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Granular convection driven by shearing inertial forces
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Convection velocity measurements in vertically vibrated granular materials are presented. The convection
velocity close to the walls grows quadratically with the difference between the maximum and critical, or
excess, amplitude A, (proposed as a dynamic parameter to describe related problems) and it is shown numeri-
cally that the average bed-bottom relative velocity during the distancing between them, grows linearly with the
squared A, as well. This is interpreted as the signature of an inertial shearing force or momentum transfer
proportional to the bed-container relative velocity, acting mainly during the bed-plate distancing part of each
cycle which leads to the formation of the convective flux.
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I. INTRODUCTION

Vertical shaking in granular materials induces heaping
and large scale convective motion of the bed. Industrial pro-
cesses dealing with dry granular materials as in the case of
pharmaceuticals leads in many cases to granular segregation
that could be, for example, Brazil-nut-problem-like or Oya-
ma’s drumlike segregation [1]. In the best case, this phenom-
enon ends in a full lot of rejected pills, but in the worst,
could cause lethal overdoses or subdoses of the active prin-
ciple. On casting iron, very hard erosion and deformation of
polystyrene molds is produced during the compaction of the
sand bed due to the convective fluxes induced by the shaking
process, causing a hard economic impact in the automotive
industry. Convection may either cause or diminish segrega-
tion in vibrated systems in such a way that some processes
can be bothered or helped by it.

Nevertheless, granular convection has been studied using
particle image velocimetry [2], magnetic resonance imaging
[3], positron emission tracking [4], and high speed photog-
raphy methods [2,5], the underlying mechanism that
produces this instability has remained undeveloped. Several
hypotheses have been suggested to explain the onset of
convection going from granular temperature gradients [6],
friction with the walls and, density gradients up to shear
banding [7]. Moreover, simple models for granular convec-
tion based on probabilistic considerations [8] have been
put forward in order to explain the radial and axial velocity
profiles observed experimentally in cylindrical cells [9].
However, there is not a clear experimental proof for any of
the aforementioned driving mechanisms or how they are
related to heaping, which is produced and maintained by
convection itself [10]. Gallas and co-workers have shown,
using molecular dynamics simulations [10] that interparticle
shear as well as wall-particle shear forces can induce
convection or heaping if the wall-particle shear is turned on
or off, respectively. On their numerical experiments, they
found a resonance of the convection speed close to the walls
for a certain frequency and for three different exciting
amplitudes.
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A physical picture of the problem shared by some authors
[11-13] is focused on the shear stress exerted by the walls
during the ascension or distancing part of a single shaking
cycle. It is mainly in this part of the cycle when most of the
horizontal shear is relaxed, producing decompaction on the
outermost shell of the granulate [12], some authors focus on
this decompaction process and attribute the convecting or
streaming mode as driven by density or buoyant effects
[4,11,14]. Others [5] claim that the shock, or compaction
wave, induces the observed convection and suggest that the
kinetic energy at landing may be a more pertinent parameter
to describe the phenomenon.

Inertial forces are important to explain the ascension of a
large intruder within a column of small beads subjected to
vertical vibration, phenomenon known as the Brazil nut
problem (BNP) [15]. The report of a nonmonotonic behavior
of the intruder rise times as a function of density was re-
ported as early as 2001 [16] and was finally understood in
2004 [17] as an overlap of inertia and convective drag forces.
Nevertheless, friction has been suggested as the driving
mechanism behind the development of the convective flux in
their experiments, it has never been proved experimentally.
In this paper, we show that the average relative velocity be-
tween the bed and the plate during the distancing is the ap-
propriate dynamic parameter which measures the strain of
the granulate, per cycle, exerted by the inertial force of the
shear stress against the walls.

