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Direct test of defect-mediated laser-induced melting theory for two-dimensional solids
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We investigate by direct numerical solution of appropriate renormalization flow equations the validity of a
recent dislocation unbinding theory for laser-induced freezing and melting in two dimensions. The bare elastic
moduli and dislocation fugacities are obtained for three different two-dimensional systems namely, the hard
disk, inverse 12th power, and Derjaguin-Landau-Verwey-Overbeek potentials. A restricted Monte Carlo simu-
lation sampling only configurations without dislocations is used to obtain these quantities. These are then used
as inputs to the flow equations. Numerical solution of the flow equations then yields the phase diagrams. We
conclude that (a) the flow equations need to be correct at least up to third order in defect fugacity to reproduce
meaningful results, (b) there is excellent quantitative agreement between our results and earlier conventional
Monte Carlo simulations for the hard disk system, and (c) while the qualitative form of the phase diagram is

reproduced for systems with soft potentials there is some quantitative discrepancy which we explain.
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I. INTRODUCTION

Examples of phase transitions mediated by the unbinding
of defect pairs abound in two dimensions. The quasi-long-
ranged order to disorder transition in the XY and planar rotor
models [1-6], the melting transition of two-dimensional sol-
ids [1,7-11], the superconductor to normal phase transition
in two-dimensional Josephson junction arrays [12], the
commensurate-incommensurate transition of the striped
phase of smectic liquid crystals on anisotropic substrates
[13], and the more recent discovery of a defect-mediated
reentrant freezing transition in two-dimensional colloids in
an external periodic potential [14,15] are all understood
within such defect unbinding theories. While the very first
defect-mediated transition theory for the phase transition in
the XY model by Kosterlitz and Thouless (KT) [1] enjoyed
almost immediate acceptance and was verified in simulations
[2-4,6] as well as experiments [16,17], defect-mediated
theories of two-dimensional melting took a long time to gain
general acceptance in the community [18]. There were sev-
eral valid reasons for this reticence however.

First, as was recognized even in the earliest papers [8,9]
on this subject, the dislocation unbinding transition, which
represents an instability of the solid phase, may always be
pre-empted by a first-order [19,20] transition from a meta-
stable solid to a stable liquid. Whether such a first-order
melting transition actually occurs or not depends on the tem-
perature of instability Tgr; so that if the transition tempera-
ture T.<Tgy the unbinding of dislocations does not occur.
Clearly, neither this condition nor its converse can hold for
all two-dimensional (2D) systems in general. This is because
Txr is a nonuniversal number which depends on the “dis-
tance” in coupling parameter space between the bare and the
fixed point Hamiltonians and hence on the details of the
interaction. Second, the renormalization group (RG) flow
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equations derived in all defect-mediated theories to date are
perturbative expansions in the defect density (fugacity) in the
ordered phase. How fast does this perturbation series con-
verge? The answer lies again in the position of the bare
Hamiltonian in the coupling parameter space. For the planar
rotor model [1,6], past calculations show that next to leading
order terms in the flow equations are essential to reproduce
the value of the transition temperature obtained in simula-
tions [6]. Third, defect-mediated transitions predict an essen-
tial singularity [1] of the correlation length at the transition
temperature. This means that effects of finite size [21] would
be substantial and may thoroughly mask the true thermody-
namic result. A rapid increase of the correlation length also
implies that the relaxation time diverges as the transition
temperature is approached—critical slowing down. For the
two-dimensional solid, this last effect is particularly crucial
since, even far from the transition, the motion of defects is
mainly thermally assisted and diffusional and therefore slow.
The equilibration of defect configurations [22] is therefore
often an issue even in solids of macroscopic dimensions.
On the other hand, over the last few years it has been
possible to test quantitatively some of the nonuniversal pre-
dictions of defect-mediated theories of phase transitions us-
ing simulations of restricted systems [6,11,23]. A simulation
of a system without defects is used to obtain the values for
the bare coupling constants which are then taken as inputs to
the renormalization group equations for the appropriate de-
fect unbinding theory to obtain quantities like the transition
temperature. Needless to say, the simulated system does not
undergo a phase transition and therefore problems typically
related to diverging correlation lengths and times do not oc-
cur. Numerical agreement of the result of this calculation
with that of unrestricted simulations or experiments is proof
of the validity of the RG flow equations [1,8,9,11]. This idea
has been repeatedly applied in the past to analyze defect-
mediated phase transitions in the planar rotor model [6], two-
dimensional melting of hard disks [11], and the reentrant
freezing of hard disks in an external periodic potential
[23,24]. The last system is particularly interesting in view of
its close relation with experiments on the laser-induced reen-
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trant freezing transition in charge-stabilized colloids [14,15]
and this constitutes the subject of the present paper as well.

In this paper we show in detail how restricted simulations
of systems of particles interacting among themselves via a
variety of interactions and with a commensurate external pe-
riodic potential can be used to obtain phase diagrams show-
ing the reentrant freezing transition. The results obtained are
compared to earlier unrestricted simulations for the same
systems. Briefly our results are as follows. First, we observe
that, as in an earlier study of the planar rotor model [6], next
to leading order corrections to the renormalization flow
equations are essential to reproduce even the gross features
of the phase diagram. Specifically, the reentrant portion of
the phase diagram can be reproduced only if such correction
terms are taken into account. Second, while we find almost
complete agreement with earlier results for the hard disk sys-
tem which has been studied most extensively, our phase dia-
gram for the other forms of interaction is shifted with respect
to the results available in the literature. This may mean either
of two things—inadequacy of the RG theory used by us or
finite size effects in the earlier results. Last, as a by-product
of our calculations, we have obtained the core energy for
defects (dislocations) in these systems and studied its depen-
dence on thermodynamic and potential parameters.

