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Confined colloidal bilayers under shear: Steady state and relaxation back to equilibrium
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Crystalline bilayers of charged colloidal suspensions which are confined between two parallel plates and
sheared via a relative motion of the two plates are studied by extensive Brownian dynamics computer simu-
lations. The charge-stabilized suspension is modeled by a Yukawa pair potential. The unsheared equilibrium
configuration is two crystalline layers with a nested quadratic in-plane structure. For increasing shear rates v,
we find the following steady states: First, up to a threshold of the shear rate, there is a static solid which is
elastically sheared. Above the threshold, there are two crystalline layers sliding on top of each other with a
registration procedure. Higher shear rates melt the crystalline bilayers and even higher shear rates lead to a
reentrant solid stratified in the shear direction. This qualitative scenario is similar to that found in previous bulk
simulations. We have then studied the relaxation of the sheared steady state back to equilibrium after an
instantaneous cessation of shear and found a nonmonotonic behavior of the typical relaxation time as a
function of the shear rate y. In particular, application of high shear rates accelerates the relaxation back to
equilibrium since shear-ordering facilitates the growth of the equilibrium crystal. This mechanism can be used
to grow defect-free colloidal crystals from strongly sheared suspensions. Our theoretical predictions can be

verified in real-space experiments of strongly confined charged suspensions.
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I. INTRODUCTION

A fundamental understanding of the different processes
governing the relaxation of metastable phases back to equi-
librium is critical for many basic questions in condensed
matter physics and material science. Also, relaxational pro-
cesses are omnipresent in industrial applications. Colloidal
suspensions represent excellent model systems where such
questions can be studied directly in real space as the length
scales are conveniently accessed experimentally, the (vari-
able) interactions can be described theoretically in a simple
way, and the microscopic processes are rather slow as com-
pared to molecular materials. This has been extensively ex-
ploited in previous studies of interaction-dependent equilib-
rium properties and dynamics [1-4]. One important example
for a nonequilibrium steady state is a sheared colloidal sus-
pension. It is known that application of shear may destroy
the underlying equilibrium crystalline structure of the un-
sheared suspension [5] and can also lead to a reentrance or-
dering for high shear rates [6]. After cessation of shear the
system will relax back to equilibrium from the sheared
steady state. The microscopic details of this relaxation pro-
cess are far from being resolved.

If an additional confinement between two parallel plates is
considered [7], various experiments [8—14] reveal a rich and
subtle influence of shear on the structure. Accordingly the
relaxation back to equilibrium after cessation of shear is a
fascinating but complex process which is a competition be-
tween wetting effects near the walls and bulk relaxation. In
experiments on strongly confined suspensions, for instance, a
complex pathway of the relaxation back to equilibrium was
obtained [15]: a bilayer bce crystal was shear-molten to re-
crystallize as a buckled single-layer triangular lattice which
subsequently underwent a martensitic transition back to the
equilibrium phase.
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Most of the theoretical studies on colloidal suspensions
have addressed the influence of linear shear flow on the bulk
structure via nonequilibrium Brownian dynamics (NEBD)
computer simulations [16] where hydrodynamic interactions
[17] are neglected and involve charged colloidal particles
modeled by a Yukawa pair interaction [18-27]. Shear-
induced melting of colloidal bulk crystals and subsequent
reentrant ordering at higher shear rates are confirmed by
simulation. More recent works addressing a wall acting on a
sheared suspension include a NEBD simulation in a channel
[28] and theoretical investigations for a single colloidal par-
ticle [29,30].