It will be fruitful to clarify a priori the two main different
vertical excitation regimes for a granular material being tap-
ping and continuous shaking. In the first, the system is ex-
cited by a single sinusoidal cycle followed by a stand-by
period during which the granulate is allowed to relax before
a second cycle starts. In the second, a continuous sinusoidal
excitation of frequency w is fed to the granulate and, if the
frequency is low enough, the bed shall have time to relax as
in the tapping regime. On the contrary, if the frequency is
high enough, the excitation will be exerted before the grains
have formed an isostatic net of stresses (relaxed bed) leading
to a dynamically loose packing or a fluidized bed. In other
words, there is a chain of stresses formation-time or
relaxation-time characteristics of each system which defines
a boundary between the solidlike and the fluidlike behavior
in granular materials. On one hand, we can use a classical
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FIG. 1. Schematic diagram of the experimental setup showing
the container mounted on top of a vibratory table and on a platform
which allows the air to flow through the bottom of the cell.
The reticule and lens are mounted on a table fixed to the laboratory.
A picture of the granulate as seen by the digital camera shows the
size of the grains in comparison with the scale at the right
(0.5 mm).

mechanics approach—as in the case of the BNP—but on the
other hand, hydrodynamic effects appear—as normal buoy-
ancy or sinkage in the reverse BNP [17]—and the natural
tool to use in this regime should be fluid mechanics. For very
large excitations, the motion of the particles is not correlated
anymore with the movement of the exciting element and we
have a granular gas where kinetic theory is more appropriate
to describe the collective behavior of our system.

II. EXPERIMENTAL SETUP

Our experimental setup consists of a cylindrical 17-cm-
high and 8-cm-diameter plexiglass cell with porous bottom,
placed on top of a vibratory table fed by a sinusoidal signal
from a Hewlett-Packard 33120A function generator. The cell
is filled up to 9 cm height with 2.2 mm (average diameter)
tapioca starch balls. This granular medium consists in sphe-
roidal (circularity of 0.83) polydisperse [coefficient of varia-
tion (CV)=0.45%] particles of 0.57 g/cc density and a res-
titution coefficient close to 0.20. A small percentage of these
“spheres” were dyed with permanent black ink to allow us to
track them by digitally recording the convective flux close to
the walls. To do this, a digital camera using a macro lens and
recording at 30 frames per second was placed on the vibrat-
ing plate and the videos were loaded for posterior analysis.
Care was taken in balancing the system in order to achieve
acceleration uniformity on the entire plate. The bottom of the
container was made porous by drilling a large number of
holes and fixing a mesh to avoid particles to escape. These
holes allow the air to easily penetrate from the lower part of
the container diminishing the pressure gradient that is
formed across the granulate when it is launched. In Fig. 1, a
schematic diagram of the experimental setup is shown.

In order to determine how the convective flux depends on
the shaking parameters—amplitude and frequency—the first
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was measured directly by mounting a laser diode on the
plate and projecting a reticle image of 0.32 mm interline
spacing fixed to a static table in the lab. It was projected at a
distance of about 5 m from the reticle in order to clearly
count the number of lines spanned by the laser during
the plate oscillation. On top of that, two small piezoelectric
devices were mounted on the plate. The first configured as
an accelerometer supported on a ring and with a ball bearing
attached to it and the second glued on the bottom of the
cell to probe the instantaneous load exerted by the granulate.
This last piezoelectric element allows us to measure real
times of flight starting not at the time the acceleration
reaches g but at the time when the granulate loses contact
with the container’s bottom, once the static frictional force
exerted by the granulate on the walls has been surpassed. We
have tested this piezoelectric element without any granular
load and no appreciable signal is obtained, this means that it
actually is not working as an accelerometer in the absence of
load.

