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We characterize the late-time scaling state of dry, coarsening, two-dimensional froths using a detailed
force-based dynamical model. We find that the slow evolution of bubbles leads to small and decreasing
deviations from 120� angles at threefold vertices in the froth, but with a side-number dependence that is
independent of time and apparently universal. We also find that a significant number of T1 side-switching
processes occur for macroscopic bubbles in the scaling state, though most bubble annihilations involve four-
sided bubbles at microscopic scales.
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I. INTRODUCTION

Froth systems have a distinctive, close-packed cellular
structure of bubbles that are bounded by smoothly curving
walls �films� that intersect in pointlike Plateau borders �ver-
tices�. Random soap froths continually coarsen due to gas
diffusion between individual bubbles �1�. Eventually, these
dynamic froths exhibit a characteristic length scale that
grows as a power law in time, L� t1/2, as well as a time-
independent “scaling” structure. This scaling state, or re-
gime, of froths is observed experimentally in both two-
dimensional �2D� �2� and three-dimensional �3D� froths �3�.
Our understanding of the scaling state of 2D soap froths is
largely built on the foundation of experimental �4,5� and
computational �6–10� studies of 2D froths in the dry-froth
limit with Plateau borders of vanishing size.

In the dry-froth limit, and under the approximation that
bubble-wall curvatures and intersection angles exactly sat-
isfy local force balance, individual bubble areas evolve with
von Neumann’s law,

dAn/dt = ��D�n − 6�/3, �1�

where An is the area of a bubble with n sides, � is the surface
tension of the films, and D is the coefficient of diffusion of
gas between adjacent bubbles �11�. This slow, continuous
evolution is supplemented with dynamical rules for fast, to-
pological rearrangements: both “T2n” processes of bubble
annihilation for n-sided bubbles, and “T1” side-swapping
processes between adjacent bubbles �see Fig. 1 below�.

Experimental studies of undrained two-dimensional froths
�2� exhibit systematic deviations of threefold vertex angles
from the force-balance angle of 2� /3 �2�. Conversely, ex-
periments done in the dry-froth limit have not shown mea-
surable angle deviations �4�. The angle deviations reported
for undrained froths have been previously explained by the
combination of film curvature and large Plateau borders �12�.
However, small angle deviations are required, even for dry
froths, in order to create a net force on vertices to allow them
to move against viscous drag and accommodate continuous

bubble growth. In this paper, we use a force-based model
�see Sec. II� that allows us to measure angle deviations. We
find small local angle deviations for dry froths that depend
on the side-number n in the same way as experimentally
observed angle deviations of undrained froths �2�.

Experimentally �13�, four-sided and five-sided bubbles
have been observed to annihilate directly through T24 and
T25 processes, without any intervening T1 processes, consis-
tent with theory �14�. However, previous numerical studies
�6–10,15� have not clearly distinguished between four-sided
and five-sided bubbles that directly annihilate at microscopic
scales and those that shed sides through T1 processes at mac-
roscopic scales before annihilating. There is a related contro-
versy over whether any T1 events occur for macroscopic
bubbles in the scaling regime �10,13�, or whether all late-
time T1 events are associated with microscopic side-
shedding during bubble annihilation �16,17�. To resolve this
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FIG. 1. Illustrations of the fast topological processes involved in
froth evolution. From top to bottom are a side-switching T1 event,
and three-, four-, and five-sided bubble deletions �T23, T24, and
T25, respectively�. From left to right are examples of the bubble
walls and vertex positions before, during, and after the correspond-
ing topological process. The details of resolution of T24 and T25

events will, in general, be determined by the forces acting along the
bubble walls, as described in Sec. II.
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controversy, we precisely distinguish macroscopic and mi-
croscopic topological events. In the scaling regime of our
model froth, we confirm the experimental observations of
direct annihilation of four-sided and five-sided bubbles at
microscopic scales. We also observe a significant rate of
macroscopic T1 events in the scaling state.