In the present paper we address the relaxation of shear-
induced structures after cessation of shear. We use the stan-
dard Yukawa model for confined systems and employ NEBD
simulations. Here we focus on the simple and transparent
situation of colloidal bilayers which are confined between
two parallel plates and sheared via a relative motion of the
two plates. The reasons to do so are threefold: First, the
equilibrium phase diagram for confined crystalline bilayers
interacting via a Yukawa pair potential is known from recent
lattice-sum techniques at low temperatures [31]. The phase
diagram is drastically influenced by the presence of the walls
and differs from its bulk limit. This phase diagram was re-
cently confirmed in experiments on charged suspensions
strongly confined between two glass plates [32]. Second, the
structure and the defects in a crystalline bilayer are easier to
classify than in a multilayer. Last but not least, there are
experimental studies for strongly confined situations which
are not completely understood and are a challenge for a the-
oretical treatment [15]. Recent simulation studies of Das and
co-workers [33,34] have addressed similar questions regard-
ing sliding bilayers. The model employed in the studies of
Das et al., however, is simpler than ours: it does not possess
a spatial dimension z perpendicular to the plates and hopping
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processes between the layers are ignored. Furthermore, the
relaxation back to equilibrium is not investigated in Refs.
[33,34].

In order to be specific, we chose the unsheared equilib-
rium configuration to be two crystalline layers with a nested
quadratic in-plane structure. This is the same starting con-
figuration as used in the experiments [15]. For increasing
shear rates 7, we find the following scenario of steady states:
first, there is a static solid which is elastically sheared until a
shear-rate threshold is reached. Then there are two crystalline
layers sliding on top of each other with a lock-in registration
procedure similar to that observed in recent experiments by
Palberg and Biehl [35,36]. Higher shear rates melt the crys-
talline bilayers and even higher shear rates lead to a reentrant
solid stratified in the shear direction. This qualitative sce-
nario is similar to that found in previous bulk simulations
[18,20,23]. The shear-induced ordering at high shear rates is
reminiscent of the transition towards lane formation in oppo-
sitely driven particles [37]. We have then studied the relax-
ation of the sheared steady state back to equilibrium after an
instantaneous cessation of shear and found a nonmonotonic
behavior of the typical relaxation time as a function of the
shear rate . In particular, application of high shear rates
accelerates the relaxation back to equilibrium via shear or-
dering in the steady state. This mechanism can be used to
grow defect-free colloidal crystals from strongly sheared sus-
pensions as was proposed by Clark and co-workers [38,39].
Our theoretical predictions can be verified in experiments of
confined charged suspensions [15,35,36].

The paper is organized as follows: In Sec. II, we introduce
the ground state model for crystalline bilayers. The nonequi-
librium Brownian dynamics simulation technique is ex-
plained in Sec. III. Results are presented in Sec. I'V. Finally
we conclude in Sec. V.

II. THE MODEL

In this part, we define our model. This is basically a gen-
eralization towards finite temperature of the ground state
model used in Ref. [31] concerning the equilibrium (i.e.,
without external applied shear flow) phase diagram of crys-
talline colloidal bilayers interacting via a Yukawa potential.
In detail, our system consists of two layers containing in total
N particles in the (x,y) plane. The total area density of the
two layers is p=N/A with A denoting the layer area in the
(x,y) plane. The distance D between the layers in the z di-
rection is prescribed by the external potential confining the
system. The particles are interacting via the Yukawa pair
potential

70 =7, 22 (1)

yuk

where r is the center-center separation. The inverse screening
length « which governs the range of the interaction is given
in terms of the micro-ion concentration by Debye-Hiickel
screening theory. The energy amplitude Vo
=7%exp(2kR)k/ e(1+kR)* scales with the square of the
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FIG. 1. (Color online) View in the (x,z) plane of the setup of the
colloidal bilayer confined between two walls.

charges Z of the particles of physical hard core radius R
reduced by the dielectric € permittivity of the solvent (e=1
for the dusty plasma). Typically, Z is of the order of
100—-100 000 elementary charges such that V/,,(r) at typical
interparticle distances can be much larger than the thermal
energy kgT at room temperature, justifying formally zero-
temperature calculations. Then the energy scale is set by V,
alone and phase transitions in large bilayer systems are com-
pletely determined by two dimensionless parameters, namely
the reduced layer density,

7= pD?2, (2)
and the reduced screening strength,
N=kD. (3)

For zero temperature, the stable state is solid but different
crystalline structures of the bilayers are conceivable. The re-
sult for the phase diagram in a (7,\)-map can be found in
Ref. [31]. Here, we explore the same model for finite tem-
perature by computer simulation.

