.

Typical results for the survival probability Q�x� are shown
in Figs. 1–4. In Fig. 1, we show plots of Q�x� as a function
of x /L for L=200, 400, and 800. The values of Q�x� shown

FIG. 1. �Color online� Plots of the spatial survival probability
Q�x ,L� as a function of x /L �L is the sample size� for L=200
��black� dotted line�, L=400 ��blue� dash-dotted line�, L=800 ��ma-
genta� dashed line�, and L=104 ��red� full line�. The same sampling
interval, �x=1, is used in all cases.

FIG. 2. �Color online� Dependence of the spatial survival prob-
ability on the sampling interval �x used in its measurement. Plots of
Q�x ,L� versus x /L �L is the sample size� are shown for L=800, and
two values of �x: �x=1 ��black� full line� and �x=4 ��red� dashed
line�.
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in these plots were obtained using �x=1 �unless mentioned
otherwise, all the results shown here were obtained using this
“default” value of �x�. It is clear from the plots that Q�x�
decreases from 1 to a value close to 0 as x /L is increased
from 0 to about 0.6. The numerical results show a weak
dependence on the value of L. As we shall see shortly, this
dependence arises from the use of the same �x in all the
measurements for the different values of L.

The numerical calculations cannot be extended to much
larger values of L because the time required to reach the
steady state from a flat initial state increases with L as Lz

with z=2. However, we have found a different way of gen-
erating steady-state interface profiles for much larger values
of L. It is easy to show that in the steady state of the
model defined in Eq. �4�, the height difference variables
si�hi+1−hi, i=1,2 , . . . ,L �with hL+1=h1 due to periodic
boundary conditions� are independent Gaussian random vari-
ables with zero mean and variance equal to unity, apart from
the obvious constraint, �i=1

L si=0, arising from periodic

boundary conditions. Therefore, a realization of the steady-
state interface profile for a system of size L may be obtained
by numerically generating L Gaussian random variables with
the statistics mentioned above, identifying these random
variables with the si’s, and then calculating the heights hi
�with their spatial average subtracted off� in terms of these
si’s. We have calculated the spatial survival probabilities for
steady-state EW interfaces with L=104 generated this way,
averaging over 4000 independent realizations. The results for
Q�x� obtained from this calculation are also shown in Fig. 1.
It is clear that these results for L=104 are consistent with the
trend shown by the other results obtained from steady-state
interfaces generated by numerical integration.

In Fig. 2, we have shown plots of Q�x� for L=800, ob-
tained from two different calculations, one with �x=1 and
the other with �x=4. The two curves are clearly different,
indicating that the measured Q�x� depends weakly on the
value of �x used in the measurement. We have found, in
analogy with the results reported in Ref. �11� for spatial per-
sistence probabilities, that the dependence of Q on x, L, and
�x satisfies the scaling equation

Q�x,L,�x� = fd�x/L,�x/L� , �6�

where the subscript “d” of the scaling function is meant to
indicate that here we are considering survival probabilities
measured using discrete sampling with a finite sampling in-
terval �x. This scaling equation implies that plots of Q�x� vs.
x /L for samples with different L would all collapse to the
same curve if the survival probabilities for different L are
measured using different values of �x, such that �x /L is held
constant. This scaling behavior is illustrated in Fig. 3. In this
figure, we have shown plots of Q vs. x /L for L=200 mea-
sured with �x=1, L=400 measured with �x=2, and L=800
measured with �x=4 �so that �x /L= 1

200 in all three cases�.
The three sets of data are found to collapse to the same
curve, thereby establishing the validity of the scaling form of
Eq. �6�. The L dependence of the results shown in Fig. 1
may, therefore, be thought of as representing the dependence
of the scaling function fd on the value of its second argu-
ment, �x /L.

Numerical results for the FIC survival probability QFIC
were reported in Ref. �11� where it was shown that it exhibits
the following scaling behavior:

QFIC�x,L,�x,w� = fFIC„x/L,�x/L,w/W�L�… . �7�

For the sake of completeness, we have shown in Fig. 4 our
numerical results for QFIC obtained for w /W�L�=0.02. Two
sets of data are shown, one for L=800, obtained from steady-
state interfaces generated by numerical integration, and the
other for L=104, obtained from interfaces generated using
Gaussian random variables, as outlined above. In both cases,
the initial decay of QFIC can be well represented by a power
law, QFIC�x�	x−
FIC with 
FIC=0.5. As in the case of the
steady-state survival probability, the dependence of QFIC on
the value of L may be thought of as representing the depen-
dence of the scaling function fFIC of Eq. �7� on the argument
�x /L.

FIG. 3. �Color online� The scaling behavior �Eq. �6�� of the
dependence of the spatial survival probability on the sample size L
and the sampling interval �x. Plots of Q�x ,L� versus x /L are shown
for three different sets of values of L and �x with �x /L held con-
stant: L=200 and �x=1 ��blue� crosses�; L=400 and �x=2 ��black�
line�; L=800 and �x=4 ��red� circles�.

FIG. 4. �Color online� Double-log plots of the FIC spatial sur-
vival probability QFIC�x ,L� versus x /L �L is the sample size� for
L=800 �crosses� and L=104 �circles�. Fits of the initial decay of
QFIC to a power-law with exponent 1

2 �QFIC�x�	x−0.5� are shown by
the �red� solid lines.
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III. ANALYTIC CALCULATIONS

In this section, we describe in detail our analytic calcula-
tion of the spatial survival probabilities in the stationary state
of the 1D EW equation �1�. We consider periodic boundary
condition, h�0, t�=h�L , t�. The height can then be decom-

posed into a Fourier series, h�x , t�=�kh̃�k , t�eikx where
k=2�m /L with m=0, ±1, ±2. . .. Substituting this in Eq. �1�
one finds that different nonzero Fourier modes decouple
from each other. This enables an exact calculation of any
two-point correlation function. For example, as shown in the

Appendix, one finds for any k�0, �h̃�k , t�h̃�k� , t��
= �D� /�Lk2��k+k�,0 in the stationary limit t→�. Note that the

k=0 mode is identically zero at all times, h̃�0, t�=0, which
follows from the sum rule �0

Lh�x , t�dx=0 as the height h�x , t�,
by definition, is always measured with respect to its spatial
average. Since Eq. �1� is linear, the height field h�x , t� is
Gaussian for all x and all t. Using the result for the two-point
correlator mentioned above, one can then easily write down
the joint probability distribution of the Fourier modes in the
stationary state,

P��h̃�k��
 	 exp�−
�L

2D�
�

k

k2h̃�k�h̃�− k��� �h̃�0�� , �8�

where the delta function on the right-hand side of Eq. �8�
takes care of the “zero-area” constraint. In terms of the actual
height field h�x , t�, the stationary joint distribution becomes
�18,19�

Pst��h�x��
 = 2��DL3/2 exp�−
1

4D



0

L

dx�dh

dx
�2�

�� �h�0� − h�L����

0

L

h�x�dx� , �9�

where D=D� /2� and the normalization constant 2��DL3/2,
ensuring that the joint distribution is normalized, can be cal-
culated explicitly �19�. The two delta functions in Eq. �9�
respectively take care of the periodic boundary condition
h�0�=h�L� and the zero-area constraint. The stationary
height distribution at any fixed point x in space is, by trans-
lational invariance, independent of x and is also a Gaussian

Pst�h� =
1

�2��h2�
exp�− h2/2�h2�� , �10�

where the variance �h2�=D�L /12�=DL /6 can be easily
computed �see the Appendix�.

