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One-point boundary condition for the lattice Boltzmann method
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We propose a correction to the bounce back boundary condition for lattice Boltzmann algorithms which
improves the accuracy of pressure from zero to first order and the accuracy of velocity from first to second
order. Compared to interpolation based corrections, our method has the advantage of being completely local. In
fact, methods using interpolation face difficulties at boundary points where not enough neighboring nodes are
available. We show that a combination with our method offers a natural solution to this problem.
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I. INTRODUCTION

In contrast to conventional CFD methods which are based
on a direct discretization of the flow equations, the lattice
Boltzmann (LB) approach [1,2] uses an intrinsic connection
between kinetic theory and the continuum equations. While
this trick allows us to change the target equation from a
nonlinear system to a semilinear one, it has the disadvantage
that the simpler lattice Boltzmann equation involves more
unknowns from which the macroscopic fields of interest (like
pressure and velocity) are obtained by averaging. In the in-
terior of the flow domain, the increased number of variables
results in a larger memory requirement. At boundaries of the
domain where, for example, velocity Dirichlet conditions are
to be implemented, the disadvantage is more fundamental:
one cannot prescribe directly the flow velocity at boundary
nodes but one has to set certain variables in the kinetic equa-
tion in such a way that the average velocity satisfies the
required conditions. Typically, the required number of kinetic
conditions exceeds the available conditions from the flow
problems. This indicates already that the kinetic conditions
have to be chosen carefully in order to avoid the appearance
of extra conditions on the macroscopic level which would
render the problem ill posed (leading to an unwanted behav-
ior on the grid scale like boundary layers, oscillations, etc.).
In view of these remarks, it is not surprising that numerous
articles can be found in the literature which deal with the
problem of specifying boundary conditions for the lattice
Boltzmann method.

One of the most basic algorithms which was already used
in connection with the lattice gas ancestor of the lattice Bolt-
zmann method is the bounce back rule. While being a quite
robust method, it soon proved not to be accurate enough [3]
and modifications have been invented to achieve higher ac-
curacy [4—17]. The idea to complement the given velocity
conditions with additional (more or less physically moti-
vated) relations to obtain the kinetic boundary equations has
been adopted, for example, in Refs. [4,14,15,17]. Another
approach consists in prescribing a suitably modified equilib-
rium distribution at the boundary [10,16].
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A quite popular modification of the bounce back rule is
the BFL method given in Ref. [5]. Here, linear interpolation
along lattice links is used to improve accuracy. A generaliza-
tion of this approach can be found in Ref. [9] where also
higher order corrections and stability aspects are considered.
A common problem of all interpolation based methods is the
requirement of a sufficient number of neighboring nodes
which may not always be available. Let us consider, for ex-
ample, the BFL condition which requires one additional
neighbor in each velocity direction which enters the domain.
For the D2Q9 velocity model (velocities point along the x
and y axes and in the diagonal directions) we can face the
situation depicted in Fig. 1.

If the classical bounce back rule is used at the boundary
nodes where the interpolation is not applicable, the accuracy
of the solution generally degrades everywhere in the domain
(we give examples in Sec. III B). To maintain the order of
the interpolation condition, it is therefore mandatory to find
accurate additional conditions for certain exceptional bound-
ary nodes.

Interesting candidates for this purpose are sufficiently ac-
curate local boundary conditions which do not require any
neighboring information. As an example, we mention the
method presented in Refs. [6,7]. However, this algorithm
also has some deficiencies. In the case shown on the left side
of Fig. 1, the algorithm is actually inconsistent (see Ref.
[18]) and the method is not uniformly applicable to all
choices of the relaxation parameter which determines the
collision operator in the lattice Boltzmann equation. Modifi-
cations which alleviate the latter problem without removing
it have been presented in Refs. [12,13].
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FIG. 1. Examples of boundary nodes where neighbors are not
available for all incoming velocities. Nodes of the computational
domain are marked with filled circles. At corners one typically finds
opposing incoming directions, i.e., the neighbors of the boundary
node in these directions are not in the computational domain. The
same problem can occur in the case of smooth, curved boundaries
as shown in the right diagram.
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In this paper we present a different local boundary algo-
rithm which works without restriction on the relaxation pa-
rameter and which can be shown to give a first order accurate
pressure and a second order accurate velocity [18]. The
scheme is tested for several numerical examples and a com-
parison with the popular BFL method [5] shows a very simi-
lar behavior. We also demonstrate that our method can be
used in connection with BFL to remove the problems men-
tioned above.