II1. THE NONEQUILIBRIUM BROWNIAN DYNAMICS
COMPUTER SIMULATION

A. Simulation method

Here, we provide a detailed description of our Brownian
dynamics method that was used to investigate nonequilib-
rium sheared colloidal bilayers (at finite temperature). A
schematic setup of the system in the (x,z) plane is depicted
in Fig. 1. The integration scheme for our model system in the
presence of an external steady shear rate y reads

D
ri(t+ o) =11+ k—"TF,.(t) St+ W, + z,(D) Ste,.  (4)
B

Thereby r;(r)=[x,(¢),y,(t),z,(t)] is the position of the ith col-
loidal particle at time ¢ and D, denotes its free diffusion
constant. By imposing a linear velocity profile, the
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possibility of solvent shear-banding is excluded. All the con-
tributions to the equation of motion (4) are explained below.

Within a small time interval &, that particle moves under
the influence of the sum of conservative forces F,(z) stem-
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gLy gLy
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ming from (i) the pair interaction V/,, [see Eq. (1)] between
particle i and the neighboring ones and (ii) the repulsive
interaction with the (soft) wall(s) whose potential of interac-
tion, V,,;, is modeled as follows:

413 -
Y Dwall _ |Z|
2

D

2
LD =14

where

1

wall _ | |

(5)

1 10 4 1-1
a=- (—) —(—) =3.07002...
Zmin min

[with zmin=(5/2)1/6a'u minimizing V,,,; in Eq. (5)] so that
Vywai(01)= €. This (truncated and shifted) 10—4 Lennard-
Jones potential given by Eq. (5) assumes that we have thin
soft walls. Note that the use of a 9-3 Lennard-Jones poten-
tial corresponding to semi-infinite walls would not qualita-
tively change the results. Also the use of charged hard walls
would not affect our main results. To check this latter state-
ment, we have also considered charged walls leading to the
following external interaction potential,

Vii(z) = Wolcosh(kz) — 1],

W

(6)

where the amplitude W, is governed by the surface charge
density of the plates.

Furthermore, due to the presence of the solvent, the par-
ticles experience (i) a friction whose constant is given by
kgT/D, and (ii) random displacements, SW,. Those latter are
sampled from a Gaussian distribution with zero mean and
variance 2D 6t (for each Cartesian component). The last
term in Eq. (4) represents the applied shear in the x direction
and imposes an explicit linear flow field. The zero velocity
plane of the imposed shear lies at the midplane between the
plates.

B. Parameters

The colloidal particles are confined in a rectangular L
X LXD,,.; box where periodic boundary conditions are ap-
plied in the (x,y) directions. The system is made up of N
=800 particles (i.e., 400 particles per layer). The units are set
as follows: kzT=1/f sets the energy scale, the (typical aver-
age) interlayer separation D=D,,;—20;, (see also Fig. 1)
sets the length scale, and r=D?/D, sets the time scale. For
the screened Coulomb wall-particle interaction [see Eq. (6)]
we use SW,=30. For the Yukawa interparticle interaction

[see Eq. (1)] we choose BV,=6000, whereas for the wall-
particle interaction [see Eq. (5)] we choose Be; ;=1 and
0,,=0.1D. The time step was set to ot=1077. The reduced
colloidal particle density is set to p=ND?/2L*=0.24 (so that
L=40.82D) and the reduced screening is A=«D=2.5. Those
latter parameters lead to the staggered square phase in the
ground state (or at very low temperature) as can be seen on
the phase diagram from Ref. [31].

A time interval of 1.5 10° BD time steps (i.e., 1.57) was
sufficient to obtain the equilibrium (i.e., y=0) properties of
our model system. The corresponding in-plane (x,y) pair dis-
tribution function g(r) is shown in Fig. 2. It clearly shows a
high degree of ordering as characterized by the pronounced
peaks and the deep minima. The snapshot also provided in
Fig. 2 confirms the square lattice structure expected for those
parameters. Moreover, the structural properties are insensi-
tive to the kind of particle-wall potential [here Eq. (5) versus
Eq. (6)] as expected.