Note that in the standard literature on interfaces, one often
ignores the “zero-area” constraint in the stationary measure
�20�. This is justified if one is interested in calculating physi-
cal properties in an infinite �L→�� system where the zero

mode h̃�k=0� does not play any important role. Besides, in
the calculation of certain observables even in a finite system,
such as the average width in the stationary state or the dis-
tribution of the square of the spatially averaged width �21�,
the k=0 mode drops out of the calculation. However, as
pointed out in Refs. �18,19�, the zero-area constraint cer-

tainly plays a very crucial role in the calculation of, for ex-
ample, the distribution of the maximal height of the inter-
faces in a finite system. We will see below that the zero-area
constraint does indeed play an important role also in the
calculation of spatial survival probabilities in a finite system.

From the expression of the stationary measure in Eq. �9� it
is evident that stationary paths are locally Brownian, i.e.,
evolve in space as, dh�x� /dx=
�x�, where 
�x� is a
Gaussian white noise with zero mean and a correlator,
�
�x�
�x���=2D��x−x��. For the periodic boundary condi-
tion, the stationary path in space is, in fact, a Brownian
bridge over x� �0,L� that starts at h0=h�0� at x=0 and ends
up at the same point h�L�=h0 at x=L. In addition, this
Brownian bridge has a total zero area under it. It turns out to
be convenient to perform the calculations using the standard
notations of a “temporal” Brownian motion, dx /dt=
�t� with
�
�t��=0 and �
�t�
�t���=2D��t− t��. At the end of the calcu-
lations, one can translate back the results to the interface
problem upon identifying �i� the height of the interface with
the position of the temporal Brownian motion, i.e., h�x, and
�ii� the space in the interface problem with the time in the
temporal Brownian motion, i.e., x� t. Thus, in this notation,
the temporal Brownian bridge starts at the initial position
x0 ��h0� at t=0 and ends at the same position x0 after a time
interval t=T �T�L�, and enclosing under it a total zero area,
i.e., �0

Tx�t�dt=0.
With these notations set up, we first describe a calculation

of the spatial survival probability in which the zero-area con-
straint is not taken into account. Although the survival prob-
ability can be calculated exactly in this case, the resulting
analytic expression does not show good agreement with nu-
merical results, implying that the zero-area constraint is cru-
cial for a correct description of the first-passage properties.
We then show that the zero-area constraint can be taken into
account in a formally exact path integral treatment. This
treatment, however, does not lead to a simple closed-form
expression for the survival probability that can be compared
with numerical results. We then use a “deterministic” ap-
proximation to obtain closed-form expressions for the sur-
vival probabilities and show that the analytic results obtained
this way provide a reasonably good account of the numerical
results. Note that since the stationary measure of the 1D KPZ
interface for the periodic boundary condition is the same as
that in the EW interface �20�, all our steady state results will
be valid for the 1D KPZ interface as well.

A. Survival probability without the zero-area constraint

Let us first recall some basic results for the ordinary free
temporal Brownian motion. Consider a Brownian motion,

dx

dt
= 
�t� , �11�

where 
�t� is a zero mean Gaussian white noise with cor-
relator �
�t�
�t���=2D��t− t��. The free propagator of the
Brownian motion G�x , t 	x0 , t0� defined as the probability that
the particle will reach x at time t starting from x0 at t0 can be
easily obtained by solving the Fokker-Planck equation,
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�tG�x,t	x0,t0� = D�x
2G�x,t	x0,t0� , �12�

subject to the initial condition G�x , t0 	x0 , t0�=��x−x0� and
the boundary conditions that G→0 as x→ ±�. The well
known solution is given by

G�x,t	x0,t0� =
1

�4�D�t − t0�
exp�− �x − x0�2/4D�t − t0�� ,

�13�

valid for all t and t0 and x and x0. We now ask: what is the
probability that the particle reaches x at time t, starting at x0
at t0, but without having crossed the zero in between? This
probability P�x , t 	x0 , t0� can be easily calculated by solving
the same Fokker-Planck equation, but now adding an absorb-
ing boundary condition at x=0, i.e., insisting that
P�0, t 	x0 , t0�=0 for all t �22�. The solution can be easily ob-
tained by the image method and is given by

P�x,t	x0,t0� =
1

�4�D�t − t0�
�exp�− �x − x0�2/4D�t − t0��

− exp�− �x + x0�2/4D�t − t0��
 . �14�

Evidently, this solution satisfies the absorbing boundary con-
dition at x=0.

Now, let us consider a Brownian bridge over the interval
�0,T�. This means a Brownian motion that starts at x0 at
t=0 and ends up at the same point x0 at time T. Let us ask:
what is the probability Q�t ,T 	x0� that this process �condi-
tioned to be at x0 at the two endpoints� does not cross zero in
the interval �0, t� where 0� t�T? To calculate this probabil-
ity, let us divide a typical path of the process over two inter-
vals: �0, t� and �t ,T�. Over the first interval �0, t�, a typical
path starts at x0 at the left end of the interval and lands up,
say, at x �where x is a variable� at t, without having crossed
the zero over the interval �0, t�. This probability for the left
interval is �using Eq. �14��

PL�x,t	x0,0� =
1

�4�Dt
�exp�− �x − x0�2/4Dt�

− exp�− �x + x0�2/4Dt�
 . �15�

Over the second interval �t ,T�, the path starting at x at t �left
end of the interval �t ,T�� reaches at x0 at T, but there is no
restriction over this second interval �the path is allowed to
cross zero in this second interval�. Thus, this probability for
the right interval is obtained from the free propagator in Eq.
�13�,

PR�x0,T	x,t� =
1

�4�D�T − t�
exp�− �x0 − x�2/4D�T − t�� .

�16�

Due to the Markovian property of the walk, the left and right
intervals are independent. Hence the net probability is just
the product of the two probabilities, integrated over the po-
sition x at the intermediate point t over x� �0,��. This will
be the total probability that a path starting at x0 at t=0 will
end up at x0 at time T, without having crossed the zero in the

interval �0, t�. To get the conditional probability Q�t ,T 	x0�
�conditioned that the two ends are already given to be at x0�,
we need to divide this probability by the factor 1 /�4�DT
which is just the probability of a free path landing up at x0 at
T, starting at x0 at time 0. Thus, finally, we get

Q�t,T	x0� =� T

4�Dt�T − t�
0

�

dx�exp�− �x − x0�2/4Dt�

− exp�− �x + x0�2/4Dt�


�exp�− �x0 − x�2/4D�T − t�� . �17�

This integral can be done in closed form and one gets

Q�t,T	x0� =
1

2�1 + erf�x0� T

4Dt�T − t�
�

− exp�− x0
2/DT�erfc�x0

�T − 2t�
�4DtT�T − t�

�� ,

�18�

where erf�x�= �2/����0
xe−u2

du is the error function and
erfc�x�=1−erf�x�.