The problem of reentrant freezing transition of a system
of interacting colloidal particles in a periodic potential has an
interesting history involving experiments [14,15], simula-
tions [25-33], and theory [34-36]. In the last couple of de-
cades soft systems like colloids have been studied exten-
sively [37] both for their own sake and as typical toy models
to study various important condensed matter questions like
structural and phase transitions through experiments that al-
low real space imaging. Charged colloids confined within
two glass plates form a model 2D system as the electrostatic
force from the plates almost completely suppresses the fluc-
tuations of colloids perpendicular to the plates, practically
confining them to a 2D plane. In their pioneering experiment
Chowdhury er al. [14] imposed a simple static background
potential which is periodic in one direction and constant in
the other (except for an overall Gaussian profile of intensity
variation) by interfering two laser beams. This potential im-
mediately induces a density modulation in the colloidal sys-
tem. The potential minima are spaced to overlap with the
close packed lines of the ideal lattice of the colloidal system
at a given density. With increase in potential strength such a
colloidal liquid has been observed to solidify. This is known
as laser-induced freezing (LIF). In a recent experiment [15] it
has been shown that with further increase in potential
strength, surprisingly, the solid phase remelts into a modu-
lated liquid. This phenomenon is known as reentrant laser-
induced freezing (RLIF). Qualitatively, starting from a liquid
phase, the external periodic potential immediately induces a
density modulation, reducing fluctuations which eventually
leads to solidification. Further increase in the amplitude of
the potential reduces the system to a collection of decoupled
1D strips. The dimensional reduction now increases fluctua-
tions remelting the system.

The early mean field theories, namely, Landau theory [14]
and density functional theory [34], predicted a change from a
first-order to a continuous transition with increase in poten-
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tial strength and failed to describe the reentrant behavior, a
conclusion seemingly confirmed by early experiments [14]
and some early simulations [25]. Overall, the results from
early simulations remained inconclusive however; while one
of them [25] claimed to have found a tricritical point at in-
termediate laser intensities and reentrance, later studies re-
futed these results [26-28]. All of these studies used the
change in order parameter and the maximum in the specific
heat to identify the phase transition points. While some later
studies [26-28] found RLIF for hard disks they reported
laser-induced freezing and absence of any reentrant melting
for the Derjaguin-Landau-Verwey-Overbeek (DLVO) poten-
tial [28] in direct contradiction to experiments [15].

Following the defect-mediated disordering approach of
Kosterlitz and Thouless [1], Frey, Nelson, and Radzihovsky
(FNR) [35] proposed a detailed theory for the reentrant tran-
sition based on the unbinding of dislocations with Burgers
vector parallel to the line of potential minima. This theory
predicted RLIF and no tricritical point. The results of this
work were in qualitative agreement with experiments [15]
and provided a framework for understanding RLIF in gen-
eral. More accurate simulation studies on systems of hard
disks [29], soft disks [31,32], DLVO potential [30], etc., con-
firmed the reentrant freezing-melting transition in agreement
with experiments [15] and FNR theory [35,36]. In these stud-
ies the phase transition point was found from the crossing of
Binder cumulants [38,39] of order parameters corresponding
to translational and bond-orientational order, calculated for
various subsystem sizes. A systematic finite size scaling
analysis [29] of simulation results for the 2D hard disk sys-
tem in a 1D modulating potential showed, in fact, several
universal features consistent with the predictions of FNR
theory. It was shown in these studies that the resultant phase
diagram remains system size dependent and the crossover to
the zero-field Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) melting [8,9] plays a crucial role in understanding
the results for small values of the external potential. While
the data collapse and critical exponents were consistent with
KT theory for stronger potentials, for weaker potentials they
match better with critical scaling [29]. A common problem
with all the simulation studies might be equilibration with
respect to dislocation movements along climb (or even glide)
directions. Also, nonuniversal predictions, namely, the phase
diagram are difficult to compare because the FNR approach
(like KT theory) is expressed in terms of the appropriate
elastic moduli which are notoriously time-consuming to
compute near a continuous phase transition. Diverging cor-
relation lengths and times near the phase transition further
complicate an accurate evaluation of the nonuniversal pre-
dictions of the theory.

We calculate the phase diagrams of three different 2D
systems with a 1D modulating potential (see Fig. 1) follow-
ing the technique of restricted Monte Carlo simulations
[6,11,23], to be discussed below. For the laser-induced tran-
sition we use this method to generate whole phase diagrams.
We reject Monte Carlo moves which tend to distort a unit
cell in a way that changes the local connectivity [11]. The
percentage of moves thus rejected is a measure of the dislo-
cation fugacity [11]. This, together with the elastic constants
of the dislocation free lattice obtained separately, are our
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FIG. 1. This cartoon shows a typical 2D system under consid-
eration. d is the length scale over which repulsive two-body poten-
tials are operative. The dashed lines indicate minima of external
modulating potential BV(y)=—BVycos(2my/dy). a,=ay is the lattice
parameter fixed by the density p and a, indicate the average sepa-
ration between two layers along the y direction perpendicular to a
set‘_of close-packed planes. For a perfect triangular lattice a,
=V3ay/2. The modulating potential is commensurate with the lat-
tice such that dy=a,.

inputs (bare values) to the renormalization flow equations
[35,36] to compute the melting points and hence the phase
diagram. Our results (Figs. 13, 16, and 17) clearly show a
modulated liquid (ML) — locked floating solid (LFS) — ML
reentrant transition with increase in the amplitude (V;) of the
potential. In general, we find the predictions of FNR theory
to be valid.