To quantify the layer extension in the z direction we have
also plotted the particle density n(z) that can be found in Fig.
3. The mean interlayer separation is then given by
2f OD wall2zp(2)L2dz~0.99D, so that (in practice) D corre-
sponds indeed to the interlayer separation. This latter result
was identically obtained by employing either Eq. (5) or (6).
In the forthcoming, where y# 0, we will only show results
for the LJ potential [Eq. (5)]. We have carefully checked that
the results are qualitatively the same as those obtained with
charged walls [Eq. (6)]. In particular, the general scenario for
increasing shear rates does not change.

IV. RESULTS
A. Effect of shear flow

Starting from the equilibrium configuration described in
the previous section, an external shear is applied during a
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FIG. 2. (Color online) Intralayer (x,y) pair distribution function
g(r=\x?>+y?) at equilibrium (=0). The solid and dashed lines cor-
respond to the use of Egs. (5) and (6) (for the wall-particle potential
of interaction), respectively. The inset shows a simulation snapshot
where the filled (open) circles represent particles belonging to the
upper (lower) layer.

period of 4X10% BD steps (i.e., 407). A steady state is
reached after typically 107, and subsequent measurements
are performed over a typical period of 207.

It is instructive to start our study by analyzing the micro-
structures reported in Fig. 4 corresponding to different 7y.
From a structural point of view one can (qualitatively) iden-
tify three regimes:

o At sufficiently low shear rates (here y=20/7 and 7y
=50/7), it can be seen that the crystalline structure (namely

12

FIG. 3. (Color online) Laterally averaged inhomogeneous par-
ticle density n(z) at equilibrium (y=0). The solid and dashed lines
correspond to the use of Egs. (5) and (6) (for the wall-particle
potential of interaction), respectively.
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square) as well as the degree of ordering are conserved com-
pared to the equilibrium situation (i.e., =0, see Fig. 2).
Consequently, we are in an elastic regime.

e For intermediate shear rates (here y=60/7 and 7y
=80/7), there is a (relatively) strong disorder and the struc-
ture can therefore be qualified as liquid. In other words we
have to deal with a shear induced melting.

* At high shear rates (here y=100/7 and y=200/7), the
system gets ordered again (especially for the highest shear
rate y=200/7) but exhibits a different (intralayer) crystalline
symmetry (namely a triangular lattice) than the equilibrium
one. Consequently, we have a reentrant behavior concerning
the intralayer-ordering upon shearing.

In order to obtain a more quantitative description of these
y-dependent structural properties, we have also computed
the (azimuthally averaged) interlayer- and intralayer-pair-
distribution functions g(r=+x?+y?) for different . The re-
sults are presented in Fig. 5.

The elastic behavior can be best understood by consider-
ing the interlayer and intralayer g(r). From Fig. 5, we see
that at weak shearing (here y=20/7), the intralayer crystal-
line structure as well as the interlayer-lattice-correlation re-
mains unchanged compared to the =0 case (the latter is not
reported in Fig. 5). At larger shear rate (here y=50/7) the
degree of interlayer-lattice-correlation gets weaker than that
of the intralayer one. A closer look at Fig. 5(a) reveals that,
for y=50/7, the first peak is (asymmetrically) split into two
neighboring peaks. This is the signature of a small relative
displacement of the two square layer lattices. Upon further
increasing the shear rate (now at y=60/7), the bilayer be-
comes a liquid, demonstrating that there is a critical shear
rate ¥, (below which an elastic behavior is recovered) whose
value is such that 50/ 7<<y,<60/T.