II. SETUP OF THE LATTICE BOLTZMANN METHOD

We consider the incompressible Navier-Stokes equation
on a domain QCR?, de{2,3}, with initial and Dirichlet
boundary values. Our aim is to find numerical approxima-
tions of the fields u:[0,7]X Q—R? and p:[0,7T]X Q—R,
which satisfy

V-u=0, du+u-Vu+Vp=vVu+G, (1)
with ul,_o= 1 and

u(t.x) = ¢(1.x),

where ¢, ¢, and G are given functions. To this end we
consider a lattice Boltzmann algorithm for the evolution of

te[0,T], x e, (2)

particle distribution functions f‘i(n, J) which specify the frac-
tion of fluid particles traveling with microscopic velocity c;
at position x;=hj, j € 7¢ and time t,=nh?, n e N,. The pa-
rameter s is the nondimensional grid spacing which is as-
sumed to be small compared to the (scaled) size of the do-
main. The actual Navier-Stokes fields are recovered in the
form of averages over the microscopic velocity,

ﬁ(n’j)ZEft(nsj)’ ﬁ(n,j)=zfl(”,j)cz (3)

Here, @ approximates the velocity field and the pressure is
related to small deviations of the total mass density p from
the constant value py=1. The discrete evolution of the par-
ticles consists of two phases, a transport step and a collision
and forcing step. The latter has the form

Fen, ) = filn, j) + LA, §) + 84(n, ), 4)

where the so called collision operator is of relaxation type
CIU](”?J) = ;mq(p(na J)?u(nu’)) _fi(n’.])]

with 7=1/2+43v and p and & defined through Eq. (3). The
equilibrium distribution function [19] is given by

9 3 #
fifpu) = | p+3u-cit S(u-e)’ = Jlul* 7.

The weight factors f: depend on the chosen velocity model.
For the D2Q9 model which is based on the velocity set
{~1,0,1}?, the values are 4/9 for the zero velocity, 1/9 for
the axis parallel velocities of length one, and 1/36 for the
diagonal velocities of length v2. The presented scheme also
works in connection with the models D3QX, X
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€{15,19,27} (the weights and velocities can be found, for
example, in Ref. [20]). The function g; models the influence
of the force term

gAi(n’j) = 3h3fjci ! G(tn’xj)‘ (5)

We remark that the relation Ar=h?=Ax? between space and
time step and the scaling of the force term g with i* is
necessary to obtain convergence towards the incompressible
Navier-Stokes system (1). These issues have been discussed
in Ref. [21].

After collision where the original particle distribution
function f‘, transforms into the post-collisional state ff, the
particles simply move undisturbed with their velocities to the
neighboring lattice sites,

filn+1,j+¢;)=fin, ). (6)

This update rule is applied to all nodes x; € () for which all
neighbors x;+hc; are contained in (). At the remaining nodes
(the so called boundary nodes with labels j € J,;,), a modifi-
cation is required because neighbors in certain directions are
missing. We discuss some standard choices and our method
below.

For a complete description, the initial distributions have

to be prescribed at all grid points. As in Ref. [16], we take

£10,7) = £2401 + 31%p(0,x,), hifx)) = 3h*7e (- Ve, - lx))f
(7)

where p(0, .) is the initial Navier-Stokes pressure.

III. BOUNDARY CONDITIONS
A. Bounce back rule

The classical method to implement Dirichlet velocity con-
ditions is the bounce back rule. If node j € J;; has a missing
neighbor in direction —¢; (i.e., if ¢; is an incoming direction),
the bounce back rule specifies the particle distribution f; ac-
cording to

Jin+1,j) = fe(n, j) + 6hfic; - dl1,x;). (8)

The velocity index i* is defined by c¢;=-c;, and the
boundary value ¢ is evaluated at the boundary point
x;;=x;—hgjic; € ) where g;; €[0,1) represents the distance
to the boundary along direction ¢;~=—c; as fraction of hc,].

A careful analysis shows that if the lattice Boltzmann al-
gorithm presented in the previous section is used in connec-
tion with condition (8), the resulting solution is, in general, a
quite inaccurate approximation of the Navier-Stokes fields.
The pressure is inconsistent and the error of velocity is pro-
portional to & [18].

Only in some exceptional cases, for example when all
boundary nodes are located half a grid spacing away from
the boundary, the accuracy is one order higher for both pres-
sure and velocity. However, it should be noted that the
choice g;;=1/2 is only possible for a very restricted class of
flow geometries ().