So, now we can interpret these results in terms of the
stationary state of the EW interfaces. Identifying x0�h0 and
T�L and t�x, Q�x ,L 	h0� in Eq. �18� is just the probability
that the stationary interface, given its height h0 at the two
ends of the sample, does not cross zero in the spatial interval
�0,x� and is given by, for h0�0,

Q�x,L	h0� =
1

2�1 + erf�h0� L

4Dx�L − x�
�

− exp�− h0
2/DL�erfc�h0

�L − 2x�
�4DxL�L − x�

�� .

�19�

Now, we need to average Q�x ,L 	h0� over the stationary
distributions of h0 given in Eq. �10�,

Q�x,L� = 2

0

�

dh0Q�x,L	h0�Pst�h0� . �20�

The factor 2 comes from the fact that the stationary distribu-
tion becomes twice its value if restricted over only the posi-
tive half-space h0� �0,��. The integral in Eq. �20� can be
done in closed form. We need to use the identity,



0

�

dxe−x2
erf�zx� =

1

�
tan−1�z� , �21�

which can be easily proved by differentiating both sides with
respect to z, performing the resulting integral, and then
integrating back with respect to z. Our final result is
Q�x ,L�= f�x /L� for all x and L, where the scaling function
f�u� is given exactly by
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f�u� =
1

2
�1 −

�3

2
� +

1

�
tan−1� 1

2�3

1
�u�1 − u�

�
+

�3

2�
tan−1�1

4

�1 − 2u�
�u�1 − u�

� . �22�

One can easily check that f�0�=1 as it should be. Also, note
that f�1�=1−�3/2 is nonzero. Interestingly, this scaling
function f�u� does not depend on the system parameters D�
or �.

The function f�u� in Eq. �22� is plotted versus u in Fig. 5
and compared with the numerical result obtained for L=104.
The agreement between the analytic and numerical results is
not satisfactory. In particular, the numerical result for f�u�
goes to very small values as u is increased above 0.5, while
the analytic curve shows a finite value f�1�=1−�3/2 even at
u=1. It is, therefore, clear that the zero-area constraint has to
be included in the calculation for a correct description of the
survival probability.

B. Survival probability with the zero-area constraint

In the previous section, we did not take into account the
constraint that the total area under the Brownian bridge x���
going from x0 at time �=0 to x0 at time �=T is actually zero.
In this subsection, we perform the calculation taking into
account this zero-area constraint.

We first define Q0�t ,T 	x0� to be the probability that the
process x��� starting at x0 at �=0 does not cross zero up to
time t �see Fig. 6� where 0� t�T, given that the process
ends up at x0 at �=T and that the total area under the pro-
cess from 0 to T is 0. The subscript 0 in Q0 indicates the fact
that we are considering only those paths �out of all possible
paths starting at x0� whose area is 0. Note that the analogous
quantity Q�t ,T 	x0� without the area constraint was computed
in Eq. �18�. Formally, one can express this probability
Q0�t ,T 	x0� as follows,

Q0�t,T	x0�

=

����=0

t

�x������ �x�T� − x0�� �


0

T

x���d���
�� �x�T� − x0�� �


0

T

x���d��� ,

�23�

where the angular brackets �¯� denote an average over all
possible Brownian paths that start at x0 at time 0. The nu-
merator N in Eq. �23� represents the joint probability of three
events: �i� the probability that the path does not cross zero up
to t �the first factor�, �ii� the probability that the path finally
ends up at x0 at time �=T �the second factor�, and �iii� the
probability that the area under the process upto time T is zero
�the third factor�. The denominator D in Eq. �23� represents
the joint probability of events �ii� and �iii�. So, the ratio N /D
represents the conditional probability Q0�t ,T 	x0�, i.e., the
fraction of paths that start at x0 and satisfy �i�, �ii�, and �iii�,
out of all paths that start at x0 and satisfy �ii� and �iii�.

This numerator can further be split into two parts: �a� the
probability that a path starting at x0 reaches x at the interme-
diate time t without crossing zero and enclosing an area, say
A�0 �the area is positive since the path does not cross zero
in �0, t��, and �b� the subsequent probability that the path
starting at x at time t reaches x0 at time T and enclosing an
area −A. This ensures that the total area up to T is zero.
However, we then have to integrate over all possible values
of A�0 and x�0. Thus, one can rewrite Eq. �23� as

Q0�t,T	x0�

=



0

�

dA

0

�

dxG+�x,A,t	x0,0,0�G�x0,− A,T − t	x,0,0�

G�x0,0,T	x0,0,0�
,

�24�

where we define G�x ,A , t 	x0 ,A0 ,0� to be the probability
that the joint two-variable Gaussian process �x�t� ,A�t�= �A0

+�0
t x���d��� �i.e., the Brownian curve itself and the integral

under the Brownian curve� reaches �x ,A� at time t, starting
from the initial value �x0 ,A0� at time 0. So,
G�x ,A , t 	x0 ,A0 ,0� is just the propagator for this joint Gauss-

FIG. 5. �Color online� Comparison of the analytic result for the
spatial survival probability �Eq. �22� with u=x /L, Q�x ,L�= f�u��,
obtained without enforcing the zero-area constraint ��red� dashed
line� with the numerical result for L=104 ��black� solid line�.

FIG. 6. A typical Brownian path starting at x0 and reaching x at
time t without crossing the origin and then freely propagating from
x at t to x0 at time T.
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ian process. Note that this process is free in the sense that it
has no restriction for x�t� to be only positive. Clearly, the
denominator D in Eq. �23� is just G�x0 ,0 ,T 	x0 ,0 ,0� since,
by definition, this quantity represents the probability the pro-
cess �x�t� ,A�t�� will reach its final value �x0 ,0� �note that the
final area is zero� at time T, starting from its initial value
�x0 ,0� �since the initial area is zero�. Similarly, the part �b� in
the numerator is just G�x0 ,−A ,T− t 	x ,0 ,0� since that repre-
sents the joint probability that a path starting at x at time t
and initial area 0 will end at x0 at time T with area −A �note
that we have made a shift �t ,T�→ �0,T− t� which is allowed
due to time translational invariance of Brownian motion�.
Finally we define G+�x ,A , t 	x0 ,0 ,0� to be the joint probabil-
ity that the process �x�t� ,A�t�� will reach �x ,A� at time t
starting from �x0 ,0� and without x crossing the origin in the
interval �0, t�.