A standard measure of the topological structure in 2D
froths is the second moment of the side-distribution function,
�2��n2�− �n�2, where n is the number of walls of an indi-
vidual bubble. Detailed froth models have recovered �2 val-
ues ranging from 1.2–1.6 �7–10� with reports of sensitive
dependence of �2 on the details of T24 and T25 processes
�8,9�. The frequently quoted experimental value of �2
=1.4±0.1 comes from an undrained froth experiment �2�.
Measurements of �2 are bedeviled by long-lasting initial
transients. In this study, we find �2=1.24±0.01 and show
that the transient after the initial �2 peak can last a decade in
time. Our result is consistent with the late-time experimental
results of undrained froths �2�, and with previous numerical
work on a locally equilibrated dry froth �10�.

Computational model froths range from fast “topological”
models that retain only bubble adjacency information �see,
e.g., �8,15��, to “vertex” models that also include vertex po-
sitions but not bubble curvature �8,18�, to “detailed” froth
models that include vertex positions and uniform bubble cur-
vatures �6,7,9,10� or even nonuniform bubble curvatures
�19�. Each of these approaches trade off computational effi-
ciency against structural detail in order to study different
aspects of froths. However, detailed froth models are now
capable of precise studies of the late-time scaling regime of a
two-dimensional froth.

With a detailed force-resolved froth model �see Sec. II�
that includes vertex positions and uniform wall curvatures,
we precisely characterize the scaling state of two-
dimensional dry froths. Starting with up to 104 bubbles, we
reach the scaling state after long transients. In the scaling
regime, we determine the second-moment of the side-
number distribution �2 and the area growth-law amplitude
�A� / �tD�� �Sec. III A�. We also characterize the angle devia-
tions at bubble vertices, and find universal angle deviations
associated with slow bubble coarsening �Sec. III B�. Finally
we find a significant number of macroscopic T1 events oc-
curring in the scaling regime, and find that most bubbles
annihilate as four-sided bubbles through T24 events �Sec.
III C�.

II. DETAILED FORCE-BASED FROTH MODEL

We implement a detailed force-based froth model with
deterministic dynamics for both the slow evolution of bubble
areas and for fast topological rearrangements. Froth coarsen-
ing is driven by gas diffusion between bubbles with a rate
proportional to the diffusion constant, D, the full length of
the intervening film, and the pressure difference across the
film,

dN/dt = D	 �Pdl , �2�

where we impose an ideal gas relationship N= PA, where A
is the bubble area and P is the bubble pressure. For locally

equilibrated vertices and bubble walls, Eq. �2� exactly recov-
ers von Neumann’s law �11�.

In a physical froth, vertices between bubble walls are as-
sociated with finite Plateau borders and will require a net
applied force to be moved against viscous effects. Forces are
applied along the three films meeting at the vertex, each with
a constant magnitude equal to the surface tension � of the
film. A net force is applied, leading to vertex motion, if and
only if some of the angles between adjoining films differ
from 2� /3. The vertex speeds will thereby be

v� = ��

i

�̂ , �3�

where the �̂ are unit vectors tangent to the films meeting at a
vertex and � is the vertex mobility, which we take to be
constant.

While we assume that the internal relaxation of each
bubble wall to a constant curvature is rapid enough to be
ignored in the study of the scaling regime, for computational
efficiency we allow for each film curvature, 	, to dynami-
cally relax towards the local steady state by

d	/dt = 
��P − 	�� , �4�

where 
 is the curvature mobility �20� and �P is the pressure
difference between the two bubbles separated by the film.
For any 
�0 our model is effectively in the high curvature
mobility limit compared to the natural curvature dynamics
�20� and indeed we find that curvatures quickly approach the
equilibrated limit 	=�P /� in the scaling regime.

