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The statistical geometry of hard-sphere mixtures, as defined by Speedy and Reiss, is found to lead to a sum
rule that is identical in form to the fundamental equation of the generalized ensemble. This leads one to
conjecture the specific form of a set of thermodynamic fields entirely defined by ensemble averages of geo-
metric properties of the configurations. The potential for a direct physical understanding of these quantities is
discussed and it is noted that they could, therefore, be of crucial significance to our future understanding of
colloidal physics. In the presence of an ideal wall, an analogous sum rule is obtained in terms of interfacial
geometric properties �the available surface area for insertions at the wall�. For this case, which generalizes
beyond hard-sphere models, there exists an obvious physical interpretation involving complete wetting at the
ideal wall.
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Colloidal science is a large area that includes significant
interest in nanoscience, biophysics, and fluid interfacial phe-
nomena. The aspect of this science which one might define
as “colloidal physics” is focused on the phase behavior of
model colloidal systems. Solvated mixtures of hard spheres
have played a key role in the definition of physical phenom-
ena such as the phase behavior of polydisperse systems, and
the depletion interaction of solvated colloidal particles �both
with each other and with bounding surfaces�. The seminal
model is the hard-sphere fluid, for which there are strong
arguments implying that it undergoes a first-order transition
from liquid to solid at a particular density, for purely geo-
metric reasons �“free volume”�.

The first step towards an understanding of the phase be-
havior is to identify the thermodynamic fields appropriate to
the model. A thermodynamic field is an intensive property
that is always identical amongst different phases that are in
statistical-mechanical equilibrium; temperature T, pressure p,
and chemical potentials �� are the standard thermodynamic
fields of bulk matter. A thermodynamic field must remain
fixed throughout a region of phase coexistence belonging to
a first-order phase transition. For each field, there is an asso-
ciated extensive variable �energy, volume, and particle num-
ber� and the different ensembles of statistical mechanics are
distinguished by the different choices of fields versus exten-
sive variables that are deemed to be fixed. The ensemble of
preference for describing a macroscopic subsystem of a com-
plex fluid, such as an interfacial region, is the grand en-
semble, where the subvolume is the only specified extensive
variable. The remaining specified variables, are therefore, a
set of independent thermodynamic fields; their independence
in the grand ensemble being equivalent to the Gibbs phase
rule. However, as proposed by Guggenheim �1� and dis-
cussed in detail by Hill �2�, one can go further and define a
generalized ensemble, whose free energy is specified in
terms of an overdetermined set of thermodynamic fields
alone. For a single-component system, the free-energy of the
generalized ensemble is treated as a function of T , p ,�, and
no extensive variable. Hill regards the generalized ensemble
as the prototype of all others, the subsystem in thermal, me-
chanical, and chemical equilibrium. Its use is limited by

problems arising from the specification of one more thermo-
dynamic field than is allowed by the Gibbs phase rule. In
particular, it would appear that one must first identify the
fundamental equation of the generalized ensemble, express-
ing the relationship between the thermodynamic fields im-
plied by the Gibbs phase rule, before one can then extract the
average extensive properties from sum rules �2�.

Founding the subject of “statistical geometry,” Speedy �3�
and Reiss �4� have given geometric interpretations of the
thermodynamic fields of the hard-sphere model; as was ap-
parently understood by Boltzmann �5�. This model has effec-
tively one less thermodynamic field than general, with the
temperature appearing only as a factor ��1/kBT �kB denotes
Boltzmann’s constant� of the relevant fields �p, ��. The
extension of statistical geometry to hard-sphere mixtures has
been discussed by Corti and Bowles �6,7�. With reference to
Fig. 1, interpreted for three-dimensional space D=3, let us
define the geometric quantity

�� � �6Vo
� + ��So

��/6V , �1�

where V is the system volume and �� is the diameter of the
spheres of component �. The probability of insertion of a test
sphere of component �, namely Vo

� /V, defines the chemical
potential of this component through Widom’s potential dis-
tribution theorem �8� or its even earlier appearance in scaled-
particle-theory �9�:

����
3e−��� =

Vo
�

V
, �2�

where �� and �� are the number density and thermal de-
Broglie wavelength of component �, respectively. This inser-
tion probability must also be the Boltzmann factor of the
work done on the system to insert the test sphere, which can
be readily calculated in the grand ensemble via the functional
derivative 	
 /	v��

ext�r�=����r�, where v��
ext denotes the exter-

nal field generated by an inserted �-sphere on species ��,
�10�. In particular, one can use this to evaluate the derivative
of Vo