Now, the free propagator G�x ,A , t 	x0 ,A0 ,0� is easy to
compute. This is just the joint bivariate Gaussian distribution
of the random variable x�t� and A�t�=A0+�0

t x�t��dt�. Their
correlation matrix can be easily computed and the propagator
is just the exponential of the inverse correlator. Indeed, this
result is already well known, since this is just a random
acceleration problem: dA /dt=x�t� and dx /dt=��t� which im-
plies d2A /dt2=��t�. The result for the propagator can be
found, for example, in Refs. �19,23�. We just quote this result
here,

G�x,A,t	x0,A0,0� =
�3

2�Dt2 exp�−
1

D
� 3

t3 �A − A0 − xt�

��A − A0 − x0t� +
1

t
�x − x0�2�� . �25�

Substituting this exact propagator in Eq. �24�, we get

Q0�t,T	x0� = � T

T − t
�2

exp�3x0
2/DT�

�

0

�

dA

0

�

dxG+�x,A,t	x0,0,0�

�exp�−
3

D�T − t�3 �A + x�T − t���A + x0�T − t��

−
1

D�T − t�
�x − x0�2� . �26�

Note that we still have to determine the restricted propagator
G+�x ,A , t 	x0 ,0 ,0� and then we have to average Q�t ,T 	x0�
over the stationary distribution of x0 to calculate Q0�t ,T�
=2�0

�dx0Q0�t ,T ,x0�Pst�x0�, where the distribution Pst�x0� is
given in Eq. �10�. With the identification h0�x0 and L�T,
one gets

Pst�x0� =� 3

�DT
exp�− 3x0

2/DT� , �27�

which gives

Q0�t,T� = 2� 3

�DT



0

�

dx0e−3x0
2/DTQ0�t,T,x0� . �28�

Substituting the expression of Q0�t ,T 	x0� from Eq. �26� in
Eq. �28�, we find that the factor exp�−3x0

2 /DT� cancels out
and we get a formally exact result,

Q0�t,T� = 4�3� t

T
� T

T − t
�2


0

� dx0

�4�Dt

�

0

�

dx

0

�

dAG+�x,A,t	x0,0,0�

�exp�−
3

D�T − t�3 �A + x�T − t���A + x0�T − t��

−
1

D�T − t�
�x − x0�2� . �29�

So the remaining task is to evaluate the restricted propagator
G+�x ,A , t 	x0 ,0 ,0� which we do in the next two subsections.

1. Exact calculation of the restricted propagator G+

We note that the restricted propagator G+�x ,A , t 	x0 ,0 ,0�
is just the joint probability that the process x�t� starting at x0

at time 0 reaches x at time t without crossing the origin and
that the area under the curve is A. Thus it is given by

G+�x,A,t	x0,0,0�

=���
�=0

t


„x���…�� �x�t� − x���

0

t

x���d� − A�� ,

�30�

where the angular brackets �¯� denote an average over all
possible paths starting at x0 at time 0. Note that if x0=x=0,
this restricted Brownian process is just a Brownian excursion
over the interval �0, t� and the propagator G+�0,A , t 	0,0 ,0�
is just the �unnormalized� probability density of the area un-
der a Brownian excursion. A Brownian excursion is simply a
Brownian path that propagates from x�0�=0 to x�t�=0 over
�0, t� but is conditioned to stay positive in between. The
probability distribution of the area under a Brownian excur-
sion was calculated exactly and is known as the Airy distri-
bution function, a complicated function that involves the ze-
ros of the Airy function but is not the Airy function itself
�24–28�. This Airy distribution function has been a subject of
intense study for the past several years as it has resurfaced in
many problems in computer science �26,27�, graph theory
�29�, and two-dimensional polygon problems �30�. Recently
it was shown that the same Airy distribution function also
describes the distribution of maximal height in the stationary
state of fluctuating interfaces �18,19�. In Ref. �19�, a path
integral derivation of the area distribution under a Brownian
excursion was provided. In our present problem, we have a
generalization of this problem where a Brownian path propa-
gates from x0 at �=0 to x at �= t, staying positive in between.
The nonzero values of the initial and the final positions, x0
and x, make explicit calculation of the distribution of the area
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under such a path difficult, as demonstrated below. Here we
follow the path integral method used in Ref. �19� generalized
to nonzero x0 and x.

Let us define the Laplace transform of G+ with respect to
the area A, i.e.,

G̃�x,x0,t,�� = 

0

�

G+�x,A,t	x0,0,0�e−�AdA . �31�

Note that since the path is restricted to be on the positive
side, the area is always positive and hence a Laplace trans-
form �rather than a Fourier transform� is more suitable. Tak-
ing Laplace transform of Eq. �30� we get

G̃�x,x0,t,�� =���
�=0

t


„x���…�� �x�t� − x�

�exp�− �

0

t

x���d��� . �32�

Using the Brownian measure of the paths in Eq. �9�,
G̃�x ,x0 , t ,�� can be expressed as a path integral,

G̃�x,x0,t,�� 	 

x�0�=x0

x�t�=x

Dx���
�x����

�exp�− 

0

t

d�� 1

4D
�dx���

d�
�2

+ �x����� .

�33�

Using the bra-ket notation, one can reexpress the right-hand
side of Eq. �33� as a quantum mechanical propagator,

G̃�x,x0,t,�� = �x0	e−Ĥt	x� , �34�

where the Hamiltonian Ĥ can be written �in the position
basis�

Ĥ = − D
d2

dx2 + V�x� , �35�

where the quantum potential V�x�=�x for x�0 and in addi-
tion V�0�=� �i.e., there is a hard wall at the origin� which
takes into account the fact that all paths in Eq. �33� are re-
stricted to be on the positive side and cannot enter the region
x�0. Expanding the right-hand side of Eq. �34� in the eigen-

basis of the Hamiltonian Ĥ we get

G̃�x,x0,t,�� = �
E

�x0	E��E	x�e−Et = �
E

�E�x��E
*�x0�e−Et,

�36�

where E denotes the eigenvalues of Ĥ and the eigenfunction
�E�x� satisfies the Schrodinger equation in the region x
� �0,��,

− D
d2

dx2��x� + �x��x� = E��x� , �37�

with the boundary conditions ����=0 and ��0�=0, the latter
reflecting the hard wall at the origin. Making the change of

variable, z= �� /D�1/3�x−E /��, one can recast the Schro-
dinger equation as the following Airy differential equation,

d2�

dz2 − z� = 0, �38�

whose general solution is given in terms of two Airy func-
tions,

��z� = BAi�z� + C Bi�z� , �39�

where B and C are arbitrary constants. The function Bi�z�
diverges as z→� �see Ref. �31�� indicating C=0. Going
back to the original x variable, we have

��x� = BAi�� �

D
�1/3�x −

E

�
�� . �40�

The other boundary condition ��x=0�=0 determines the ei-
genvalues,

Ai�−
E

�D�2�1/3� = 0. �41�

It is known �see Ref. �31�, p. 446� that the Airy function
Ai�x� has zeroes on the negative x axis at x=−�i. For ex-
ample, �1=2.33, �2=4.08, �3=5.52, �4=6.78, etc. Thus we
get the exact eigenvalues