The essence of both T1 and T2 processes is the temporary
coalescence of two or more threefold vertices into an n-fold
vertex, followed by the dissolution of that n-fold vertex. This
all happens at microscopic length and time scales, deter-
mined in experimental systems by the Plateau border size.
Our approach implements this phenomenology, though we
choose computationally convenient microscopic lengthscales
and rely on the universality of dry-froth structure to those
scales. We enter into T1 topological processes when adjacent
vertices approach within a microscopic distance, rc, of each
other, and into T2 processes when a bubble area decreases
below 10rc

2. A finite rc allows us to use a fixed time step, �t
�10�. For a T1 process, we temporarily replace two partici-
pating threefold vertices with one fourfold vertex at the mid-
point, while, for T2n processes, we replace n threefold verti-
ces with one n-fold vertex at the centroid of the deleting
bubble. To resolve any n-fold vertex, we first determine the
two adjacent films whose combined force upon the vertex is
greatest, in the center-of-force frame. A short film of length
rc is placed between these two films and the other films of
the vertex, oriented with the combined force, giving an n
−1-fold vertex and a threefold vertex; this process is re-
peated until only threefold vertices remain. This approach
reproduces the natural instability of fourfold and fivefold
vertices �14�, and follows the lowest energy �highest force�
channel for resolving n-fold vertices. The entire topological
process is implemented between time steps. Our results are
not sensitive to rc, as long as it is much smaller than the
average bubble scale, or to the precise details of the place-
ment or resolution of the n-fold vertex at scales of rc.
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The continuous evolution of vertices, curvatures, and
bubble area is implemented with an Euler time discretization
with time step �t=0.01, supplemented with the dynamical
rules for topological processes. Except where otherwise
noted, we use �=1, �=1, 
=0.5, D=0.2, and rc=0.01. Our
systems are initialized with up to N0=104 bubbles with a
random but periodic Voronoi construction. To control for
finite-size effects, we have investigated different N0 while
keeping a fixed initial average bubble area and pressure, A0
=103 and P0=1, respectively. We average at least 50 inde-
pendent samples for N0=104, and displayed error bars are
statistical �21�.

It is useful to compare our model to two other detailed
froth models that have been studied in the scaling regime and
that include both vertex positions and bubble curvatures.

Chae and Tabor �9� impose curvature equilibrium, i.e.,

→�, but have taken a length-dependent vertex mobility
�
1/
li where li are the lengths of the films adjoining the
vertex �18�. At late times, as typical side lengths grow as
l� t1/2, they will have �� t−1/2. As discussed at the end of
this paper, we expect their low mobility to lead to constant
magnitude angle deviations in the scaling regime and to
therefore affect other aspects of the scaling structure. Chae
and Tabor allow all T2n processes, but impose various ad hoc
side-shedding rules for resolving T24 and T25 processes, and
find that �2 depends on which scheme is used �9�.

Herdtle and Aref �10� build their model around an exact
implementation of von Neumann’s law, Eq. �1�, and impose
locally equilibrated vertex angles and film curvatures. In
terms of our dynamics, they implement the � , 
→� limit in
Eqs. �3� and �4�, respectively. They only allow T23 bubble
deletions, and resolve shrinking four-sided and five-sided
bubbles very finely in time to catch all of the deterministic
T1 side shedding that occurs at microscopic scales �10�. We
believe that our force-based resolution of T1 and T2n events
is equivalent to that of Herdtle and Aref �10� since the same
film asymmetries that lead to side shedding at microscopic
scales in their model will lead to vertex shedding from n-fold
vertices in our model. While our finite vertex mobility does
lead to nonzero angle deviations, they are too small to affect
the structure in the scaling regime. We expect that our model
should recover the same scaling state of the froth as Herdtle
and Aref. However, their imposition of local equilibrium at
all stages of froth evolution requires computational time of
O�N1.3� to execute each time step �10�, where N is the num-
ber of bubbles, as opposed to O�N� for our force-based al-
gorithm. As a result, our algorithm allows larger froths to be
studied in the scaling regime.

III. RESULTS

A. Scaling state

Two-dimensional soap froths exhibit dynamic scaling at
late times. In the scaling state, the structural properties of the
froth are time independent once appropriately adjusted for
the shrinking number of bubbles N�t� or growing average
area per bubble A�t�. Topological structure such as the dis-
tribution function of the side number of individual bubbles

becomes time independent even without scaling. Correla-
tions in cellular systems, such as 2D froths, appear to be
universal due to the strong separation in length scales and
time scales between the continuous evolution of area and the
fast T1 and T2n processes. Dry 2D froth experiments at vari-
ous temperatures recover universal correlations �5�, as do
undrained experiments that vary the gas phase and hence
diffusivity, D �2�. Our results are consistent with the exis-
tence of a universal scaling state at late times, though we
have not systematically explored the parameter space of our
froth model.