Last, we must mention that our technique, as summarized
above and used in this as well as earlier work [23], corre-
sponds closely with early studies of the melting of the elec-
tron solid by Morf [7,40]. In the latter case, the dislocation
fugacity, which is one of the important inputs to the KTHNY
flow equations, was obtained by a careful and direct calcu-
lation of the dislocation core energy at 7=0. Our approach is
somewhat cruder but gives us numbers for nonzero 7 which
automatically contain the effects of phonon fluctuations.

In Sec. IT we first briefly discuss the FNR theory and then
go on to show in detail the restricted simulation scheme used
by us to obtain the various quantities required to calculate
the phase diagram. In Sec. III we give the simulation results.
We describe, in detail, the various quantities leading to the
phase diagram for one of the systems, viz., the hard disks
[11,41]. Then we present the phase diagrams for the other
two systems we study. We compare our results with earlier
simulations. Last, in Sec. IV we summarize our main results
and conclude.

II. METHOD

A cartoon corresponding to the systems considered for our
study is given in Fig. 1. The elastic free energy of the solid is
given in terms of the spatial derivatives of the displacement
field u(r)=r-r, with 7, being the lattice vectors of the un-
distorted reference triangular lattice. For a solid in presence
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of a modulating potential BV(y) (Fig. 1) the displacement
mode uy, becomes massive, leaving massless ©, modes. After
integrating out the u, modes the free energy of the LFS may
be expressed in terms of gradients of u, and elastic moduli
[35,36], namely, the Young’s modulus K(8V,,p) and shear
modulus w(BVy,p),

Hy= | dxd {LK(’?”*‘)Z1 (Mﬂ (1)
“- Ty 2\ dx 2,u dy '

Similar arguments [35,36] show that among the three sets of
low-energy dislocations available in the 2D triangular lattice,
only those (type I) with Burgers vector parallel to the line of
potential minima survive at large BV,. Dislocations with
Burgers vector pointing along the other two possible close-
packed directions (type II) in the 2D triangular lattice have
larger energies because the surrounding atoms are forced to
ride the crests of the periodic potential [35,36]. Within this
set of assumptions, the system therefore shares the same
symmetries as the XY model. Indeed, a simple rescaling of
xX— \s“;x and y— yKy leads this free energy to the free en-
ergy_of the XY model with spin-wave stiffness K,,
=\Kual/4m* and spin angle 6=2mu,/ay:

1
H, = | dx dy(EKXy(V 0)2>.

This immediately leads to the identification of a vortex in XY
model ($d0=27) with a dislocation of Burgers vector b

=iay ($du,=ay, i=unit vector along x direction) parallel to
the potential minima, i.e., the dislocation of type I. The cor-
responding theory for phase transitions can then be recast as
a KT theory [1] and is described in the framework of a two-
parameter renormalization flow for the spin-wave stiffness
BK,,(1) and the fugacity of type I dislocations y’(I), where
is a measure of length scale as [=In(r/ay), r being the size of
the system. The flow equations are expressed in terms
of x’=(7ﬂ?xy—2) where I?xy=Bny and y'=4mexp(-BE,)
where E, is the core energy of type I dislocations which is
obtained from the dislocation probability [11,40]. Keeping
up to next to leading order terms in y’ the renormalization
group flow equations [6,42] are

dx’
— /22y
di yo
dy’ 5 .5
—— /+_ 2 2
TR A ()

Flows in [ generated by the above equations starting from
initial or “bare” values of x" and y’ fall in two categories. If,
as [—o0,y’ diverges, the thermodynamic phase is disordered
(i.e., ML), while on the other hand if y’ vanishes, it is an
ordered phase (a LFS) [35,36]. The two kinds of flows are
demarcated by the separatrix which marks the phase transi-
tion point. For the linearized equations, which keep only the
leading order terms in y’, the separatrix is simply the straight
line y'=x', whereas for the full nonlinear equations one
needs to calculate this numerically [6,11,42].
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The bare numbers for x” and y' are relatively insensitive
to system size since our Monte Carlo (MC) simulation does
not involve a diverging correlation length associated with a
phase transition. This is achieved as follows [6,11]. We
monitor individual random moves of the particles in a system
and look for distortions of the neighboring unit cells. If in
any of these unit cells the length of a next nearest neighbor
bond becomes smaller than the nearest neighbor bond, the
move is rejected. All such moves generate disclination quar-
tets and are shown in Fig. 2. Notice that each of these moves
break a nearest neighbor bond to build a new next nearest
neighbor bond, in the process generating two 7-5 disclination
pairs. These are the moves rejected in the restricted simula-
tion scheme we follow. The probabilities of such bond break-
ing moves are, however, computed by keeping track of the
number of such rejected moves. One has to keep track of all
the three possible distortions of the unit rhombus with mea-
sured probabilities P,,;, i=1, 2, 3 (see Fig. 2),

number of rejected bond breaking moves of type i
me total number of MC moves '
Each of these distortions involves four 7-5 disclinations, i.e.,
two possible dislocation-antidislocation pairs which, we as-
sume, occur mutually exclusively in a way that we explain
shortly. For a free (V,=0) two-dimensional system the dis-
location core energy E! can be found through the relation
[40]

I = exp(- B 2E)Z(K) 3)

where [T1=32 P, is the total number density of dislocation

pairs per particle and Z(K) is the “internal partition function”
incorporating all three types of degenerate orientations of
dislocations,

~ 277\6 T'min 2-Kldm K K
ZK)=—""|" Io\ o Jexp| =— /.
K/8m—1\ % 8 8

where [, is a modified Bessel function, K :,BKa% is a dimen-
sionless Young’s modulus renormalized over phonon modes,
ag being the lattice parameter and r,,;, is the separation be-
tween dislocation and antidislocation above which one

counts the pairs. The above expression for Z(K) and Eq. 3)
have been used previously in simulations [11,40] of phase
transitions of 2D systems in absence of any external potential
to find the dislocation core energy E'.