III. RESULTS AND DISCUSSION

Let us consider a bed of granular material within a
container under harmonic vertical vibration in which the
container’s position described from the laboratory’s frame
of reference is given by zy=A sin wt then, the instantaneous
velocity and acceleration are Zy=—Awcoswt and
Zy=—Aw? sin wt, respectively. For our purpose, it will be use-
ful to determine the position, velocity, and acceleration of a
material point as it is seen from the frame of reference of the
oscillating plate for times after which the granulate lifts
off from the plate. First let us define the critical amplitude,
A.=g/w?, as the amplitude corresponding to the maximum
acceleration of the plate equals g. For a fixed frequency and
just above A, a particle placed on top of the plate will start
to lose contact with it in each cycle, while below this critical
value, the particle will remain in contact and no relative mo-
tion nor convection can occur. Then, for an arbitrary ampli-
tude A, we will call the excess amplitude, A,, to the differ-
ence A,=A—A.. Another important quantity to determine is
the time, 7,,, at which particles take off from the container’s
bottom (or take-off time). Thus, ¢, is obtained solving
g=-A ®? sin ot for ¢, that is, when the net acceleration on the
granulate is zero, giving

1 1 A.
t, = —arcsin(%) = —arcsin(j) ) (1)

w Aw w

Our experiments were performed in a frequency range
from 5 to 15 Hz in order to keep our observations within a
nonfluidized regime and for amplitudes going from the criti-
cal amplitude A, up to amplitudes just below the amplitude
at which bifurcation or period doubling starts to appear in
each case. All the measurements were performed at a 5 cm
depth (about the middle height of the granulate), and we
waited for a couple of minutes before starting to measure
allowing the convective flux to reach a stationary state. Ten
independent measurements of the time it takes for a tracer to
travel a fixed distance, or the convection velocity close to the
wall (v,.), were performed for each given condition of ampli-
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FIG. 2. Convection velocities as a function of the oscillation
amplitude for six different frequencies. The inset shows the oscil-
loscope voltage signal from the inner piezo element. Two different
times of flight are evident.

tude and frequency and excellent reproducibility was
achieved. The results for the dependence of the convection
velocity as a function of amplitude, for six different frequen-
cies, are shown in Fig. 2. There the dependence of the con-
vection onset on the frequency and a rapid increase of the
convection velocity with the amplitude for a given frequency
can be seen. It is worth noting that each curve starts at a
different amplitude corresponding to its critical amplitude
and they have different heights as well, this last point is due
to the fact that we have omitted data at those amplitudes at
which period doubling starts. The inset of Fig. 2 shows a
typical signal from the piezo element placed at the bottom of
the container for an amplitude well beyond the bifurcation.
From the oscilloscope signal, the double period as well as the
contrasting magnitude of the impacts at the end of short and
long flights, respectively, are quite notorious. In order to per-
form a quadratic fit for each curve, first we have determined
experimentally the critical amplitude of observing the ap-
pearance of a plateau on the bottom’s piezo signal. Measure-
ments of this critical amplitude with the naked ear registering
the instant at which the system starts to make noise do not
differ significantly from those made with the piezo element.
These measurements are in agreement with the expected
1/w* dependence as can be seen in Fig. 3, in which
the measured critical amplitude (squares) is shown. The
circles represent extrapolations of the convection velocity
quadratic fits to the point at which v, vanishes. The continu-
ous line was obtained using an a/w’ function to fit the ex-
perimental data, with « as a free parameter which depends
on the static friction against the walls and the air pressure
gradient. The influence of this last factors can be verified by
comparing the continuous line with the dotted-dashed one
(representing g/w?). It can be appreciated that the measured
critical amplitude is larger than that of the ideal case in
which opposition from frictional or dragging forces are not
present.
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FIG. 3. Critical amplitudes as a function of frequency measured
(squares) and extrapolated from the fitting procedure applied to the
convection velocity curves shown in Fig. 2 (circles). The continu-
ous line is a fit to the measured data showing the 1/w” dependence,
and the dotted-dashed line represents the ideal g/w? behavior.