To illustrate this behavior, we consider a two-dimensional
(2D) stationary linear flow on the unit square Q=(0,1)?
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FIG. 2. Logarithmic velocity error versus log;y/ in the case of a
2D stationary linear flow with g;;=0 (*) and ¢;;=0.5 (O).
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ulx)=Ax, px)=- ExTAzx, A= (1

The required boundary and initial values are set to the cor-

responding values of the exact solution and the numerical

tests are carried out on a sequence of grids with grid size

he {1]—0, %, % , % R sl_o} The termination time is 7=1. The re-

laxation time is computed according to »=0.1 in Eq. (1) and

the error between exact and numerical values is measured
with the maximum norm in space and time.

Figures 2 and 3 compare the performance of the bounce
back rule in the case ¢;;=0 (all boundary nodes are on 1)
with the favorable case g;=1/2 which can be used for this
simple set ). Note, in particular, that the pressure does not
converge in the general case gj; # 1/2 so that better boundary
schemes are required.

B. BFL rule

An improvement of the bounce back rule has been pro-
posed in Ref. [5]. The boundary condition can be viewed as
a correction of Eq. (8) in the case g;;# 1/2. Denoting the

right hand side of Eq. (8) as f‘:’(n, J), the condition has the
form

Fin+1,) = f2(n, ) + (1 = 24;) A%(n, j),

where

—~ 1.5
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FIG. 3. Logarithmic pressure error versus log;o/ in the case of a
2D stationary linear flow with g;;=0 (*) and ¢;;=0.5 (O).

PHYSICAL REVIEW E 72, 066701 (2005)

~ //ﬁ
/‘e/
26 -2 Q/Q’ //
= €3 ~
I A
L e
S-3 */*(
al
= —
-4 e~
o® -7
V/V/
-5t v~

-18 16 -14 -12 -1
logloh

FIG. 4. Logarithmic velocity error versus log;h in the case of a
2D stationary linear flow with different boundary treatments at the
points where neighbors in incoming directions are missing. For cir-
cular geometry, O and * denote the results with bounce back rule
(O) and POP; (*). For the flow in a square, the bounce back result
is ¢ and POP, yields V.

A (n,j) =folnj+e) = foln ), qi=<1/2,

Af(n, ) = filn + 1, §) = fe(n, ), ;> 172,

Note that the expression A; requires a neighbor in the incom-
ing direction. If the neighbor is missing (like in Fig. 1), the
condition is undefined and usually replaced by the bounce
back rule (8). This choice, however, generally degrades the
accuracy. To illustrate this behavior, we consider the previ-
ous test case on a square and a circular geometry (reflecting
the problematic cases in Fig. 1). Figures 4 and 5 show that
the BFL rule supplemented with the bounce back algorithm
inherits the low order of Eq. (8) even though it is only used
at very few boundary nodes. In contrast to this, a combina-
tion with the new local boundary condition POP; presented
in the next section yields first order pressure and second
order accurate velocity at all points which is a simple but
efficient improvement.

It should be stressed that the low order error is not located
at the few isolated nodes where the bounce back rule is used
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FIG. 5. Logarithmic pressure error versus logo/ in the case of a
2D stationary linear flow with different boundary treatments at the
points where neighbors in incoming directions are missing. For cir-
cular geometry, O and * denote the results with bounce back rule
(O) and POP; (*). For the flow in a square, the bounce back result
is & and POP; yields V.
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FIG. 6. (Color online) Logarithmic velocity error versus log;oh
in the case of a 2D stationary linear flow in a disk with different
boundary treatments at the points where neighbors in incoming di-
rections are missing. The dashed lines denote the results with
bounce back rule, solid lines stand for the results with POP;. The
symbols O, #*, V refer to errors in the concentric subregions
R 1s R3, R5.

but appears everywhere in the domain. To illustrate this be-
havior, we consider the linear flow (9) in the unit disk more
carefully. In this case, the BFL rule cannot be applied at the
four isolated points which are extremal in the coordinate di-
rections. We measure the numerical error within concentric
rings R, R;, Rs, where

Ri={(x.y):ry, <x?+y> <rj},

l"0=0, r1=0.5, r2=0.7, r3=0.8, r4=0.9, r5=l.0

and determine its maximal value during the simulation for
each subdomain on several grids. In Figs. 6 and 7, the pres-
sure and velocity errors are shown. One can clearly see that
the error is generally lower for subdomains which are futher
away from the boundary. In contrast to the results obtained
with our method employed at the four isolated points, the
bounce back results are less accurate in every ring and the
convergence order is generally lower (the orders for velocity
and pressure are reported in Table I).