� with respect to the radius of the test sphere, which from
Fig. 1 is simply −So

�. Thus, one arrives at the following geo-
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metric interpretation of the fundamental relation of
scaled-particle-theory �11,6�:

So
�

Vo
� = 4���

2��y�� + 4� �
����

��� + ���

2
�2

���y���, �3�

where y��� denotes the contact value of the radial-distribution
function of a pair of hard-spheres ���. This result is far more
general than what we require below, because with a little
thought one realizes that the above derivation does not re-
quire any specification of the interactions between the fluid
molecules; only the hard-cavity interaction of each species
with the test sphere is required. For example, if we replace
the solid spheres drawn in Fig. 1 with just their centers,
while keeping the dashed spheres �the cavities� in place, then
these centers could label any part of a complex molecular
structure. Thus, test cavities can be used to define a geometry
of any molecular system, in whatever manner we wish to
specify. However, in this paper, we require the test cavities to
be, in turn, the species of the mixture, so that �2� defines the
chemical potentials of the model. Furthermore, one can then
introduce the pressure from the hard-sphere-mixture virial
equation of state �12�:

�p = �
�

�� +
2�

3 �
�

�
��

��� + ���

2
�3

�����y���. �4�

When �3� is then inserted into the virial equation to eliminate
��y�� one sees trivially that the off-diagonal terms ����
cancel exactly, leaving the simple result �7�

�p = �
�

��	1 +
��So

�

6Vo
� 
 . �5�

Finally, using �2� to eliminate the densities �� from Eq. �5�,
one arrives at a result of a remarkable character that in the
grand ensemble is naturally written as �13�:

�pV = ln � = �
�

e���

��
3 ��V . �6�

Alternatively, this sum rule can be expressed in the form

�
�

��

e���

�p��
3 = 1, �7�

which is highly suggestive of the fundamental equation of
the generalized ensemble �2�; in particular, this equivalence
certainly applies in the ideal-gas limit ��→1.

For the single-component case, it follows directly from
�7� that the geometric quantity � is a thermodynamic field;
this result constitutes the “magic relation” of Reiss �4�. There
exist strong arguments for believing that pure hard-sphere
fluid undergoes a first-order phase transition to a solid, well
before the random closed-packed jamming limit. For the
general hard-sphere or colloidal mixture, fluid-fluid and
solid-solid phase transitions are also anticipated. Key issues
in colloidal science such as the role of the depletion interac-
tion and the effects of polydispersity are contained within
this class of models. It would therefore be of some impor-
tance if one could decide whether or not �7� in the case of
mixtures is associated with every �� being a thermodynamic
field. This would have to follow if one could argue that �7�
really was the fundamental relation of the generalized en-
semble, since each term would have to contain nothing but
thermodynamic fields �no extensive quantities are specified
in this ensemble�. If one then worked back down beyond �6�
to the canonical ensemble then one would have identified the
partition function of the canonical ensemble as �see the Ap-
pendix�

Q = �
�

VN���
N�

N�!��
3N�

. �8�

In which case �� are phase-space reduction factors. If the
above discussion is generalized to arbitrary dimension D
then the factor 6 appearing in �1� is readily seen to be 2D in
the general case �14�. Note that the reduction in available
phase space is not simply the reduction in available space for
insertion Vo

� /V, instead one must include an additional vol-
ume ratio ��So

� /2DV. One might hope to be able to identify
a “physical” reason for this correction directly from �8� �15�.

Let us now consider the statistical geometry in the pres-
ence of an ideal boundary; a semi-infinite planar hard wall.

FIG. 1. Snapshot of a tiny region of a molecular or colloidal
mixture. The solid circles �spheres, in three-dimensions� depict the
basic colloidal model of a hard-sphere mixture. The dashed circles
denote regions of phase space �for this instant in time� that are
excluded to the center of a test sphere, that one imagines wishing to
insert into the colloidal mixture �for the case drawn, the test sphere
is identical to the smaller spheres�. Within the region drawn one can
readily distinguish an “accessible” volume in which such an inser-
tion is possible, defined by that part not overlapped by the dashed
circles �spheres, in three-dimensions�. The ensemble averages of the
total amount of accessible volume and its associated surface area,
for insertion of component �, are denoted Vo

� and So
�, respectively.
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In this situation one can re-express the virial equation for the
pressure purely in terms of the density at the wall:

�p = �
�

��
w, �9�

where, hereafter, subscript or superscript w will denote a
property at the wall. From Fig. 2 it follows that the probabil-
ity of a particle insertion at the wall is the geometric quantity

