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Theory of nonlocal soliton interaction in nematic liquid crystals
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We investigate interactions between spatial nonlocal bright solitons in nematic liquid crystals using an
analytical (“effective particle”) approach as well as direct numerical simulations. The model predicts attraction
of out-of-phase solitons and the existence of their stable bound state. This nontrivial property is solely due to
the nonlocal nature of the nonlinear response of the liquid crystals. We further predict and verify numerically
the critical outwards angle and degree of nonlocality which determine the transition between attraction and

repulsion of out-of-phase solitons.

DOI: 10.1103/PhysRevE.72.066611

I. INTRODUCTION

Solitons arise in many different branches of science,
including plasma physics, hydrodynamics, superconductiv-
ity, matter waves, and optics [1]. They are characterized
by their ability to propagate over long distances and interact
while preserving their shape. For many years propagation
of optical spatial solitons has been widely studied in Kerr-
like media with an intensity-dependent refractive index,
which gives rise to the local nonlinear Schrodinger (NLS)
equation [2].

In Ref. [3] Snyder and Mitchell studied a theoretical
model for light propagation in a highly nonlocal medium,
i.e., a medium where the change of the refractive index de-
pends on the total power of the light beam instead of the
local intensity. Using this assumption they reduced the prob-
lem to the linear equation for the harmonic oscillator. Inter-
estingly, it turns out that the nematic liquid crystals (NLCs)
exhibit such a high degree of nonlocality [4]. The strong
nonlocality of NLC arises because of elastic forces between
the liquid crystal molecules which act as a diffusion mecha-
nism [5,6]. In early studies of light propagation in NLC the
light intensities necessary to observe self-focusing were so
high, that the thermal effects arising because of heating could
not be neglected [7,8]. By applying a transverse electric field
over the cell containing the NLC, the power required to ob-
serve propagation of stable self-focused structures can be
lowered significantly [9]. More recent studies of localized
structures in NLC include both experimental observations
[10,11] and theoretical models [4,12]. See Ref. [13] for a
review of soliton propagation in voltage biased cells contain-
ing NLC.

Other examples of systems where nonlocality plays a
similar role are seen in different areas of nonlinear science,
such as Bose-Einstein condensates [ 14] and plasmas [15]. In
all these cases the underlying governing equation is the non-
local NLS equation, which displays several nontrivial ge-
neric features, independent of the specific nature of the non-
local response (see Refs. [16,17] for a review). In Ref. [18]
nonlocality was shown to prevent the nonphysical collapse
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of beams after a finite propagation distance, which is pre-
dicted when using the local NLS equation. Nonlocality has
also been shown to promote modulational instability in a
defocusing Kerr medium [19,20], and may even accurately
describe parametric wave interaction [21,22]. Furthermore,
in Ref. [4] it was shown that nonlocal solitons in NLC have
the same profiles as quadratic solitons. An interesting conse-
quence of nonlocality is an attraction of dark solitons, that
was predicted theoretically in Ref. [23] and has recently been
demonstrated experimentally [24]. Nonlocality also allows
the existence of stable ring vortex solitons [25].

Interaction between nonlocal bright solitons has also
been shown to exhibit remarkable features, such as an attrac-
tion of out-of-phase bright solitons [26], and the existence
of bound states consisting of two out-of-phase bright solitons
[12,27]. Such results are a direct consequence of the nonlo-
cality, since neither attraction nor bound states of dark soli-
tons and out-of-phase bright solitons can occur in a local
medium.

Nonlocal soliton interaction in NLC has previously been
studied theoretically in (1+2)D using numerical methods
[28]. In the present study we give the first analytical treat-
ment of interactions between (1+1)D nonlocal bright soli-
tons. We show that there is a critical degree of nonlocality
above which out-of-phase solitons attract. These results are
verified by direct numerical simulations. We further find
bound states of out-of-phase bright solitons and the power
threshold for their existence.