FIG. 7. (Color online) Logarithmic pressure error versus log;oh
in the case of a 2D stationary linear flow in a disk with different
boundary treatments at the points where neighbors in incoming di-
rections are missing. The dashed lines denote the results with
bounce back rule, solid lines stand for the results with POP;. The
symbols O, #, V refer to errors in the concentric subregions
Ry, Rs, Rs.
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TABLE 1. Comparison of numerical convergence orders of
velocity/pressure for a linear flow in a disk with different treatment
of the isolated points where BFL cannot be used. The error is mea-
sured on concentric rings R;, R3, Rs.

Ring Bounce back POP,
R, 1.7730/0.7665 2.4293/1.1231
R; 1.6968/0.6496 2.2933/1.6396
Rs 0.6752/0.1459 2.0008/1.0246

C. New local boundary condition

The method proposed here is also a correction of the
bounce back rule but, in contrast to the BFL approach, it is
not link based. To describe the algorithm at a boundary node
x; we first introduce the matrix Ky,

Ky=- %(3 - 6jS)f,-*<(ci e’ =le)3 - Ciza(|ck|2 - g))
which has to be evaluated for all pairs (i,k) of velocity indi-
ces at each boundary node. The coordinate index «
e{l,...,d} can be chosen arbitrarily (we take a=d). After
selecting the parameter 6 € [0, 1] which controls the amount
of implicitness of the resulting method POP,, we set up the
matrix L;;= oy + 0K, but this time only for indices i,k which
refer to incoming velocity directions at x; (these indices are
collected in the set V). Then, the inverse of the small matrix
L;; has to be determined. This requirement restricts 6 not to
be the negative inverse of an eigenvalue of the submatrix
K, i,k e V. Otherwise, 6 can be chosen arbitrarily and, in
principle, a different choice is possible for every boundary
node. Note that =0 turns L;; into the identity matrix so that
no inversion is necessary in that case (explicit method).

For nonmoving boundaries, all steps described so far need
to be worked out only once during preprocessing. For the
time iteration, the following steps are required. Denoting the
right hand side of Eq. (8) again by ff’*(n J) and observing
that, after the lattice Boltzmann transport step, the densities

for the outgoing directions fk(n+ 1,j), k& V are available,
we compute for all i e V

ri(n7j) = 2 aKlkf‘k(n + 1’.]) + E Kik&k(n’j)’
keV k

0r=fi— &~ (1= 0fi.
Then we determine the required incoming distributions

fuln+1,j), ke V by solving the linear system (here the in-
verse of the small matrix L; is needed)

2 Lufun+1,j) = f3(n, j) = rin.j), ieV. (10)
keV
Note that Eq. (10) reduces to the bounce back rule if
q;;=1/2 because K;=0 in that case so that also r;=0 and
L= 0y
We remark that the boundary condition is also applicable
in the case of lattice Boltzmann methods with more general
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FIG. 8. Logarithmic velocity error versus log;y/ in the case of a
3D stationary linear flow. Solid, dashed, and dotted lines correspond
to the models D3Q15, D3Q19, and D3Q27, respectively. O, ¢, and
+ denote the results of explicit #=0, mixed #=0.7, and implicit
0=1 schemes.

collision operators (e.g., multirelaxation time models). In
fact, the specific collision model enters only indirectly into
Eq. (10) through ff.’*(n, J) which contains the post-collisional
state (4).

IV. NUMERICAL TEST OF THE METHOD

In this section the proposed one-point method (10) is
carefully tested in two respects which are of practical inter-
est: the accuracy and the applicability in the case of curved
boundaries. Moreover, we also report some experiments con-
cerning mass conservation. Generally it is observed that im-
plicit versions of the algorithm are more stable than the ex-
plicit one.

Three models which have analytical solutions are used
here, a stationary linear flow, a nonstationary linear flow, and
a 2D circular flow. All models are used to assess the accuracy
and convergence of the proposed boundary treatment.
The 2D circular flow has been chosen to test the applicability
in the case of curved boundaries. The grid size is
he{l1/10, 1/20, 1/30, 1/40, 1/50}. The parameter 6 is
chosen from the set {0.0, 0.7, 1.0} and the relaxation time is
again set corresponding to »=0.1 in Eq. (1).