From von Neumann’s law, we can directly see that �A�
� t �5�, and this is generally observed �11,17,22�. Since the
froth evolution is driven by von Neumann’s law �Eq. �1��,
the natural time variable is

t̃ � tD� , �5�

and includes both the diffusivity and the surface tension, but
not the curvature or vertex mobilities, 
 and �, respectively
�20�. As shown in Fig. 2, we recover the expected coarsening
law for t̃�104, after initial transients. We see finite-size ef-
fects enter for t̃�2�105 and for N0=104, roughly when the
number of remaining bubbles drop below 100. We fit �21� the
amplitude �A� / t̃=0.94±0.01 in Fig. 2, which we expect to be
universal.

We next measure the surface energy of the froth, E, nor-
malized by Ehex=N��2�3A0, the energy of a regular hexago-
nal froth with the same average bubble size, A0 �9,10�. Our
result �21�, E /Ehex=0.938±0.001 is shown in Fig. 3 and is
consistent with the best previous measurement �0.945±0.010
�10��, though with higher precision.

Simulations of dry froths �7–10,23� have given values of
the second moment of the distribution of the number of sides
in a bubble, �2��n2�− �n�2, that range between 1.2 and 1.6.
As shown in Fig. 4, we observe �21� a constant, asymptotic
value of �2=1.24±0.01. While broadly consistent with pre-

FIG. 2. The average bubble area of a coarsening froth, �A�, vs
the natural time variable, t̃� tD�. We see that linear growth is
obeyed at late times, with a best-fit �A�=0.94±0.01�t̃− t̃0� indicated
by a solid line �21�. The amplitude is expected to universally apply
to coarsening froths in their scaling state, with the effective time
origin t̃0 determined by initial conditions.
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vious values, we are closest to Herdtle and Aref �10�, who
found �2�1.2.

We expect that A / t̃, E /Ehex, and �2 are universal mea-
sures of the scaling state, and the asymptotic agreement of
these measures for two different values of D supports this.
However, both the initial froth configuration and the particu-
lar dynamical parameters of the model will affect initial tran-
sients. By varying D, we can simulate the effects of using
various gas-phase components, much as experimental studies
have used either helium or air in their froths �2�. For larger
D, we qualitatively reproduce a strong preasymptotic �2
peak in Fig. 4 that was seen experimentally �2�. The transient
regime after that �2 peak lasts approximately one decade in
time. In the best experimental determination of �2, the entire
experiment lasted only one decade after the �2 peak �2�, and
the latest time data also recovered �2�1.2.

B. Universal angle deviations

In a force-balanced steady state, the angles between the
three adjacent films that form a vertex will all be �0

�2� /3. Any deviations from �0 will result in a net force and
motion of the vertex against viscous drag, as described by
Eq. �3�. Since most bubbles in the froth are continuously
evolving in size, as approximately described by von Neu-
mann’s law, Eq. �1�, their vertices must be continuously
moving, necessitating nonzero angle deviations. We expect
internal angles typically greater than �0 for growing bubbles
�n�6� and internal angles less than �0 for shrinking bubbles
�n�6�.

In the scaling regime, the average bubble area grows as
�A�� t̃, with a characteristic length L���A���t̃ and vertex
speed v�dL /dt��Dt̃−1/2. Small angle deviations will, ac-
cording to Eq. �3�, be proportional to vertex speeds divided
by ��, so we expect �
�� 
 ��D�−1t̃−1/2, where ����−�0.
As shown in the inset of Fig. 5, we observe this time depen-
dence in the scaling regime. We also collapse the data for
different D by scaling with �D−1. Given this D dependence
of �
�� 
 �, the previously observed D independence of A / t̃,
E /Ehex, and �2 in the scaling regime indicate that the small
observed angle deviations do not affect the froth structure.
However, the scaled angle deviations can characterize the
structure.