We now show how the probabilities for generating pairs
of specific types of dislocations P, for V,# 0 are related to
P,,;. Consider Fig. 2 where each of the three varieties of
bond breaking moves are depicted. It is clear that each given
distortion can occur due to the presence of two possible
dislocation-antidislocation pairs acting independently. For
example, a distortion of type A can take place either due to
dislocation dipoles with Burgers vectors making an angle of
60° with the horizontal or an angle of 120°. Both of these
dislocation dipoles are of type II. If this bond breaking move
were to be accepted, then at a subsequent time step the indi-
vidual dislocations making up any one of the two possible
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FIG. 2. This diagram depicts all the possible dislocation gener-
ating moves that we reject. Starting from the triangular lattice
shown in the center (the dotted lines show the potential minima), in
all, there can be three types of dislocation-pair generating moves
shown as A, B, and C. The numbers 7 and 5 denote the positions of
two types of disclinations having seven nearest neighbors and five
nearest neighbors, respectively. Only those bonds that, are neces-
sary to show distortions due to the generation of disclination quar-
tets have been drawn. The rhombi near each of the distorted lattices
denote the unit cells and open arrows from 7 — 5 show the direction
of dislocation-generating moves. The probabilities of these moves
are P, (A), P, (B), and P,,; (C). Corresponding Burgers vectors
(filled arrows) are bisectors pointing toward a direction rotated
counterclockwise starting from 7—35 directions and are parallel to
one of the lattice planes. Notice that the separation between Burgers
vectors of a pair along the glide direction (parallel to the Burgers
vectors) is a single lattice separation (ag) and within this construc-
tion it is impossible to draw a Burgers loop that can generate a
nonzero Burgers vector. Depending on which of the two possible
disclination pairs separates out any one dislocation-antidislocation
pair will be formed.

pairs could separate, the two possible events being mutually
exclusive. This allows us to write down the following rela-
tions among the various probabilities:

Py=Pp+Pp, Pup=Pp+Py, P,3=Pp+Py.
Solving for P,s and remembering that P =P, ; by symme-
tl‘y, we get Pd1=%(PmZ+Pm3_Pml) and Pd2=Pm1/2' The
above expressions are motivated and illustrated in Fig. 2.
Once the probability of dislocation pairs is obtained in this
fashion, we may proceed to calculate the dislocation core
energy E,. and the dislocation fugacity y’.

An argument following the lines of Fisher er al. [40]
shows that the dislocation probability (number density of
dislocation pair per particle) for our system,

Pdl = exp(_ ﬁ 2EC)Z(ixy)’ (4)

where 2E, is the core energy and Z(Iz'xy) is the internal par-
tition function of dislocation pairs of type I (single orienta-
tion):
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~ d*r ~ r
Z(K,,) = —exp| - 27K, In| —
’ r>r, Ac ’ ao

min

— 2_7T (rmin/aO)z_zWI}xy (5)
V3 ﬂ'lz'xy -1

with I?Xy=,8ny and A= \5'3(1(2)/ 2 being the area of a unit cell
in the undistorted lattice. We choose r,,;,=2a,. At this point
this choice is arbitrary. We give the detailed reasoning for
this choice at the end of the discussions on hard disks in Sec.
III. Equations (4) and (5) straightaway yield the required
core energy E,.. The corresponding fugacity contribution to
RG flow equations [Eq. (2)] is given via

y' = 477\/Pd1/Z(I?X),). (6)

In the above, the following assumption is, however, implicit.
Once a nearest neighbor bond breaks and a potential dislo-
cation pair is formed, they separate with probability 1 [43].
This assumption goes into the identity Eq. (4) as well as into
Eq. (3) [11]. Taking the rejection ratios due to bond breaking
as the dislocation probabilities, as well, requires this assump-
tion [44].

The same restricted Monte Carlo simulation can be used
to find the stress tensor and the elastic moduli from the
stress-strain curves. The dimensionless stress tensor for a
free (V,=0) system is given by [45]

&’ dd rijr’;,j
Bond?=- (-2 B ) + NSy, (7)
S <lj> (91"1 I’j

where i, are particle indices and A, v denote directions x,y;
&(r7) is the two-body interaction, and S/d? is the dimension-
less area of the simulation box [46].

III. RESULTS AND DISCUSSION

In this section we present the results from our simulations
for three different 2D systems, namely, hard disks, soft disks,
and a system of colloidal particles interacting via the DLVO
[47,48] potentials. We discuss, first, our calculation for a
two-dimensional system of hard disks, in detail. The proce-
dure followed in other systems is almost identical.

A. Hard disks

The bulk system of hard disks where particles i and j, in
2D, interact via the potential ¢(r7)=0 for r/>d and $(r)
= for r/<d, where d is the hard disk diameter and r¥
=|r/—r'| the relative separation of the particles, is known to
melt [11,41,49-51] from a high-density triangular lattice to
an isotropic liquid with a narrow intervening hexatic phase
[8,9,11,41]. The hard disk free energy is entirely entropic in
origin and the only thermodynamically relevant variable is
the number density p=N/V or the packing fraction 7
=(m/4)pd®. Simulations [41], and experimental [37] and the-
oretical [52] studies of hard disks show that for 7>0.715 the
system exists as a triangular lattice which transforms to a
liquid below 7=0.706. The small intervening region contains
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Py 31

FIG. 3. Number density of dislocation pairs of types I and II per
particle as a function of the amplitude of the laser potential 8V, In
this plot the & symbols correspond to P, the probability for type
I dislocations, and the X symbols to P, the probability for type II
dislocations obtained from the P,,; (see text and Fig. 2) for various
n values, arrow denoting the direction of increasing 7 (=0.69,
0.696,0.7029,0.71). The P, for i=1, 2 are multiplied by 10*
These probabilities are plotted against the potential strength BV,
Note that for BVy>1, the probability for type I dislocations is
larger than that of type II. The dots and solid lines are only guides
to the eye.

a hexatic phase predicted by the KTHNY theory [8,9] of 2D
melting. Apart from being easily accessible to theoretical
treatment [53], experimental systems with nearly “hard” in-
teractions, viz., sterically stabilized colloids [37], are avail-
able.