��
w �

Sow
�

A
, �10�

which must be equivalent to the lefthand-side of the potential
distribution theorem �2�, applied at the wall. Using this result
to eliminate the densities ��

w from the wall virial, Eq. �9�
leads directly to the sum rule

�
�

��
w e���

�p��
3 = 1. �11�

Once again we appear to have arrived at the fundamental
equation of the generalized ensemble, in which case each ��

w

is a thermodynamic field. In contrast to �7� there is an obvi-
ous, although startling, physical interpretation of this conjec-
ture. Namely, if any one of a set of coexisting phases com-
pletely wets the ideal wall, then in the approach to a first-
order bulk transition one would find the growth of a
macroscopic amount of this wetting phase appearing at the
wall. It is trivial from Fig. 2 that each ��

w cannot then vary

across the bulk phase-coexistence region of phase space.
Considering the multitude of potential phases present in a
polydisperse mixture, the conclusion that one of them must
completely wet the wall is far from obvious �16�. Further-
more, one need not restrict this conjecture to hard-sphere
mixtures; for example, adding sphere-sphere �but not wall-
sphere� attractions to the model only results in an additional
factor �exp�−�
att�
w� to ��

w. Here, the subscript denotes the
presence of a hard cavity on the wall, 
att is the attractive
energy that a particle of type � would experience if inserted
into this cavity, and the angular brackets denote an ensemble
average in the presence of the cavity, �8,10�. Similarly, note
that each ��

w is a field whenever ��
w is, since ��

w=��
w��

3e−���.
Again, if at phase coexistence one of the phases must always
completely wet the ideal wall, then any interfacial geometric
quantity such as ��

w or ��
w must be a thermodynamic field at

bulk phase transitions. For single-component systems, this
extreme conclusion is supported by the little evidence avail-
able. For phase coexistence involving a vapor it is most
likely that the vapor will always completely wet �i.e., dry�
the hard wall; see �9� and note that the second virial coeffi-
cient of the pressure will be negative for coexistence with a
vapor �17�. Also, there is numerical evidence for concluding
that hard-sphere solid completely wets a hard wall in the
presence of its melt �18�. In such cases, ideal walls, often
assumed to be the boundary condition of choice for a canoni-
cal ensemble, are a special case demanding careful handling
in the presence of bulk phase coexistence.

In conclusion, for bulk hard-sphere fluid and any pure
fluid at a planar ideal wall, statistical geometry provides us
with fascinating examples of geometric thermodynamic
fields. This paper has proved that the analogous extensions to
multicomponent systems take an identical form to the funda-
mental equation of the generalized ensemble in the ideal-gas
limit. The conjecture that this correspondence is general
should be equivalent to the conjecture that each geometric
quantity �� or ��

w is a thermodynamic field. If so, the impli-
cations for geometric constraints that must hold at phase
transitions in colloidal systems is remarkable. Notwithstand-
ing, until a proof of this interpretation of �7� and �11� can be
supplied, geometric thermodynamic fields and indeed the
generalized ensemble, remain enigmatic topics of equilib-
rium statistical mechanics that on the one hand appear to
promise much but on the other hand have yet to deliver this
promise.

APPENDIX

Provided each �� is a thermodynamic field and hence in-
dependent of the number densities at fixed temperature and
chemical potentials, one can transform Eq. �6� as follows:

� = �
�

exp� e���V��

��
3 � , �A1�

=�
�

�
N�

1

N�!

e�N���VN���
N�

��
3N�

, �A2�

FIG. 2. Another snapshot of a tiny region of the system defined
in Fig. 1, but this time in the vicinity of an ideal boundary wall �a
hard wall�. In this situation one is particularly interested in the
insertion of a test sphere at the hard wall �compare with the top left
sphere�. Accordingly, the figure only shows the dashed exclusion
zones �see caption to Fig. 1� formed from particles that are neigh-
bors of the ideal wall. For this configuration one observes a region
of an accessible wall area, just below the sphere at the wall. The
ensemble average of the total amount of this accessible area, for the
insertion of component �, is denoted Sow

� .
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=� ¯ �
�N��

¯� e���N���Q . �A3�

This identification of the canonical ensemble partition func-
tion Q is rigorous only for the single-component limit; for
mixtures we have had to conjecture that each �� is a thermo-

dynamic field. Note that Eq. �8� is still not a product of
independent terms since each �� is a function of all the
others; i.e., a function of all of the chemical potentials not
just ���. Similarly, from Fig. 1 one notes that each �� is a
geometric property of the total mixture, not of an individual
component.
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