Ei = �i�D�2�1/3. �42�

The amplitude B in Eq. �40� is determined from the normal-
ization, �0

�	�E�x�	2dx=1 and we get

	Bi	2 =
1



0

�

Ai2���/D�1/3y − �i�dy

. �43�

Finally, putting everything back in Eq. �36� we get the exact
Laplace transform of the restricted propagator,

G̃�x,x0,t,�� = �
�i

Ai���/D�1/3x0 − �i�Ai���/D�1/3x − �i�



0

�

Ai2���/D�1/3y − �i�dy

�exp�− �iD
1/3�2/3t� , �44�

where −�i’s are the zeros of the Airy function Ai�x�. For-
mally inverting the Laplace transform using the Bromwitch
formula, we get the exact expression for the restricted propa-
gator,

G+�x,A,t	x0,0,0� = 

�0−i�

�0+i� d�

2�i
e�AG̃�x,x0,t,�� , �45�

where G̃�x ,x0 , t ,�� is given by Eq. �44� and the integration is
along any imaginary axis whose real part �0 must be to the
right of all singularities of the integrand.

Substituting this restricted propagator from Eqs. �45� and
�44� in Eq. �29� gives us the formal exact answer of the no
zero crossing probability Q0�t ,T� which, one can easily
check, has the scaling form Q0�t ,T�= f�t /T�. However, this
formal expression of the scaling function f�u�, though exact,
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is hardly useful to make comparison with the numerical data.
This is because we cannot invert the Laplace transform ex-
plicitly in Eq. �45�. �Even after that one needs to do the three
integrals over x0, x, and A in Eq. �29�, which looks hope-
less!�

So, the question is: Can one find an approximate way to
estimate the restricted propagator G+�x ,A , t 	x0 ,0 ,0� and
then use this approximate result in Eq. �29�, do the three
integrals, and derive an explicit expression for the scaling
function f�u�? In the next subsection, we indeed perform
these steps and derive an explicit expression of f�u� which,
though not exact, is expected to be quite good.

2. A deterministic approximation for the restricted propagator
G+

As a first step, let us rewrite the restricted propagator
G+�x ,A , t 	x0 ,0 ,0� in Eq. �30� as follows,

G+�x,A,t	x0,0,0�

= �����=0

t

�x������ �x�t� − x�� �


0

t

x���d� − A��

����=0

t

�x������ �x�t� − x�� �

����
�=0

t


„x���…�� �x�t� − x��
= W�A,x,x0,t�P�x,t	x0,0� , �46�

where we just divided and multiplied the right-hand side
of Eq. �30� by the same factor P�x , t 	x0 ,0�
= ����=0

t 
(x���)�� �x�t�−x��. This factor is simply the prob-
ability that the path starting at x0 at time 0 reaches x at time
t without crossing the origin in the interval �0, t� and has
already been calculated by the image method in Eq. �14�.
Thus, we have

P�x,t	x0,0� =���
�=0

t


„x���…�� �x�t� − x��
=

1
�4�Dt

�exp�− �x − x0�2/4Dt�

− exp�− �x + x0�2/4Dt�
 . �47�

The quantity W�A ,x ,x0 , t� represents the expression inside
the first parenthesis on the right-hand side of Eq. �46� which
we can write as

W�A,x,x0,t� =

�� �

0

t

x���d� − A����=0

t

„x���…�� �x�t� − x��

����=0

t

„x���…�� �x�t� − x��

,

�48�

which is simply the probability distribution of the the area
under the process in �0, t�, given that the process reaches
from x0 to x in time t without crossing the origin in between.

So, if we can estimate this conditional area distribution
W�A ,x ,x0 , t�, then, knowing the exact P�x , t 	x0 ,0� from Eq.

�47�, we will be able to estimate the restricted propagator
G+�x ,A , t 	x0 ,0 ,0� from Eq. �46�.

Note that so far we have not made any approximation. To
estimate the conditional area distribution W�A ,x ,x0 , t� de-
fined in Eq. �48�, we now make a “deterministic” approxi-
mation as follows. Note that W�A ,x ,x0 , t� is just the fraction
of paths that have an area A, amongst all possible paths that
go from x0 to x without crossing the origin in between. Now,
the paths that go from x0 at �=0 to x at �= t without crossing
the origin in between are likely to cluster around an optimal
path, i.e., most of these paths lie “close” to an optimal path.
This optimal path is the one which has the highest probabil-
ity amongst all possible paths going from x0 at �=0 to x at
�= t without crossing the origin in between. Assuming the
existence of such an optimal path xopt���, the “deterministic”
approximation consists in writing

W�A,x0,x,t� � ��A − 

0

t

xopt���d�� . �49�

Thus, within this aproximation we ignore the fluctuations
that arise from nonoptimal paths.

The next step is to actually find the optimal path xopt���,
i.e., the path with the highest probability, amongst all
possible paths that satisfy the following constraints:
�i� x�0�=x0, �ii� x�t�=x, and �iii� x����0 for all 0��� t, i.e.,
the path stays positive in the interval �� �0, t�. One knows
from the principle of least actions that the optimal path is the
so-called “classical” path that satisfies Newton’s equation of
motion. In our problem, the action in the path integral,
S= �1/4D��0

t �dx��� /d��2d�, corresponds to that of a free par-
ticle. So, the optimal path satisfies the Newton’s law for a
free partricle, namely d2x /d�2=0, starting from x�0�=x0 and
ending at x�t�=x for all 0��� t. The solution is trivially,

xopt��� = x0 + �x − x0�
�

t
. �50�

Note that this solution automatically satisfies the condition
�iii� mentioned above, i.e., it stays positive in the interval
�� �0, t�. Now, the area under the optimal path is simply

Aopt = 

0

t

xopt���d� =
1

2
�x0 + x�t . �51�

Before proceeding to the calculation of the survival prob-
ability with this optimal choice, it is instructive to ask how
the calculated survival probability depends on the choice of
the deterministic path. In other words, within the determin-
istic approximation in Eq. �49�, how does the final result
vary if instead of the optimal path in Eq. �50�, we use some
other paths? To test this, we actually consider a one-
parameter family of paths that satisfy the constraints �i�, �ii�,
and �iii� above. This family of paths is characterized by a
single parameter ��0,

x���� = x0 + �x − x0�� �

t
��

. �52�

Clearly, as shown above, �=1 corresponds to the optimal
path. In the following, we will however calculate the survival
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probability for all ��0 to test how sensitive the final answer
is to the optimal choice �=1. We will see, somewhat surpris-
ingly, that the final scaling function f�u� characterising the
survival probability depends only very weakly on �.