In the presence of a periodic external potential, the only
other energy scale present in the system is the relative poten-
tial [54] strength BV,. If the modulating potential is com-
mensurate with the spacing between close-packed lines, the
elastic free energy of this system in its solid phase follows
Eq. (1) and the corresponding renormalization flow equa-
tions are given by Eq. (2).

We obtain the bare y’ and x’ from Monte Carlo simula-
tions of 43X50=2150 hard disks and use them as initial
values for the numerical solution of Egs. (2). The Monte
Carlo simulations for hard disks is done in the usual [55]
way, viz., we perform individual random moves of hard disks
after checking for overlaps with neighbors. When a move is
about to be accepted, however, we look for the possibility of
bond breaking as described in the previous section (Fig. 2).
We reject any such move and the rejection ratios for specific
types of bond breaking moves give us the dislocation prob-
abilities of type I and II, separately (Fig. 3).

From Fig. 3 it is clear that the probability of type II dis-
locations, i.e., P, drops down to zero for all packing frac-
tions at higher potential strengths 8V,. The external potential
suppresses formation of this kind of dislocations. For small
BV, on the other hand, the probabilities of type I and type II
dislocations are roughly the same. This should be a cause of
concern since we neglect the contribution of type II disloca-
tions for all BV,. We comment on this issue later in this
section. Using Egs. (5) and (6) along with the identity r,,;,
=2aq, gives us the initial value y/ to be used in renormaliza-
tion flow Eq. (2).
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FIG. 4. P, as a function of MC steps. P, has been multiplied
by 10* and number of MC steps has been multiplied by 10~ for
clarity. The data have been collected for 7=0.7029 and BV,=1. (a)
is for system size of 2150 particles whereas (b) is for 21 488 par-
ticles. Within 10° MC steps all fluctuations die out. Clearly, the
dependence of the dislocation number density on the system sizes
and the Monte Carlo errors is negligible. To calculate dislocation
fugacity we use averaging of data between 5X 10° and 10° MC
steps.

Before we move on, we comment on the magnitude of the
errors for P,,; and hence for y;. There are two main sources
of errors for these quantities. They may arise from (a) finite
simulation times and (b) the small size of the system. In
order to check for this, we have plotted the accumulated
values for the probability P, as a function of Monte Carlo
step for 2150 and 21 488 hard disks (Fig. 4). It is clear that
our estimates for the probabilities are virtually error free!
This demonstrates clearly the usefulness of our restricted
Monte Carlo scheme. To obtain K, we need to calculate the
Young’s modulus K and shear modulus . In order to do that
consider Eq. (7), the expression for the stress tensor. For hard
disk potentials the derivative d¢p/dr’ becomes a Dirac &
function and the expression for stress can be recast into [45]

d .
Bond® =~ —<2 22507 - d) ) + Nﬁm) . (®)
S\ \ 17

The presence of the Dirac delta function &(rV-d) in the
above expression requires that the terms under the summa-
tion contribute, strictly, when two hard disks touch each
other, i.e., ¥/=r=0. In practice, we implement this, by add-
ing the terms under summation when each pair of hard disks
comes within a small separation r=0+06. We then find
Bo, 4% as function of & and fit the curve to a second-order
polynomial. Extrapolating to the 6—0 limit obtains the
value of a given component of stress tensor at each strain
value €, [45] (Figs. 5 and 6).

For completeness, now we show how we calculate the
two relevant elastic moduli from the stresses : o, at a given
longitudinal strain €, (Fig. 5) and o, for a shear strain €,
(Fig. 6). All the data points are from our MC simulations
averaged between 10 000 and 20 000 MC steps. Increasing
the number of configurations does not change the values sig-
nificantly. The total errors arising from the MC simulations
and the fit for a typical calculation of stresses is less than a
percent. We thus calculate the stress at each value of strain
and from the slopes of stress-strain curves find out the bare
Young’s modulus SKd*> (Fig. 7) and shear modulus Bud’
(Fig. 8). We impose an elongational strain in the x direction
which is parallel to the direction of potential minima to ob-
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FIG. 5. Plot of Bd’0,, vs &/d at a strain value €,=0.02 for
packing fraction 7=0.7029 and potential strength V,=1. A second-
order polynomial fit (solid line) utilizing the error bars to assign
weights to each data point gives lims_,oB8d’c,,=—6.21 with an error
within 0.08%.

tain BKd”. Imposition of a shear strain in the same direction
gives us Bud®. Any strain that forces the system to ride
potential hills will give rise to massive displacement modes
which do not contribute to elastic theory. Our results for the
stress strain curves for obtaining BKd” and Bud? are shown
in Figs. 6 and 8, respectively. Note that the errors for the
calculation of the elastic constants arise solely from the fit-
ting of the stress-strain curves. These can be made as small
as possible by increasing the number of strain values at
which the stresses are calculated. The values of the stress are
also free from any residual finite size effects which we
checked by simulating systems of sizes 10X 10 to 136

X 158. From these elastic moduli we get the “bare” Exy (and
hence x('):w[?xy—Z; see Sec. II). Our final estimates for the

bare I?xy are also correct to within 1%.
In Ref. [36] it is argued that the elastic constant SKd>
remains more or less independent of amplitude of the laser