Above ¥, the intralayer g(r) exhibits a nontrivial behav-
ior with respect to ¥ [see Fig. 5(b)], in agreement with our
previous discussion on the microstructures depicted in Fig. 4.
More precisely, at intermediate 7 (here 60/ 7 and 80/7), the
intralayer layer structure corresponds to a liquid one. None-
theless and interestingly, at first neighbor separations, the
square structure locally persists, but in coexistence with a
triangular structure, as indicated by the broadened (splitted)
first peak. This feature can also be nicely visualized on the
snapshots from Fig. 4. At high shear rates (here 100/7 and
200/ 7), there is a strong short-ranged (re)ordering into a tri-
angular lattice as indicated by the shifted first pronounced
peak (especially for y=200/7). However, the degree of or-
dering reported for those highly sheared structures is not as
high as that observed below v,.

In order to quantify the degree of ordering in the x shear
direction, we have also investigated the (intralayer) one-
dimensional pair distribution function g(|x|). For the compu-
tation of g(Jx|) we consider pairs of particles (of a given
layer) that lie within a width Ay/D=0.25. The results are
shown in Fig. 5(c): Below 9, and for y=200/7 a crystalline
state is found, whereas for the intermediate values of y a
liquid one is reported. A special case is achieved for 7,,,,
=100/ 7 [thick solid line in Figs. 5(b) and 5(c)]: Here there is
liquid-like ordering in the shear flow direction [see Fig.
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(as indicated) where the filled (open) circles represent

To further quantify the behavior of highly sheared colloi-

dal bilayers and also to provide a dynamical information, we
are going to examine the (dimensionless) modified Linde-

mann parameter, I';(¢), that is defined as follows,
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FIG. 4. (Color online) Simulation snapshots for different values of the shear rate y
-ranged solid-like ordering in the radial g(r)

particles belonging to the upper (lower) layer.
like ordering in the vorticity direction. Hence, this structure

[see Fig. 5(b)]. This immediately implies that there is solid-
can be classified as a liquid crystalline columnar phase.

5(c)], but long
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FIG. 5. (Color online) (a) Interlayer (x,y) pair distribution func-
tion g(r=\x%+y?) for small values of 7 (as indicated in the legend).
(b) Intralayer (x,y) pair distribution function g(r=vx>+y?) and (c)
g(|x|) for different values of ¥ (as indicated in the legend). The
corresponding simulation snapshots are displayed in Fig. 4.

(u?(1))
2 9

()= D

™)

where (u%(f)) corresponds to the difference in the mean
square displacement of neighboring particles from their ini-
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FIG. 6. (Color online) Modified Lindemann parameter I';(z) for
different values of  (as reported in the legend).

tial sites ro=r(t=ty). More explicitly, (#*(¢)) can be written
as

N N,

1

(W*(n) = 1%72 17;;,% {[ri(1) = r(2)1 = [r,(0) = ;(10) ¥

(8)

where r;(t)=[x,(¢),y,(t)], {---) denotes an averaging over BD
steps and the index j stands for the N, nearest neighbors of
particle 7 lying in the same upper or lower layers. Typically,
for a (local) triangular lattice environment N,=6 while for a
rectangular one N,=4. Besides, we also average over several
reference times 7, to improve the statistics. Due to the finite
size of the simulation box, one is typically limited to obser-
vation times Af,,, of the order of At,,,=~ L/ V,,,.D=0.27 (by
taking here 7,,,,=200/7).

Our results are presented in Fig. 6. In the elastic regime
(small ), the Lindemann parameter I'(¢) exhibits a plateau at

50000 : :
O4t=20
shear 0t =350
48000 OYT=60
X yT=80
Afr=100
Q; 4600 V=200
-~
=
S 44000 | i relaxation ,
3]
42000

40000
0

FIG. 7. (Color online) Time evolution of the total potential en-
ergy of interaction E(¢): before, during, and after shear. The values
of 7, considered during the shear process, are reported in the
legend.
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FIG. 8. (Color online) Simulation snapshots of relaxed systems taken at /=807 for different values of the prior applied shear rates y (as

indicated).