45
18 -16 -14 12 -1
logyo h

FIG. 9. Logarithmic pressure error versus log;oh in the case of a
3D stationary linear flow. Solid, dashed, and dotted lines correspond
to the models D3Q15, D3Q19, and D3Q27, respectively. O, ¢, and
+ denote the results of explicit #=0, mixed #=0.7, and implicit
6=1 schemes.
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TABLE II. Numerical convergence orders of velocity and pres-
sure for a stationary linear flow.

6 q D3QI15 D3Q19 D3Q27

0 0 1.846/0.698  1.952/0.847  1.957/0.872

0 04  1.814/0819  1.791/0.875  1.782/0.912
0.7 0 1.875/0.744  1.953/0.909  1.959/0.940
07 04  1.811/0818  1.794/0.875  1.786/0.911

1 0 L irregular 1.953/0.926  1.959/0.960

1 04  1.807/0.818  1.795/0.874  1.787/0.911

A. A family of 3D linear flows

The velocity and pressure of the 3D linear flows are de-
scribed as

u(t,x)=a(t)Ax, p(t,x)=- %a(z)xTAzx,

where
10 5 2
=—5 10 4 |,
200
2 4 =20

a(r) is a function of time ¢. It is easy to validate that the
fields u and p satisfy the Navier-Stokes equations (1) in the
entire space with a body force defined by

G(1,x) = o' (DAx + a(t)(a(r) = 1)A%. (11)

The numerical tests for this kind of linear flow will be
restricted to the unit cube Q=[0,1]* as computational region
and the known values of u are prescribed at the boundary
Q). Because of the simple geometrical structure, the param-
eters g;; are determined by three values g;, where h(q;,¢>,93)
are the coordinates of the node closest to the origin. In this
paper g; are chosen equally and the common value is denoted
g, with values {0,0.4} in our test cases.

N
=~
Q
~

S -4
N—
(=]
~
a0
S

-4.5

-5

18 -16 -14 -12 -1
logyo b

FIG. 10. (Color online) Logarithmic velocity error versus log;yh
for nonstationary linear flow. Solid, dashed, and dotted lines corre-
spond to the models D3Q15, D3Q19, and D3Q27, respectively. O,
¢, and + denote the results of explicit #=0, mixed #=0.7, and
implicit #=1 schemes.
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FIG. 11. (Color online) Logarithmic pressure error versus log;oh
for nonstationary linear flow. Solid, dashed, and dotted lines corre-
spond to the models D3Q15, D3Q19, and D3Q27, respectively. O,
O, and + denote the results of explicit #=0, mixed #=0.7, and
implicit =1 schemes.

1. Stationary linear flow

Under the condition that () is a constant, for example
a(r)=1, the flow is stationary and the corresponding body
force G vanishes. We compute the error of the various meth-
ods by comparing the approximate solution with the exact
one in the maximum norm over [0, 7] X () with T=1. Figure
8 is the logarithmic error plot for velocity. The corresponding
results for the pressure is given in Fig. 9. Table II displays all
the slopes of the error lines in Figs. 8 and 9. Those of the
velocity are around 1.9 and the pressure curves show slopes
around 0.9.

These numerical results demonstrate that our boundary
scheme produces a second order accurate velocity and at
least a first order accurate pressure, which supports the ana-
lytical considerations in Ref. [18]. Observing the error size in
Figs. 8 and 9, both show that all variants of the method have
a very similar performance, and none of the models D3Q15,
D3Q19, and D3Q27 produce prominently smaller errors than
the others.

2. Nonstationary linear flow

In this case «(f) varies with time ¢, for example a(t)=r>.
This flow is initially at rest and driven by an increasingly
stronger body force. The termination time is set to 7=0.1.

Figures 10 and 11 show the error plots of velocity and
pressure versus the grid size. While the error in velocity is
essentially identical for all the methods, the D3Q27 model

TABLE III. Numerical convergence orders for velocity and
pressure in the case of a nonstationary linear 3D flow.