1.4

13 1
12
> 19 }
> .
Nb 1%
=
an X g9l

0.8 1

071

0.6 : : : : :
002 004 006 008 0.1

o/d

FIG. 6. Plot of deaxy vs 6/d at strain value €,,=0.079 at the
packing fraction 7=0.7029 and potential strength V(jz 1. A second-
order polynomial fit (solid line) gives lims_,oBd*o,,=1.033 with an
error within 0.5%.
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FIG. 7. A typical stress-strain curve used to obtain the Young’s
modulus from a linear fit (solid line). The graph is plotted at 7
=0.7029, V,=1.0. The fitted Young’s modulus BKd>=54.5 with an
error within 2.9%. The error bars in stress are less than 0.2% and
much smaller than the point sizes plotted in this graph.

potential BV, while the shear modulus decreases linearly
with increasing BV, for large BV, In Figs. 9 and 10 we have
plotted the values of SKd* and Bud?, respectively, as a func-
tion of BV, It is apparent that the expectations of Ref. [36]
are borne out by our data. Incidentally, the behavior of BKd>
and Bud* with increasing BV, offers an intuitive interpreta-
tion of the RLIF transition which we offer below.

In Fig. 11 we have plotted x;, and y,, the bare values of x’
and y’ for various potential strengths V), at packing frac-
tion 7=0.7029 along with the separatrices for the linearized
and the nonlinear flow equations [Eq. (2)]. The line of initial
conditions is seen to cross the nonlinear separatrix twice
(signifying reentrant behavior) while crossing the corre-
sponding linearized separatrix only once at high potential
strengths. For small BV, the freezing transition is seen to be
driven mainly by the decrease of y’ (the dislocation density)
since BKd? and Bud? are virtually constant. For large 8V,
the shear modulus Bud? vanishes and this results in the sec-
ond point of intersection with the separatrix (remelting). The

1.5

*
\\
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Nb 0r A ]
=
e N
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-1.5

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

FIG. 8. A typical stress-strain curve used to obtain shear modu-
lus from a linear fit (solid line). The graph is plotted at 7=0.7029,
Vy=1.0. The fitted shear modulus Bud>=13.5 with an error within
0.9%. The error bars in stress are less than 0.5% and much smaller
than the point sizes plotted in this graph.
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FIG. 9. Young’s modulus 8Kd” as a function of inverse laser
potential (8V,)~!. Various symbols denote different densities: ¢
denotes 7=0.7029, A denotes 7=0.705, and [ denotes 7»=0.7. The
data for Figs. 9 and 10 were obtained from a separate run with a
slightly higher error than that in Figs. 7 and 8.

phase diagram (Fig. 12) is obtained by computing the points
at which the line of initial conditions cut the nonlinear sepa-
ratrix using a simple interpolation scheme. It is interesting to
note that within a linear theory the KT flow equations fail to
predict a RLIF transition. Performing the same calculation
for different packing fractions # we find out the whole phase
diagram of RLIF in the 7-8V, plane.

Small, residual numerical errors in x; and y; translate into
errors in the location of the phase transition points. These are
calculated as follows. The quantity BK,, varies linearly with
7 at all potential strengths. Therefore the numerical error in
7 is proportional to the error in BK,, (see Fig. 13). The error
in y, is neglected [56]. The final error estimates are shown
(as vertical error bars) in our results for the phase diagram of
hard disks in an external potential in Fig. 12.

Compared with previous computations [28,29] of the
phase diagram for this system (also shown in Fig. 12) we
find that, within error bars, our results agree at all values of #
and BV, with the results of Strepp et al. [29]. In numerical
details, they, however, disagree with the results of Das et al.
[28], though even these results show RLIF and are in quali-

T T - T T m 4 i m T
- Vi 3
14 - 3 '@E é gm 2 _
: =)
A m
12t : i
Bud? a2
10} P 4
2
&r E ]
AgE
o R ]
| " PR | 1 PREPIN ¢ + N | " Lol M|
0.01 0.1 1 10 100 1000
(BVy) ™

FIG. 10. Shear modulus Bud? as a function of inverse laser
potential (8V,)~'. Various symbols denote different densities: <
denotes 7=0.7029, ¢ denotes %=0.705, and OJ denotes 7=0.7.
The dotted line is a linear fit of the form Bud’>=a/BVy+b in the
large-BV, limit [36].
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FIG. 11. The initial values of x" and y’ obtained from the elastic
moduli and dislocation probability at 7=0.7029 plotted in the
x"-y" plane. The line connecting the points is a guide to the eye. The
arrow shows the direction of increase in BV, (=0.01,0.04,0.1,
0.4,1,4,10,40,100). The dotted line denotes the separatrix (y’
=x') incorporating only the leading order term in the KT flow equa-
tions. The solid curve is the separatrix when next to leading order
terms are included. In the /—c0 limit any initial value below the
separatrix flows to the y’'=0 line whereas that above the separatrix
flows to y’ — . The intersection points of the line of initial values
with the separatrix give the phase transition points. The plot shows
a freezing transition at SV,;=0.1 followed by a melting at BV,
=30.

tative agreement with ours. This validates both our method
and the quantitative predictions of Refs. [35,36].