“long” times, confirming the crystalline intralayer structure.
At higher 7y (i.e., ¥=60/7) the situation gets more compli-
cated. For 60/7< y<100/7, I';(¢) diverges, proving a liquid
behavior, in agreement with our static analysis of g(|x|) [see
Fig. 5(c)]. It is therefore only at very high shear rate (i.e.,
¥=200/7) that true intralayer crystalline reordering is re-
covered, as indicated by the existence of the plateau in I';(¢)
whose value is comparable to that obtained in the elastic
regime.

B. Relaxation after cessation of shear

We now investigate how the system gets back to equilib-
rium after cessation of shear. A suitable and simple way to

study a relaxation process is to monitor the evolution in time
of the total potential energy of interaction E(£)=V,;+ V.
In our simulations, the cessation of shear occurs at r=407.
Profiles of E(r) for different shear rates y applied prior re-
laxation are plotted in Fig. 7. The corresponding microstruc-
tures at long time r=807 for 60/ 7= y<200/7 are sketched
in Fig. 8. For low ¥ (here y=<50/7), the relaxation process is
very fast as it should be. Note that the equilibrium energy
value is not exactly recovered because of the existence of
some long-living defects.

The relaxation process gets qualitatively different for
more highly sheared systems (here 3=60/7). For the
samples that have undergone a shear-induced melting as de-

011405-7



R. MESSINA AND H. LOWEN

duced from our criterion based on I';(r) [see Fig. 6 with
v1=60,80,100], we remark that they all exhibit a similar
relaxation behavior [see Fig. 7 with y7=60,80,100]. In par-
ticular the relaxation is thereby much slower, partly due to
the existence of many long-living defects. Those latter also
explain the high energy reported in the long time scale. There
are several defects such as dislocations, (low angle) grain
boundaries (especially for y7=60, 80), and vacancies that are
easily identifiable in the snapshots of Fig. 8.

On the other hand, at large enough ¥ (here y=200/7), the
relaxation is faster as indicated by the faster earlier occur-
rence of an E(r) plateau (which is also deeper). Nonetheless,
the energy of this (nearly) relaxed system remains higher
than those that were weakly sheared (y<1y,). Again the ex-
istence of some vacancies (see Fig. 8 with y=200/7) in-
creases the energy system as well as the time of full relax-
ation.

By fitting E(r) with an exponential decay, we were
able to extract a typical relaxation time, 7, for the
early stage (40.5<t/7<60) of the relaxation process:
T/ 7=5.3(20.1),9.3(20.1),4.7(x0.1) ,4.3(x0.1)  for  y7
=60,80,100,200, respectively. Those data confirm at least
the general trend that very highly sheared samples having
strong ordering (prior cessation of shear) relax faster than
those moderately sheared having weak ordering.

V. CONCLUSIONS

To conclude we perform Brownian dynamics computer
simulations to study crystalline bilayers of charged colloidal
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suspensions which are confined between two parallel plates
and sheared via a relative motion of the two plates. For the
parameters under consideration, the unsheared equilibrium
configuration is two crystalline layers with a nested quadratic
in-plane structure. For increasing shear rates 7y, we find the
following steady states: first, there is a static solid which is
elastically sheared until a shear-rate threshold is reached.
Higher shear rates melt the crystalline bilayers and even
higher shear rates lead to a reentrant solid stratified in the
shear direction. We have then studied the relaxation of the
sheared steady state back to equilibrium after an instanta-
neous cessation of shear and found a nonmonotonic behavior
of the typical relaxation time as a function of the shear rate
7. In particular, application of (very) high shear rates accel-
erates the (post-)relaxation back to equilibrium since shear
ordering facilitates the growth of the equilibrium crystal. The
steady-state structure may be drastically altered by shearing
topographically structured walls (e.g., atomic structures,
roughness, chemical patterns, etc.). Hydrodynamic flow ef-
fects of the solvent are also expected to have significant in-
fluence at high shear rate. These questions will be addressed
in future work. We finally point out that similar effects might
be present in sheared granular sheets [40].
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