The area under the deterministic path in Eq. �52� is simply

A��,x0,x,t� = 

0

t

x����d� = �ax0 + �1 − a�x�t, where a

=
�

1 + �
. �53�

The optimal path corresponds to the choice �=1, i.e., a= 1
2 .

Our approximation in Eq. �49� then reads

W�A,x,x0,t� � �„A − �ax0 + �1 − a�x�t… , �54�

the optimal choice being a= 1
2 .

Within this deterministic approximation, we then have an
explicit expression for the restricted propagator �on substitut-
ing the results in Eqs. �47� and �54� in Eq. �46��,

G+�x,A,t	x0,0,0�

�
��A − �ax0 + �1 − a�x�t�

�4�Dt

��exp�− �x − x0�2/4Dt� − exp�− �x + x0�2/4Dt�
 .

�55�

3. Explicit expression for the scaling function f„u… using the
deterministic approximation

On substituting the expression of G+�x ,A , t 	x0 ,0 ,0� from
Eq. �55� into Eq. �29�, we can do the integral over A trivially,
since it involves a delta function. Inside the exponential on
the right-hand side of Eq. �29�, we have to replace A by
�ax0+ �1−a�x�t. This gives

Q0�t,T� = 4�3� t

T
� T

T − t
�2


0

� dx0

�4�Dt



0

� dx
�4�Dt

��exp�− �x − x0�2/4Dt� − exp�− �x + x0�2/4Dt�


�exp�−
3

D�T − t�3 �a�x0 − x�t + xT�

���1 − a��x − x0�t + x0T� −
1

D�T − t�
�x − x0�2� .

�56�

We next define the scaling variables: y=x0 /�4Dt, z
=x /�4Dt, and u= t /T. Then Q0�t ,T� in Eq. �56� becomes
only a function of u= t /T, i.e., Q0�t ,T�= f�t /T� where the
scaling function f�u� is given from Eq. �56�,

f�u� =
4�3u

��1 − u�2

0

�

dy

0

�

dz�e−�y − z�2
− e−�y + z�2

�

�exp�−
4u

�1 − u�3 ���u2 + �3a − 2�u + 1�y2

+ ��u2 + �1 − 3a�u + 1�z2 + �1 + u − 2�u2�yz
� ,

�57�

where �=1−3a+3a2. The right hand side of Eq. �57� can be
reorganized as,

f�u� =
4�3u

��1 − u�2 �I1�u� − I2�u�� , �58�

where

I1�u� = 

0

� 

0

�

dydz exp�− r�u�y2 − s�u�z2 + p�u�yz� ,

I2�u� = 

0

� 

0

�

dydz exp�− r�u�y2 − s�u�z2 + q�u�yz� ,

�59�

where r�u�= �3�1−4a+4a2�u3+ �12a−5�u2+u+1� / �1−u�3,
s�u�= �3�1−4a+4a2�u3+ �7−12a�u2+u+1� / �1−u�3, p�u�
=2�3�1−4a+4a2�u3+u2−5u+1� / �1−u�3 and q�u�
=−2��−5+12a−12a2�u3+5u2−u+1� / �1−u�3. To do the
double integrals in Eq. �59�, it is convenient to scale
y=Y /�r�u� and z=Z /�s�u�. This gives

I1�u� =
�1 − u�3

�B�u�



0

� 

0

�

dYdZ exp�− �Y2 + Z2 + 2A1�u�YZ�� ,

I2�u� =
�1 − u�3

�B�u�



0

� 

0

�

dYdZ exp�− �Y2 + Z2 + 2A2�u�YZ�� ,

�60�

where

B�u� = �3�1 − 4a + 4a2�u3 + �12a − 5�u2 + u + 1�

��3�1 − 4a + 4a2�u3 + �7 − 12a�u2 + u + 1� ,

A1�u� = −
3�1 − 4a + 4a2�u3 + u2 − 5u + 1

�B�u�
,

A2�u� =
�− 5 + 12a − 12a2�u3 + 5u2 − u + 1

�B�u�
. �61�

We next use the identity



0

� 

0

�

dYdZ exp�− �Y2 + Z2 + 2AYZ�� =
1

4



0

� d


1 + A sin�
�
,

�62�

which can be easily established by going to the polar coor-
dinates Y =R cos�
� and Z=R sin�
� and by performing the
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radial integration. The integral J�A�=�0
�d
 / �1+A sin�
�� can

be done in closed form and one obtains

J�A� =
1

�1 − A2
�� − 2 sin−1�A�� for 	A	 � 1,

=
1

�A2 − 1
log�A + �A2 − 1

A − �A2 − 1
� for 	A	 � 1. �63�

Putting all these results back in Eq. �58�, we get an ex-
plicit result for the scaling function f�u�,

f�u� =
�3

�

�u�1 − u�
�B�u�

�J„A1�u�… − J„A2�u�…� , �64�

where the functions J, A1, A2 and B are given respectively in
Eqs. �61� and �63�. This is our main result, obtained using the
deterministic approximation where we keep only the contri-
bution from the optimal path but ignore the fluctuations
around the optimal path.

The function in Eq. �64� can be easily evaluated for all
0�a�1. Note that, by definition, the a dependence of f�u�
is symmetric about a= 1

2 , so it suffices to use 0�a�
1
2 with

a= 1
2 being the optimal choice. In Fig. 7 we compare the

analytically obtained f�u� corresponding to the optimal
choice a= 1

2 with the actual f�u� obtained via numerical
simulation on a latice of L=104 sites. The analytical scaling
function f�u� seems to compare well with the numerical one,
given especially the fact that there was no fitting parameter
involved.

The function f�u� turns out to be rather insensitive to the
value of the parameter a. In Fig. 7, we have also plotted f�u�
for the choice a=0.1. The f�u� obtained for this nonoptimal
choice of a is virtually indistinguishable from that obtained
for the optimal choice, a= 1

2 . This can be understood from the

asymptotic behavior of f�u� near u=0. As u→0, one can
show that

f�u� = 1 −
4�3u

�
+

8

��3
u3/2 +

4�3

�
u5/2 −

32�3a�1 − a�
�

u7/2

+ O�u9/2� . �65�

Note that the a dependence appears only in the fifth term in
the small-u expansion, showing that the function f�u� is
highly insensitive to a for small u. Since f�u� decreases rap-
idly with increasing u, the dependence of f�u� on a for rela-
tively large values of u is not visible in the linear plot in Fig.
7. This dependence is evident from the plots in the inset of
Fig. 7 where the results for f�u� for two different values of a
�the optimal value, a= 1

2 , and a=0.1� are shown in a logarith-
mic scale and compared with the numerical data for L=104.

The dependence of f�u� on the parameter a for relatively
large values of u is clearly seen in the asymptotic behavior of
f�u� as u→1. One finds that in powers of �=1−u, where
�→0,

f�u = 1 − �� = c4�a��4 + c5�a��5 + c6�a��6 + O��7� , �66�

where the coefficients c4�a�, c5�a�, c6�a�, etc. are compli-
cated functions of the parameter a. In particular, for the op-
timal case a= 1

2 , we get

f�u = 1 − �� =
4

9�3�
�4 +

2

3�3�
�5 +

209

270�3�
�6 + O��7� .