Different size Plateau borders in dry experimental froths
will lead to different vertex mobilities, �, and will in turn
require different magnitude angle deviations for the same
vertex speeds. If we scale out that magnitude, we should be
left with universal angle deviations that reflect the universal
froth structure. Indeed, in our data we find that angle devia-
tions as a function of the number of bubble sides, scaled by
the value for n=5, are time independent in the scaling regime
for 3�n�10 �see Fig. 5�. Underlining this universality, the
experimental data from undrained froths �2�, indicated by
circles in the figure, are consistent with our results within
error bars.

Angle deviations have been previously explained as

FIG. 3. Film energy of a coarsening froth, E, equal to the sur-
face tension � times the total film length, normalized by the energy
of a uniform hexagonal froth Ehex�N��2�3A0, with the same
number of bubbles, N, and average bubble area, A0, plotted vs t̃
= tD�. The asymptotic value in the scaling state is E /Ehex

=0.938±0.001 �21� indicated by the horizontal line. The symbols
“�” and “+” indicate data from D=0.2 and D=1, respectively, both
with N0=104.

FIG. 4. The second moment of the side-number distribution, �2

vs t̃. We extract �21� an asymptotic value of �2=1.24±0.01, indi-
cated by a horizontal line. Significant transients are seen for the
larger D data �“+”�, including a distinctive preasymptotic peak. The
symbols “�” and “+” indicate data from D=0.2 and D=1, respec-
tively, both with N0=104.

FIG. 5. Average angle deviations of n-sided bubbles scaled by
the n=5 sided deviations, ���n� / 
���5�
, vs n. The data are for t̃
=27969 �triangles and squares� and t̃=158217 �“�” and “+”� for
D=0.2 and D=1, respectively. Also shown �circles� are the scaled
data from experimental undrained froths �2�, which illustrates the
universality of the scaled angle deviations. Inset: time dependence
of angle deviations of n=5 sided bubble vertices, 
���5�
, scaled by
�D−1 �see text� vs t̃� tD�. The solid line shows the expected t̃−1/2

behavior. All data are with N0=104.
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arising from hidden angles due to the finite size of Plateau
borders in combination with finite film curvatures �12�. How-
ever, our angle deviations are measured at the vertex center
and do not include any explicit effects due to Plateau border
size; they are independent of rc. We believe that angle devia-
tions measured experimentally are due to finite vertex mo-
bilities, rather than Plateau border size per se. This distinc-
tion could be examined experimentally by varying the
sample thickness, and hence effective vertex mobilities,
while keeping the Plateau border size fixed.

Topological events also contribute to locally substantial
angle deviations that are, however, subdominant in the scal-
ing regime. We can qualitatively understand these deviations
under the simplifying assumption that all angles equal �0
immediately before a topological event. As illustrated in Fig.
1, immediately after a T1 event, two of the six internal
angles of the two separating vertices are � /3 rather than
2� /3. Similarly, immediately after a T24 event two of the six
internal angles about two vertices are � /4, and immediately
after a T25 event, two of the nine internal angles around three
vertices are � /5. These large angle deviations will last until
a quasistatic configuration is reached by moving vertices a
distance on the order of the bubble size, L� t1/2. As shown in
the next subsection, the rate of topological events is propor-
tional to the rate of bubble annihilation, RT2�−dN /dt� t−2,
so the average angle deviation due to topological events is
expected to be only �
�� 
 �T� t−3/2, which is subdominant to
the effects of continuous bubble evolution.

C. Topological processes

It is known that three-, four-, and five-sided bubbles can
annihilate directly through T23, T24, and T25 processes, re-
spectively �14�; however, it has not been clear what the rela-
tive rates of these processes are. To complicate the matter,
while a three-sided bubble can only annihilate through a T23

process, a four- or five-sided bubble can shed sides through
T1 processes at macroscopic scales and then annihilate
through a T23 process. There have been qualitative reports
that there are few if any T1 processes that are not associated
with side shedding on the way to annihilation �13,17�, and,
indeed, simulations that only allow T23 processes that are
self-consistent and yield results comparable to other models
�10�. However, T24 and T25 processes have been reported
experimentally �13�.