II. GOVERNING EQUATIONS

We study a simplified model for light propagation in a cell
containing a liquid crystal in the nematic phase. The real
physical model is naturally a three-dimensional model. Here
we are interested in studying the qualitative physical charac-
teristics of soliton interactions analytically, therefore we con-
sider only one transversal dimension, as it has earlier been
done in theoretical studies of modulational instability in
NLC [29]. An external quasistatic electric field £ is applied
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in the transverse dimension, in order to ensure that the field
strength is above the Freedericksz threshold, below which no
reorientation occurs. Using the slowly varying envelope ap-
proximation for the evolution of the optical field [A(X,Z)]
and assuming a pretilt angle of 7/4 in order to maximize the
nonlinear response [5], we obtain the following NLS-type
equation for A:

2
2ikAZ+AXX+]?AeHF‘I'A=O, (1)
0
where W(X,Z) is the reorientation angle of the liquid crystal
molecules due to the presence of the optical field. ky and k
are the wave numbers in vacuum and in the liquid crystal,
respectively. A€y is the anisotropy of the liquid crystal at
the optical frequency and ¢, is the vacuum permittivity. The
governing equation for W(X,Z) is found by minimizing the
internal energy of the liquid crystal due to deformations [[6],
Sec. 6.3] and making a series expansion around a total reori-
entation angle of 7/4. Under these assumptions the equation
for W is [4]

ZAELFEIZ‘F\I, + AeyrlAl? _
4 - b

KV, + KVyy— (2)
where A¢g; ; is the anisotropy of the liquid crystal at the fre-
quency of the quasistatic electric field. K is the elastic con-
stant of the liquid crystal, taken to be the same for twist,
splay, and bend deformations. The system of Eqgs. (1) and (2)
is normalized by scaling the transverse coordinate with the
width of the input beam (x=X/X,), and the propagation co-
ordinate with the diffraction length z=Z/L. Here X, repre-
sents the full width at half maximum (FWHM) of the ampli-
tude of the input beam, and the diffraction length is given by
Lp=2kX;. Further, the fields A and W are scaled as
a=AlAy and =V /¥, where

2F [ €A
Ay= LF €o ELF, 3)
AeyrkoXo ™

S
koXoAenr

With these definitions we obtain the dimensionless equa-
tions:

(4)

Vo

a,+a.+ Ya=0, (5)
Eazl/fzz+02¢xx_ U+ %|a|220, (6)
where o is the degree of nonlocality, defined as
K
= 22 . (7)
2XoE; A€

e=1/ (4X(2)k2) is a small parameter. Taking typical values for
material parameters of the liquid crystal E7 [[6], Chap. 3]
(K=10"""N, Aeyr=0.64€,, and A€ r=15¢;), and using
a beam width of Xy,=10 um and a field strength
E;r=10* V/m, which are common experimental values [10],
we find o=35, which corresponds to a rather strong nonlo-
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cality. For wavelengths in the visible and near infrared region
(i.e., from 500 to 1500 nm) € ranges from 107 to 10~. The
diffraction length Lp is of the order of 1 mm.

Notice that o can also be scaled out of the governing
equations (5) and (6), by scaling the x and z coordinate with
o and ¢, respectively (x— ox and z— 0°7), and scaling the
fields a and # with o' and 072, respectively (a— o~ 'a and
y— 0"21//), and finally redefining e/ > — €. However, since
we are interested here in comparing identical systems with
different degrees of nonlocality, and because K is the physi-
cal parameter that is responsible for nonlocality, we have
chosen the K-independent scaling parameters as described
above.

It can be shown that the systems (5) and (6) can be de-
rived from the variational principle with the following La-
grangian density

L=-Im{a"a}-|a)? - *¢ - + |a|*y— Ea’zg[/f. (8)

From this Lagrangian three integrals of motion can be ob-
tained: the power P, the momentum M, and the Hamiltonian
H, given by the expressions

P= f‘” |a|* dx, (9)
M= f ’ (Im{aa.} - 2e0” 1) dx, (10)

H=J (la >+ P+ = |al*p— ed?yl)dx.  (11)

With the scaling used here, the physical power density be-
comes P= %(k/ ko)eocAéXoP, where ¢ is the speed of
light. Using the parameter values from above we find
P=50 mW/m for P=1.