�67�

C. Survival probability for finite initial conditions

Analytic results for the FIC spatial survival probability
QFIC discussed in Sec. I may be obtained from the calcula-
tions described above in the following way. We consider the
probability that, given the constraint that the height h0 at x
=0 lies between −w and +w with w�W�L�, the steady-state
width of the interface of size L, the interface height does not
cross zero within distance x. This probability is normalized
by the probability of finding the initial height between −w
and +w �i.e., by 2�0

wPst�h�dh where Pst�h� is the Gaussian
probability distribution for the height in the steady state �see
Eq. �3���. In the first calculation without the zero-area con-
straint, we use Eq. �19� and integrate the quantity
Q�x ,L 	h0�Pst�h0� over h0 between 0 and w �with a factor 2 to
take care of negative values�, assuming that w /W�L��1, and
u=x /L is of order unity. Keeping terms of the lowest �linear�
order in y=w /W�L� in the expansions of the exponentials
and error functions �the latter is justified as long as u is not
very close to 0 or 1�, we get the following result for the
normalized probability that the height does not cross zero
within distance x=uL, when the initial height lies between
−w and +w with w=yW�L�:

QFIC�x,L,w� =
y

�24�
��1 − u�/u . �68�

This is clearly consistent with the scaling form of Eq. �7�—
the sampling interval �x is zero in the present continuum

FIG. 7. �Color online� Comparison of the analytic result for the
spatial survival probability �Eq. �64� with u=x /L, Q�x ,L�= f�u��,
obtained with the zero-area constraint and using the deterministic
approximation with a= 1

2 ��red� dashed line� with the numerical re-
sult for L=104 ��black� solid line�. The analytic result for f�u� ob-
tained using a=0.1 is also shown ��blue� dotted line� for compari-
son. The inset shows the same three plots for larger values of u,
using a logarithmic y scale to illustrate the dependence of f�u� on
the parameter a for relatively large values of u.
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description. For small u, the scaling function shows a power-
law decay with exponent 1

2 , fFIC�u ,0 ,y��A�y� /�u, with
A�y�=y /�24�.

In the calculation with the zero-area constraint, we use the
results obtained above using the deterministic approxima-
tion. Specifically, we consider Eq. �56� �with t replaced by x
and T replaced by L, so that u= t /T=x /L� and do the x0
integration between 0 and w instead of between 0 and �, and
then divide the result by �2�0

wPst�h�dh� for normalization.
Again, keeping terms to the lowest order in y=w /W�L�, we
obtain the result

QFIC�x,L,w� = fFIC�u,0,y�

= �1/�96��y
�1 − u��A2�u� − A1�u��r�u�

�uB�u�
,

�69�

where the functions A1�u�, A2�u�, and B�u� are defined in Eq.
�61� and r�u� is defined in the line after Eq. �59�. We use the
optimal value, a= 1

2 , in evaluating these functions. In the
small-u limit, this expression reduces to the same form,
A�y� /�u, as that found in the calculation without the zero-
area constraint. This is expected, since the zero-area con-
straint becomes important for values of x comparable to L.

As shown in Fig. 8 where we have plotted the scaling
functions according to Eqs. �68� and �69� for w /W�L�
=0.02 vs. u=x /L on a log-log scale, the results obtained with
and without the zero-area constraint agree with each other
for small u, but show differences as u increases above about
0.01. In the same figure, we have also shown the numerical
results obtained for the same value of y and L=104. The
numerical data show the expected A /�u behavior for small u,
but the coefficient A obtained from a fit to the numerical data
turns out to be substantially larger than the value
0.02/�24��0.0023 predicted by the analytic calculation—

the value of A obtained from the fit is close to 0.0073. In Fig.
8, we have also shown the result of Eq. �69� multiplied by
3.167, to take into account this difference between the two
values of A. It is clear from the plots that the analytic result
multiplied by this empirical factor provides a good descrip-
tion of the numerical data—the level of agreement is roughly
similar to that found in Fig. 7 for the steady-state survival
probability.

The reason for the necessity of multiplying the analytic
result by a numerical factor in order to obtain approximate
agreement with the numerical result lies in the use of discrete
sampling in the numerical calculation of the FIC survival
probability. In Eqs. �68� and �69� above, the survival prob-
ability goes to zero as y→0. This reflects the fact that in the
continuum limit, the probability of not crossing zero over a
finite distance x=uL is zero if the initial height is zero. This,
however, is not true when the sampling of the height is done
at discrete points, xn=n�x, where n is a positive integer and
�x is the sampling interval, taken to be equal to the spatial
discretization scale ��x=1� for most of the numerical results
reported here. This is because the probability calculated in
the numerical work does not take into account the �many�
zero crossings that would have taken place between x1 and x2
in the continuum limit if h�x1� is very close to 0. Even if the
height at the initial point x1 is very close to zero, the prob-
ability that the height at the next point x2=x1+1 has the same
sign as that of the height at the initial point �this is the first
value of the measured “no zero crossing probability”� is ac-
tually close to 0.5 in all the numerical simulations—for h1
slightly above zero, the probability of h2 remaining positive
is close to 0.5 because, as discussed in Sec. II, the height
difference s1=h2−h1 is a Gaussian random variable with
zero mean.

Our numerical results �such as those shown in Fig. 4�
suggest that for a fixed value of y=w /W�L�, the scaling func-
tions fFIC�u ,�x /L ,w� for different values of �x /L differ from
one another mainly by an overall numerical prefactor that
decreases as the value of �x /L is reduced. This is why the
analytic results for the survival probability show reasonable
agreement with the numerical data �as shown in Fig. 8� when
the former are multiplied by a suitable numerical factor. An
approximate analytic estimate of this numerical factor may
be obtained in the following way. Using the statistical prop-
erties of the height difference variables �si
 mentioned in
Sec. II, it is easy to show that for L�1, the probability that
the height h2 at lattice site 2 has the same sign as that of h1,
the height at site 1, is given by 0.5�1+erf�h1 /�2��. The “one-
step” FIC survival probability for discrete sampling with
�x=1 is then given by

Q1d�w,L� = QFIC�x = 1,L,�x = 1,w�

= 0.5�1 +



0

w

dh1 exp�− h1
2/2W�erf�h1/�2�



0

w

dh1 exp�− h1
2/2W� � ,

�70�

where W�L�=�L /12 is the steady-state width of the inter-

FIG. 8. �Color online� Comparison of analytic and numerical
results for the FIC spatial survival probability QFIC�x ,L ,w� with
w /W�L�=0.02. The �blue� dashed line and the �red� solid line show,
respectively, the analytic results obtained without the zero-area con-
straint �Eq. �68�� and with the zero-area constraint �Eq. �69� with
a= 1

2 �. The numerical results for L=104 are shown by �black�
circles, and the �magenta� dotted line going through these data
points represents the result of Eq. �69� multiplied by 3.167.
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face. For w�W�L�, this becomes a function of w only:

Q1d�w� = 0.5�1 + erf�w/�2� − �2/��1 − e−w2/2�/w� . �71�

As expected, Q1d�w� goes to 0.5 as w→0. Our numerical
results for Q1d�w� are in good agreement with this analytic
prediction. The one-step FIC survival probability in the con-
tinuum limit may be obtained by setting x=1 in Eq. �19�,
integrating Q�x=1,L 	h0�Pst�h0� over h0 between 0 and w,
and dividing by �0

wPst�h0�dh0 for normalization. For
w�W�L�, L�1, this leads to the result

Q1c�w� = QFIC�x = 1,L,�x = 0,w�

= erf�w/�2� − �2/��1 − e−w2/2�/w = 2Q1d�w� − 1.