Plotting the convection velocities against the squared ex-
cess amplitude, one gets a set of lines irradiated from the
origin as can be seen in Fig. 4. In this figure, we show the
parabolic dependence on the excess amplitude from which
one could guess that the squared takeoff velocity or the ki-
netic energy of the granulate at takeoff causes the develop-
ment of the convective flux. This ansatz for the dependence
of convection velocity on the excess amplitude comes from
the fact that the takeoff velocity is proportional to the maxi-
mum velocity acquired by the oscillating table which is A
times w, and thus, the kinetic energy should scale with the
squared amplitude. However, as we shall see, the dynamic
quantity associated to the convective motion is the relative
momentum between the bed and the container’s walls, and
not the kinetic energy of the bed measured from the labora-
tory’s frame of reference, as one could naively guess at first
glance. In order to establish the excess amplitude A, as a
dynamic parameter, we should write down the position, ve-
locity, kinetic energy, and acceleration of the granulate rela-
tive to the vibrating plate and find out how A, is related to
these quantities.

From the frame of reference of the moving plate, the
granulate acquires an increasing momentum relative to the
container as the bed starts to lift up from the container’s
bottom. This is the onset of the distancing part of the shaking
cycle. Once the granulate has reached its maximum distance
from the bottom, the approaching part of the cycle begins.
The shear stress is usually defined as a momentum transfer
from one layer of a fluid to the layers in its vicinity. In our
case, a momentum transfer from the wall to the bed takes
place due to the relative motion between them and thus, the
same definition applies. In other words, the container’s walls
exert a shear on the outermost cylindrical shell of the bed.
The momentum associated to this shear is progressively
transmitted to more inner shells creating a radial gradient of
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FIG. 4. Convection velocities as a function of
A?. Inset: Slopes of each straight line in the main
figure plotted as a function of frequency.
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distancing speeds. This is valid on both parts of the cycle,
but during the distancing part, the packing is still quite com-
pressed, exerting a strong pressure on the walls and allowing
a more efficient momentum transfer or stronger shear. On the
other hand, during the approaching part of the cycle, the
packing is much looser (it has suffered decompaction by
Reynolds dilatancy), and the shear friction is much less effi-
cient, giving rise to a symmetry breakdown between both
parts of the cycle. This leads to a net drag of the particles
close to the walls in the direction in which they move (rela-
tive to the bed) during the distancing period and, conse-
quently, to a net global convective flux. Experiments and
simulations supporting this point of view were performed by
Duran and co-workers [18], who studied the decompaction
of a two-dimensional (2D) model granular system falling in a
gravitational field. In their experiments, a 2D ordered col-
umn of discs is allowed to fall and the dynamics of the de-
compaction process is followed by high speed photography
methods. There, one can clearly see, that as the granulate is
more decompacted, its acceleration is closer to g. Moreover,
for short times, the pressure exerted on the walls first grows
for over an order of magnitude at positions where the den-
sity, or compaction, is large enough to allow the formation of
arches (or contact chains) that span the container’s width.
For even longer falling times, the granulate is already too
dilute near the walls, such that contact chains are not longer
probable and thus, the pressure relaxes as it does the fric-
tional shear efficiency. In our case, essentially the same phe-
nomenology should occur despite the fact that the bed-
bottom relative velocity changes its sign during the flight.
For short times (the distancing part), the momentum transfer
is more efficient, whereas, for larger times (the approaching
part of the cycle), the bed is already too dilated so that the
shear efficiency drops down giving rise to the nonsymmetri-
cal shearing described above.

Following this description, the most relevant quantity is
the average relative distancing velocity (v, (not the kinetic

energy), which is a measure of the relative momentum,
since the larger part of the momentum transfer takes place
during this part of the cycle. It could be expected that
the transferred momentum from the walls to the packing
should be proportional to the relative momentum itself. To
calculate (v,), we first need to determine the time at which
maximum distancing between the plate and the granulate is
achieved.

Applying a Galileo transformation to z and 7 for times
larger than ¢,,, we obtain the required relative position and
velocity of the granulate with respect to the oscillating
plate

A 2
z’:—Asinwt—%(t—tm)2+AC+Aw 1—(;“) (t—1,,),

()

a2
z":Ale—(j) -g(t-t,)—Awcos(wr).  (3)

To find the ascension or distancing time (z;), we need to
find the maximum of the relative position [Eq. (2)]. Equating
to zero, Eq. (3) and solving for #, gives a transcendental
equation that can be solved numerically. In order to get the
average relative distancing velocity (v,), we have to inte-
grate Eq. (3) with respect to time between the lower limit 7,
and the upper limit 7, (the time at which maximal separation
is reached).