0 q D3Q15 D3Q19 D3Q27

0 0 1.991/1.589 1.989/1.585 2.000/1.619
0 0.4 1.940/1.589 1.940/1.593 1.957/1.546
0.7 0 1.994/1.681 1.985/1.570 1.992/1.606
0.7 0.4 1.940/1.681 1.941/1.593 1.957/1.549
1 0 L irregular 1.991/1.564 1.999/1.599
1 0.4 1.958/1.460 1.941/1.594 1.957/1.550
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FIG. 12. Logarithmic velocity error versus log;oh for a 2D cir-
cular flow. O, ¢, and + denote the results of implicit #=1, mixed
0=0.7 schemes, and the BFL method, the best fit slopes are 1.701,
1.889, and 2.005, respectively.

gives slightly better results than the other two models. Table
III displays all the slopes of the error lines in Figs. 10 and 11.

These numerical results demonstrate that our boundary
scheme produces a second order accurate velocity and at
least a first order accurate pressure.

B. Flow inside a circular cylinder

We consider the so-called impulsively started circular
flow which has been described, for example, in Ref. [5]. The
radius of the infinitely long circular cylinder is taken as
R=1. Using dimensional reduction, we are led to a 2D
Navier-Stokes problem posed on the unit disk ). The exact
angular velocity uy(t,r) is given in Ref. [5] based on an
infinite series involving Bessel functions of order O and 1. In
addition, the pressure p(z,r) is centrally symmetric (the ori-
gin is the center) and appears as an integration of the angular
velocity,

"1
p(t,r):f —uédr.
o r

Obtaining the exact velocity and pressure for this model,
obviously involves numerical integration and an approxima-
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FIG. 13. Logarithmic pressure error versus log,oh for a 2D cir-
cular flow. O, ¢, and + denote the results of implicit 6=1, mixed
6=0.7 schemes, and the BFL method, the best fit slopes are 1.189,
1.159, and 0.928, respectively.
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FIG. 14. Absolute difference between total mass and its initial
value over time. Implicit scheme #=1 (*), mixed scheme 6=0.7
(¢ ), BFL scheme (O).

tion of u, For the former we take a second order accurate
integration method, the latter is calculated by taking the sum
of the first 50 terms in the series only.

Since the boundary curve now is a circle, the distance
between boundary nodes and boundary varies arbitrarily be-
tween O and 4, i.e., gji € [0,1). In order to concentrate on the
errors caused by the proposed boundary schemes, we want to
avoid initial errors due to the nonsmooth abrupt start of the
cylinder (abrupt start means u=0 in the domain but u,=1
along the boundary). This can be achieved, for example, by
starting at time #=0.5 instead of r=0. To check the accuracy,
the termination time is set to 7=0.6. In the explicit case
0=0, the scheme is not stable. Figures 12 and 13 show the
error of velocity and pressure versus the grid size for implicit
and mixed boundary conditions and the BFL method. It dem-
onstrates the second order accuracy of velocity and first or-
der accuracy of pressure. More importantly, these numerical
results confirm that the proposed boundary scheme works
very well in connection with curved boundaries if §>0.

Since the total mass in ) is a conserved quantity, it is
desirable to check to which extent the proposed boundary
conditions guarantee conservation. To this end, we calculate
and study the deviation of the arithmetic density average
(which is a natural approximation of the total mass) from its
initial value for various grids.

Figure 14 shows the deviation of total mass from its initial
value over time for the implict, mixed, and BFL scheme on
lattices with grid size h=1/40. We observe that the mass
conservation is violated slightly and, in this case, our method
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FIG. 15. Grid dependence of the total mass error. Implicit
scheme #=1 (*), mixed scheme 6=0.7 (<), BFL scheme (O).

performs somewhat better than the BFL rule. With decreas-
ing grid size, the maximal deviation of the total mass also
decreases as depicted in Fig. 15 where the mass error is
computed on grids with € {1/10, 1/20, 1/40}.

V. CONCLUSION

We have introduced a family of LB boundary algorithms
to solve Dirichlet boundary value problems for the instation-
ary, incompressible Navier-Stokes equation. The accuracy
and the stability behavior of our method is similar to the BFL
schemes presented in Ref. [5]. However, our scheme has the
advantage of being completely local which also distinguishes
it from the multireflection condition in Ref. [9]. In contrast to
the local condition introduced in Ref. [8], our method does
not require derivatives of the Dirichlet data along the bound-
ary and it works exactly in the same way for curved and flat
boundaries. However, the two methods are similar in the
sense that for every boundary node a small linear system has
to be set up and inverted in a preprocessing step. We have
shown that our method can also be used to fix the degrada-
tion of interpolation based schemes which results from
boundary points with missing nodes in incoming directions.
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