What has been lacking is a clear definition of a T1 process
as distinct from a T2 process. A natural distinction is be-
tween macroscopic T1 processes and microscopic T2 pro-
cesses. T1 processes should be counted distinctly if they are
associated only with macroscopic bubbles. Any side shed-
ding that occurs at microscopic scales should simply be
counted as the details of the associated T2 process. We have
a natural microscopic scale that corresponds to the Plateau
border size, rc, while the average bubble size, L� t1/2, pro-
vides an appropriate macroscopic scale. The geometric mean
of these two lengths provides a natural division between mi-
croscopic and macroscopic, ���rcL�t�. At late times, � will
be far from both microscopic and macroscopic scales. We
count T1 events distinctly if all bubbles involved have areas
larger than �2, and count T2n events if the bubble has n sides
as it shrinks past the area �2. Scaling � by a constant factor
can significantly change the duration of initial transients, but
it should not change results in the scaling regime.

We have measured the proportion of bubbles which van-
ish with three, four, and five sides, through the T23, T24, and
T25 processes illustrated in Fig. 1. The proportions of these
processes have not been reported in the literature, despite
qualitative reports of T24 and T25 processes in undrained
froths �13�. As shown in Fig. 6, these proportions are con-
stant in the scaling regime, and have the values of 9±2%,
84±2%, and 7±2% for T23, T24, and T25 processes, respec-
tively. What is surprising is how few bubbles annihilate with
three sides. This is qualitatively consistent with how few
small three-sided bubbles are observed in froths in the scal-
ing state; it also indicates how important T24 and T25 pro-
cesses are in froth dynamics.

We have also measured the ratio of rates of macroscopic
T1 to bubble annihilation T2 processes, RT1 /RT2. This ratio

FIG. 6. The proportion of T23, T24, and T25 processes, for
three-sided, four-sided, and five-sided bubble annihilation, denoted
by triangles, squares, and pentagons, respectively, vs t̃. The filled
symbols are for D=0.2 while the open symbols are for D=1, both
with N0=104. The number of sides are counted as the bubble area
approaches microscopic scales, at ���rcL�t�. The proportions ap-
proach constant values of 9±2%, 84±2%, and 7±2%, respectively, for
D=0.2 �21�, indicated by horizontal lines. Significant transients are
apparent even at late times for D=1, though the trend is towards
agreement with D=0.2.

FIG. 7. The proportion RT1 /RT2 of macroscopic T1 events to
microscopic T2 events, where only side shedding involving bubbles
larger than ���rcL�t� are counted as T1 events. We find a ratio of
RT1 /RT2=0.53±0.05 in the scaling regime �21�, indicated by the
horizontal line. Very long transients are found for D=1 �“+”�, con-
sistent with the previous figure.
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has been measured in simulations by Herdtle and Aref �10�
to be 3/2, but they included microscopic side-shedding
events so their result provides an upper bound to ours. As
shown in Fig. 7, we find a ratio of RT1 /RT2�0.53±0.05.
This indicates that macroscopic T1 events are significant
even in late stages of froth coarsening.

IV. SUMMARY AND DISCUSSION

We have accurately characterized the scaling regime of a
two-dimensional dry froth with natural force-resolved topo-
logical processes. We find values of �2=1.24±0.01, �A� / t̃
=0.94±0.01, and E /Ehex=0.938±0.001, independent of the
gas diffusivity D. Our results for �2 and E /Ehex are consis-
tent with previously measured values �10� though consider-
ably more accurate, while our results for �A� / t̃ have not been
previously reported. These results are consistent with the hy-
pothesis of a universal scaling state in two-dimensional
froths, independent of the microscopic details of the model
as long as natural topological processes are used �9�.

We have shown that deviations from 2� /3 vertex angles
have a nonuniversal magnitude �
�� 
 �� t−1/2 that is a conse-
quence of the constant vertex mobility, �. When scaled by
the angle deviations for n=5 bubbles, the scaled angle de-
viations are time independent, independent of D, and agree
quantitatively with experiment in Ref. �2�, indicating their
universality. This universality of the scaled angle deviations
reflects the universality of the froth structure, as well as the
robustness of the topological processes to the small and con-
tinuously decreasing angle deviations that remain in the scal-
ing state.