We have performed numerical evaluations of (v,) for the
whole set of frequencies and amplitudes used in our experi-
mental observations. The results are shown in Fig. 5, where
the (v,) data are plotted as a function of the squared excess
amplitude Ag for five different frequencies. The most striking
feature in all cases is the linear growth of (v,) with A2, which
resembles the behavior of the convection velocity v,. itself.
This could be interpreted as a signature of the underlying
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mechanism that produces the convective streaming mode,
which may be a shear proportional to the relative velocity
between the granulate and walls during the distancing part of
the cycle, as argued in the above discussion. In fact, in mo-
lecular dynamics simulations, it has been found that the
shear stress is a monotonically increasing function of the
moving wall velocity [19]—as can be expected—since the
moving wall is transferring a momentum that should be pro-
portional to its own speed. This study refers to continuous
shearing under gravity but, due to the peculiar geometry in-
volved in our experiment, it is hard to find rheological data
more closely related to our own configuration in which the
net of stresses in the bed is relaxed during the period of
flight.

A second important issue is shown in Fig. 5(f) in which
the slope of the previous graphics has been plotted as a func-
tion of frequency, where an exponential growth is shown by
the continuous line fitted to the numerical data. For our ex-
perimental data, this has been done in the inset of Fig. 4,
where the line, drawn just as a guide to the eye, shows a peak
at 14 Hz. The fact that the frequency dependence found ex-
perimentally differs from the predicted by numerical explo-
rations can be explained as a spontaneous symmetry break-
ing on the velocity field profile with frequency due to
different normal modes of the whole vibrating system ex-
cited at different frequencies. In other words, the central
heap that emerges as the convection starts moves toward the
walls at increasing frequency making the local flux at the
exploration region to decrease or increase depending on the
net distance to the ascending flux axis in a complex way.
This precludes the observation of the numerically predicted
dependence on frequency, but does not affect the scaling
with the excess amplitude, which in turn, is a clear signature

of a shear proportional to the mean velocity of the wall
which exerts it. We should stress out that in molecular dy-
namics simulations, resonances as the one described above
have been reported [10].

The Froude number or the dimensionless acceleration I,
given as the maximum acceleration of the system divided by
g, is extensively used to describe the behavior of granular
materials under vertical shaking. However there is some con-
troversy on the pertinence of this parameter [20], and several
other parameters (as, for example, A) have been proposed
[5,21] in order to get a more physical insight into the system
dynamics. As a matter of fact, the amplitude of the exciting
movement gives a measurement of the initial velocity at
which the granulate is thrown upward during a cycle with
respect to the laboratory frame of reference, but is not appro-
priate to describe the shear force that leads to convection.
Instead, we propose the excess amplitude, which is propor-
tional to the average distancing velocity, as the dynamic pa-
rameter that should be used in experiments and simulations
on the granular convection problem. In other words, I' is a
parameter related just to the plate but does not describe any
of the relative dynamic quantities associated with the granu-
late’s motion relative to the oscillating plate. Furthermore,
the dimensionless character of I' can be extended and the
ratio of the excess amplitude to the critical amplitude (I’
—1) is proposed as a parameter proportional to the square
root of (v,) and in turn to the net shear exerted on the granu-
late during an entire cycle.

Summarizing, we have shown that the average bed-plate
distancing velocity scales with the squared excess amplitude
as it does the convection speed close to the walls. This is
strong evidence in favor of the hypothesis that shear drives
convection through a momentum transfer from the walls to
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the granulate which is proportional to the relative momentum
between them. The shear stress exerted by the walls during
the distancing part of the shaking cycle, produces an irrevers-
ible strain on the granulate that cannot be counterbalanced
during the approaching period, due to the inherent hysteretic
nature of dilatancy, leading to convection.
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