The effect of higher-order terms in determining nonuni-
versal quantities has been pointed out earlier [6] for the pla-
nar rotor model but in the present case their inclusion ap-
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x *
067 | .
*
| ' L ! s | ' M| s PR ' A
0.01 01 1 10 100 1000
BV,

FIG. 12. The phase diagram of the hard disk system in the
presence of a 1D, commensurate, periodic potential in the packing
fraction (7)—potential strength (8V,)) plane. The points denoted by
[ correspond to our RG calculation using the techniques described
in this paper. The points denoted by < [29] and * [28] are taken
from earlier simulations. The vertical bars denote estimate of error.
Our data clearly match with Ref. [7]. The horizontal line at 7
=0.706 denotes the calculated asymptotic phase transition point at

IBVO:OC_
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FIG. 13. For the hard disk system I?Xyz BK,, varies linearly with
7. Data plotted at Vy=1. The solid line is a linear fit to the form

f(x)=a+bx with a=-7.37 and b=11.76. At each V) the error in I?Xy

determines the error in 7: 67/ 7]:\1+a/77b|(5lzxy/lzxy).

pears to be crucial. Nevertheless, we expect our procedure to
break down in the BV;—0 limit where effects due to the
crossover from a KT to a KTHNY [8,9] transition at BV,
=0 become significant. Indeed, as is evident from Fig. 3 for
BVy<1 the dislocation probabilities of both type I and type
II dislocations are similar [57] and the assumptions of FNR
theory and our process (which involves only type I disloca-
tions) need not be valid at small potential strengths. This fact
is also supported by Ref. [29] where it was shown that
though at BV,;=1000 the scaling of susceptibility and order
parameter cumulants gave good data collapse with values of
critical exponents close to FNR predictions, at 8V,=0.5, on
the other hand, ordinary critical scaling gave better data col-
lapse than the KT scaling form, perhaps due to the above
mentioned crossover effects. In the asymptotic limit of BV,
— the system freezes above 7=0.706 which was deter-
mined from a separate simulation in that limit. This number
is very close to the earlier value 7~ 0.71 quoted in Ref. [29].
As expected, the freezing density in the BVy— o limit is
lower than the value without the periodic potential, i.e., 7
=0.715.

Before we go on to discuss other systems, we discuss the
reasons behind the particular choice of r,,;, that we made
throughout this work. After a disclination quartet is formed,
they get separated out and the easy direction of separation is
the glide direction which is parallel to the Burgers vector. In
Fig. 14 we show four steps of separation of such a disloca-
tion pair of type L. It is clear that it is possible to give indi-
vidual identification to a dislocation only when the Burgers
vector separation within a pair is =2a, (Fig. 14), i.e., r;,
=2ay. For r=2a, Burgers loops can be drawn around each
5-7 disclination pair (Fig. 14) giving rise to a nonzero Bur-
gers vector. After motivating r,,;,=2a, we show, in Fig. 15,
the three sets of initial values corresponding to r,,;,
=agp,2ay,3a, along with the nonlinear separatrix at 7
=0.7029 of a hard disk system. It is clear from the figure that
I'min=0o predicts the system to be in the solid phase for any
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FIG. 14. (Color online) (a)—(d), which we have drawn using the
applet “voroglide” [58], show four steps of separation of a type I
dislocation pair, from a separation of ag to 4a,. The shaded regions
show the 5-7 disclination pairs constituting the dislocations. Bur-
gers circuits are shown in (a)—(c). Note that for separations =2a,
separate Burgers circuits around each disclination pair give rise to
nonzero Burgers vectors, giving the dislocations their individual
identity. This shows that the minimum meaningful separation be-
tween dislocation cores 7,,;,=2a.

arbitrarily small amount of external potential and to melt at
larger BV,. This behavior contradicts the physical expecta-
tion that the melting density at B8V,=0 has to be larger than
that at SVy=cc. On the other hand, while r,,,=3a, does not
produce any unphysical prediction, it shrinks the region of
reentrance in the BV, direction. It is therefore satisfying to
note that r,,;,=2a,, the minimum possible value for the sepa-
ration between members of a dislocation-antidislocation pair
which allows unambiguous identification also produces
physically meaningful results for the phase diagram, in clos-
est agreement with earlier simulation data.

It is possible to find out phase diagrams of any 2D system
in the presence of an external modulating potential commen-
surate with the density of the system in a similar fashion. We
illustrate this by calculating similar phase diagrams for two
other systems, viz., soft disks and the DLVO system.

B. Soft disks

Soft disks interact via the potential

¢(r)=—1

where r denotes the separation between particles. In simula-
tions, the cutoff distance is chosen to be r.=2 above which
the particles are assumed to be noninteracting. Apart from
the external potential strength BV, the relevant thermody-
namic quantity is the number density p=N/L,L,. To obtain
bare elastic moduli from restricted simulations the stress is
calculated using Eq. (7). As this expression does not involve
any Dirac & functions (unlike hard disks), we do not require
any fitting and extrapolation to obtain the stresses and the
errors are purely due to random statistical fluctuations in our
MC simulations. The elastic moduli are again found from
stress-strain curves like Figs. 7 and 8. The dislocation fugac-
ity of type I is calculated from the rejection ratio of
dislocation-generating moves. All these, at a given p value
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FIG. 15. Similar to Fig. 11. The initial conditions x;, and y, are
plotted as a function of BV,,. The different data sets are created for
different values of r,,;,. The symbols mean the following: ¢ denote
data for r,,;,=aq, O denote those for r,,;,,=2a,, and A denote data
for r,,;,=3a,. The dotted line denotes the nonlinear separatrix.

generate the initial conditions x, and y, in RG flow dia-
grams. Again, the crossing of these initial conditions with the
separatrix found from Eq. (2) gives the phase transition
points. The phase diagram is plotted and compared with the
phase diagram from earlier simulations [31,32] in Fig. 16.

The error bar in p is found from the error in K as 1?
varies hnearly with p, through the relation 5p/ p—|1
+al pb|(5
(a+bx) fit of the K, vs p curve, at any given BV,. The phase
diagram (Fig. 16) agam clearly shows reentrance (RLIF).

This is in qualitative agreement with earlier simulations
[31,32] (see Fig. 16).