�72�

Thus, Q1c�w� goes to zero as w→0, as expected. However,
both Q1d�w� and Q1c�w� approach unity for L�1, w�1,
w /W�L�→0, indicating that the numerical and analytic re-
sults would agree with each other in this limit. For
w /W�L�=0.02, L=104 �the values for which numerical re-
sults are shown in Fig. 8�, the values of the one-step survival
probabilities are Q1d=0.612 and Q1c=0.224. The ratio of
these two number is 2.73, which is slightly smaller than the
empirical multiplicative factor used in Fig. 8 to bring the
analytic result for the FIC survival probability in approxi-
mate agreement with the numerical data. This difference re-
flects the fact that the empirical value used in Fig. 8 was
obtained by considering the analytic and numerical results
for a range of values of x, whereas the analytic estimate of
the multiplicative factor is obtained by considering only one
point.

IV. SUMMARY AND DISCUSSIONS

In this paper, we have presented analytic and numerical
results for the spatial survival probabilities for 1D EW inter-
faces in the steady state. In one dimension the same steady-
state results also hold for the KPZ interface. We have studied
both the steady-state and the FIC survival probabilities. The
numerical results show that these survival probabilities ex-
hibit simple scaling behavior as functions of the system size
and the sampling interval used in the measurement. In the
analytic work, we have used a “deterministic” approximation
to obtain closed-form expressions for these scaling functions
from an exact path integral treatment of a mapping of the
problem to 1D Brownian motion. The analytic results show
fairly good agreement with the numerical data without hav-
ing to use any adjustable parameter. The remaining differ-
ences between the analytic and numerical results may be
attributed to �a� the use of the deterministic approximation in
obtaining the analytic results and �b� the use of a finite sam-
pling interval in the numerical calculations. The effect of
discrete sampling is small in the case of the steady-state sur-
vival probability. For the FIC survival probability, the depen-
dence of the numerical results on the value of the sampling
interval used in the measurement is approximately described
by an overall multiplicative factor. The value of this multi-
plicative factor can be estimated analytically by considering

the one-step survival probability. Further analytic work on
the dependence of the survival probabilities on the sampling
interval would be interesting and useful, especially because
measurements of these probabilities in simulations and ex-
periments always involve discrete sampling. While some
progress in this direction has been made �16�, a complete
analysis of the effects of discrete sampling remains a chal-
lenging theoretical problem.

On the experimental side, fluctuating steps on a vicinal
surface provide a physical realization of 1D EW interfaces if
the kinetics is dominated by attachment/detachment pro-
cesses �15�. While experimental studies of temporal persis-
tence and survival probabilities have been carried out �6–9�
for this system, we are not aware of any experimental inves-
tigation of spatial first-passage properties of fluctuating
steps. Such investigations would be most welcome. In other
experimental systems such as combustion fronts in paper
which also involve 1D interfaces described by the EW or the
KPZ equation, the spatial persistence has been recently in-
vestigated �13�. It would be interesting to see if our theoret-
ical predictions on the spatial survival probability can also be
verified experimentally in such systems.

APPENDIX: FINITE 1D EW INTERFACES
WITH PERIODIC BOUNDARY CONDITION

Consider the EW equation �1� on a finite line of size L
with periodic boundary condition, h�x+L , t�=h�x , t�. Since
h�x , t� is a periodic function, one can decompose it into a

Fourier series, h�x , t�=�kh̃�k , t�eikx where k=2�m /L with
m=0, ±1, ±2, . . .. Thus

h�x,t� = �
m=−�

�

h̃�m,t�e2�imx/L, �A1�

where the Fourier coefficients h̃�m , t� are given by the inver-
sion formula,

h̃�m,t� =
1

L



0

L

h�x,t�e−2�imx/Ldx . �A2�

Substituting Eq. �A1� in the EW equation �1� one gets

�th̃�m,t� = −
4�2m2

L2 �h̃�m,t� + �̃�m,t� , �A3�

for all m�0, where ��̃�m , t��=0 and ��̃�m , t��̃�m� , t��
= �2D� /L��m+m�,0� with �m,n being the Kronecker delta func-

tion. Note that for m=0, h̃�0, t�=0 at all t, because of the
sum rule, �0

Lh�x , t�dx=0. Solving Eq. �A3� with initial con-

dition h̃�m ,0�=0, we get for m�0,

h̃�m,t� = 

0

t

exp�− 4�2m2��t − t��/L2��̃�m,t��dt�.

�A4�

Using Eq. �A4� and the properties of the noise, one can eas-
ily compute the two-point equal time correlation function
and we get
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�h̃�m1,t�h̃�m2,t�� =
2D�

�L

L2

8�2m1
2

��1 − exp�− 8�2m1
2�t/L2���m1+m2,0.

�A5�

This gives the two-point correlation function in real space,

�h�x1,t�h�x2,t�� =
2D�

�L
�

m1�0

L2

8�2m1
2 �1 − exp�− 8�2m1

2�t/L2��

�exp�2�im�x1 − x2�/L� . �A6�

Note that the sum in Eq. �A6� runs from m=−� to m=� but
does not include the m=0 term, since we have used the fact

that h̃�m=0, t�=0. In particular, putting x1=x2=x, we get the
on-site variance, which becomes independent of x as ex-
pected, due to the translational invariance. This gives

�h2�0�� =
2D�

�L
�

m1�0

L2

8�2m1
2 �1 − exp�− 8�2m1

2�t/L2�� .

�A7�

In the stationary limit �t→��, one gets from Eq. �A7�

�h2�0�� =
D�L

2�2�
�
m=1

�
1

m2 . �A8�

Using the identity, �m=1
� =�2 /6, we get the formula for the

on-site variance in the stationary limit,

�h2�0�� =
D�

12�
L =

DL

6
, �A9�

where D=D� /2�. Since Eq. �1� is linear, it follows then that
the single site height distribution is a pure Gaussian at all
times. In particular, the stationary distribution is given by

Pst�h0� =
1

�2��h2�0��
exp�− h0

2/2�h2�0��� , �A10�

where �h2�0�� is given in Eq. �A9�.
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