The constant vertex mobility, �, in our model is phenom-
enological; it was not derived from an underlying micro-
scopic model of a froth. It leads to small and decreasing
angle deviations in the scaling regime that asymptotically do
not affect the scaling structure. Any detailed model with
equilibrated vertex angles �see, e.g., �6,7,9,10,19�� would
therefore be in the same dynamical universality class as our
model, in this respect. Indeed, any model with characteristic
forces that decay with time should be in the same “fast ver-
tex” universality class as our model, since small angle devia-
tions are proportional to the applied force. For example, the
work of Bretherton �24� implies that the actual drag force f
on vertices scales is f �v2/3� t−1/3, where the vertex speed
v� t−1/2, and so should lead to the same scaled angle devia-
tions as our model. In contrast, the phenomenological mobil-
ity from vertex models �see Refs. �8,18,9��, ��1/L� t−1/2,
leads to constant magnitude angle deviations in the scaling
regime since ��� f �v /�. Because constant magnitude
angle deviations will bias the resolution of T24 and T25 pro-
cesses, we expect nonuniversal structure �depending on the
mobility� for these vertex models in the scaling regime.

Angle deviations have not been observed experimentally
for dry froths �4�, presumably because the vertex mobilities
were so large in the dry froth limit that angle deviations were
below the experimental resolution. Scaled angle deviations
for undrained froths �2� agree with our results, supporting
fast-vertex universality. While the time dependence of angle
deviations was not reported �2�, a direct comparison would

be inappropriate without knowing the time dependence of
the vertex sizes and hence of the effective mobilities.

We have also characterized the topological processes oc-
curring in the scaling state. We make a clear distinction be-
tween T2 events occurring at microscopic scales, on the or-
der of rc and T1 events occurring at macroscopic scales on
the order of ��A�. We find that most annihilating bubbles
have four sides �84±2% � while relatively few have three
�9±2% � or five sides �7±2% �. We also characterize the ratio
of side switching T1 events to bubble-annihilating T2 events
and find a significant number of T1 events for macroscopic
bubbles in the scaling state, RT1 /RT2=0.53±0.05. This is a
significant result, since many topological froth models �e.g.,
�15�� neglect macroscopic T1 processes. This simplification
appears to be unjustified. We expect significant effects in the
scaling structure due to these T1 processes.

The precise agreement of our structural measurements
with the results of Herdtle and Aref �10�, indicates that our
natural force-based resolution of T2 processes is consistent
with their deterministic side shedding within T2 processes at
microscopic scales. Our model appears to be in the same
dynamical universality class as the model of Herdtle and
Aref �10�. Since our model is local, its computational cost is
O�N� where N is the number of bubbles in the froth, which is
significantly faster than their continuously equilibrated
model �O�N1.3�� �10� particularly for the large froths �N0

�104� needed to reach the scaling limit. Our force-based
detailed froth model is simple, versatile, fast, and accurate.

Our curvature mobilities are deliberately fast �20�, and we
have imposed uniformly curved bubble walls. These approxi-
mations were necessary for computational efficiency, and
common to previous computational studies of the scaling
regime �6–10�. We believe that we are in the same dynamical
universality class as coarsening experimental froths in the
scaling state.

To affect the scaling state structure of the froth, dynamical
features should significantly change either the asymptotic
von Neumann’s law or the resolution of topological pro-
cesses in the scaling state. This becomes a significant issue
for sheared froths �25� since T1 rates are constant under
steady shear rates rather than decaying in frequency as in a
coarsening froth. Following the argument of Sec. III B, we
expect nonzero shear rates to lead to constant angle devia-
tions in the steady state for any model with a finite vertex
mobility, where the magnitude of the angle deviations will
depend on the details of the vertex mobility. Since the effect
of angle deviations on froth structure will depend on their
magnitude, it will be important to get the vertex mobility
right for precise models of sheared froths. The same can be
said for bubble wall dynamics. Detailed “viscous froth”
models �e.g., �19��, which relax the assumption of constant
bubble wall curvature, may be necessary for the accurate
study of sheared froths. We believe that finite and physically
accurate vertex mobilities will also be needed for precise
studies of sheared froths, to account for finite angle devia-
tions in the steady state.
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