) where a and b are obtained from a linear

C. DLVO

For charge-stabilized colloids the interparticle potential
that operates is approximately given by the DLVO potential
[47,48]:

Wy 3 2319 1
& ¢ 7

L 3 %% 4
@%§§ )

0.89 L L
0.1 1 10 100

9%

FIG. 16. Phase diagram for soft disks: [] denote our calculation,
¢ indicate earlier simulation data [31,32]. The vertical lines are the
error bars.
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FIG. 17. Phase diagram for particles interacting via the DLVO
potential. [J denote our calculation; & show the earlier simulation
data [30]. The vertical lines are the error bars. Error bars in our
calculation, being smaller than the symbol size, are not shown.

H(r) = (Z'e) (exp(O.Sxd)) exp(— kr)

" 4mepe,\ 1+0.5kd r

where r is the separation between two particles, d is the
diameter of the colloids, « is the inverse Debye screening
length, 7" is the amount of effective surface charge, and €, is
the dielectric constant of the water in which the colloids are
floating. In order to remain close to experimental situations
and to be able to compare our phase diagram with the simu-
lations of Strepp et al. [29] we use T=293.15K, d
=1.07 wm, Z"=7800, €,=78. In experiments, the dimension-
less inverse Debye screening length xa, can be varied either
by changing « through the change in counterion concentra-
tion or by changing a, by varying density [59]. In our re-
stricted MC simulations we vary « keeping the density fixed
at 0.18 um=2 by fixing the lattice parameter of the initial
configuration of an ideal triangular lattice at a
=2.52578 pm. Further, we use a cutoff radius 7. such that
¢(r>r.)=0 where r, is found from the condition B¢(r.)
=0.001. We find out phase transition points (in ka,) at dif-
ferent external potential strengths BV, in the same fashion as
described earlier. The phase diagram in the xka,— BV, plane is
shown in Fig. 17. To obtain error bars in this case we note

that Iz'xy varies linearly with «xa, and therefore the error in I?xy
is proportional to the error in ka, (Fig. 17) through the rela-

tion 8(ka,)/(ka,)=|1+albka(5K,,/K,,). The quantities a

and b are found from fitting I?xy to a linear form of kay, at
any given BV,

Though there is a quantitative mismatch between our data
and those of Strepp et al. [30], our data show a clear region
in ka, (between 15.1 and 15.2) where we obtain reentrance
(RLIF). This is in contrast to the simulated phase diagram of
Das et al. [28], where they observe absence of reentrance at
high field strengths. We do not plot their data as the param-
eters these authors used are not the same as the ones used in
Fig. 17.

It is interesting to note that, with increase in the range of
the two-body interaction potentials the depth of reentrance
(in 7,p, or ka,) decreases. This is again in agreement with
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the understanding that the reentrant melting comes about due
to decoupling of the 1D trapped layers of particles which
reduces the effective dimensionality, thereby increasing fluc-
tuations. With an increase in range of the interacting poten-
tials this decoupling gets more and more suppressed, thereby
reducing the region of reentrance.

One aspect of our study which stands out is the exception-
ally better agreement of our results with previous simulations
for hard disks as opposed to systems with soft potentials like
the soft disks and the DLVO. This could, in principle, be due
either (a) to the failure of the RG equations used by us or
some other assumptions in our calculations or (b) to
unaccounted-for finite size effects in earlier simulations.
While it is difficult to estimate the effect of (a) since RG
equations to higher orders in y are unknown at present, we
may be able to motivate an estimation for (b). In order to
explain the discrepancy in the positions of the phase bound-
aries, we need to go into some detail of how the phase dia-
grams were obtained in the earlier simulations. In these
simulations [29-32] the phase boundaries were obtained
from the crossing of the order parameter cumulants [38,39]
for various coarse graining sizes. The system sizes simulated
in these studies are the same (N=1024). However, the range
of interaction differs. To obtain an objective measure we de-
fine the range of the potentials ¢ as that at which the inter-
action potential ¢ is only 1% of its value at the lattice pa-
rameter. In units of lattice parameter, we obtain for soft disks
&=1.47 and for the DLVO potential £=1.29 at typical screen-
ing of ka,=15. By definition, for hard disks {=1. The par-
ticles within the range of the potential are highly correlated
and we calculate the number N,,,, of such independent bare
uncorrelated particles within the full system size. N,,,, takes
the values N,,,,=1024, 473.88, and 615.35 for hard disks,
soft disks, and the DLVO potential, respectively. Since the
effective system sizes are smaller for the soft potentials, fi-
nite size effects are expected to be larger. In this connection,
it is of interest to note that in the same publications [29-32]
a systematic finite size analysis showed that the phase dia-
grams shift toward higher (lower) density (k) for hard and
soft disks (DLVO). A look at Figs. 16 and 17 should con-
vince the reader that such a shift would actually make the
agreement with our results better. We emphasize here that
our present restricted simulations are virtually free of finite
size effects since the system does not undergo any phase
transition.

IV. CONCLUSION

We have presented a complete numerical renormalization
group scheme to calculate phase diagrams for 2D systems
under a commensurate modulating potential. We have used
FNR theory along with this scheme to calculate phase dia-
grams for three different systems, namely, the hard disks, the
DLVO potential, and the soft disks. In all the cases we have
found laser-induced freezing followed by a reentrant laser-
induced melting. We show that the reentrance behavior is
built into the bare quantities themselves. We find extremely
good agreement with earlier simulation results. In particular
the phase diagram for hard disk comes out to be exactly the
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same as found from one set of earlier simulations [29]. To
obtain the correct phase diagram, however, flow equations
need to be correct at least up to next to leading order terms in
the dislocation fugacity. Our results, especially for small po-
tential strengths, is particularly sensitive to these terms.
Crossover effects from the zero-potential KTHNY melting
transition are also substantial at small values of the potential.
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