Here we study interactions between solitons in (1+1)D.
Neglecting the term proportional to € in Eq. (6), we can
express  in terms of the intensity /=|a|? of the optical field.
Using Fourier transformation and the convolution theorem
we find

Wx,z) = %fx R(x —x")I(x")dx', (12)

where the normalized response function of the liquid crystal
is given by

[

R(x):i_exp(— ;) (13)

For large o the nonlocality is strong, and the response
function becomes very wide. For small o the response is
almost local. In the limit 0— 0 the response function be-
comes a o function, and we end up with the standard NLS
equation for the evolution of a.

III. STATIONARY BRIGHT SOLITON SOLUTIONS

Ground state bright soliton solutions of Egs. (5) and (6)
have the form a(x,z)=V(x;\)exp(iz) and ¢(x,z)=W(x;\),
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where the propagation constant A is positive to ensure that
the profiles of V and W decay monotonically to zero, as is the
signature of the ground state. The profiles are found by solv-
ing the system

—NV+V +VW=0, (14)

(15)

subject to the boundary conditions V,W—0 for x— =*o°.
The numerical solutions of Egs. (14) and (15) are well
known [30-32]. Here we are interested in two types of
bright soliton solutions, the fundamental (single hump soli-
tons) as shown in Fig. 2, and bound states consisting of two

W= W3V =0,

(a)
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FIG. 2. Characteristics of ground state bright solitons of Egs.
(14) and (15). Plots (a)—(d) show solutions for A=1 and different
degrees of nonlocality: o=1 (a), =5 (b), 0=10 (c), and o=15 (d).
The lines show the exact numerical profiles (solid, V; dashed, W).
Approximate variational solution is also shown (points, V; circles,
W). (e) shows _the power versus A and (f) shows the waist ratio
p=b,/b;=1/42 versus nonlocality for the solutions found using
the Gaussian profiles.
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FIG. 1. Propagation of perturbed stationary
profiles of a one hump soliton (left) and a bound
state of two solitons (right). In both cases =1
and o=5.

-
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out-of-phase bright solitons as shown in Fig. 5. These solu-
tions are found numerically using a shooting method [[33],
Sec. 16.1].

The stability of both types of solutions is examined
by solving Egs. (5) and (6) numerically for e=0 with
perturbed stationary profiles as initial conditions. The per-
turbed profiles used here are the profiles found using
the approximate variational and effective particle approach
discussed in the next section. Both types of solutions
oscillate due to the perturbation, but maintain their profile
over 50 diffraction lengths as illustrated in the examples
shown in Fig. 1. Extensive numerical simulations confirm
stability and robustness of these solitons in all cases
considered.

Exact analytical solutions are only known to exist for the
two special cases when Ao?=1 and when o=0. When
No?=1, V, and W become proportional to each other, and
Egs. (14) and (15) reduce to a single equation. The bright
soliton solution found first, in Ref. [34] is W(x)=VN/2V
=3\/2 sech?(VAx/2). When o=0 we have the standard NLS
equation, where the bright soliton solution is W= V2/2
=2\ sech’(VAx). In the weakly and highly nonlocal region
various approximations can be made to simplify the equa-
tions, and exact analytical solutions to these simplified equa-
tions can be found as discussed in Refs. [21,35].

Equations (5) and (6) are Galilean invariant, i.e., from
the stationary solutions V(x;\) and W(x;\) of Egs. (14) and
(15), we can construct solutions of Egs. (5) and (6)
moving with transverse velocity v. This is done using the
transformation

a(x,z)= * (x—xo—vz);)\>

)

(x—xo—vz);)\), (17)

‘ Vi =
V1 +v2e (\l+vze

» ( 4N -v?-v'e
P\ 4(1 +v%e)
Plx,z) =

v
—X+

5 (16)

W
1+v%e (\'1 +0v%€

where x is an arbitrary constant. Notice that Eqs. (16) and
(17) are exact for all values of €. We see that for €=0 the
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usual Galilean invariance of the NLS equation is recovered.
The effect of the € term is to decrease the amplitude and
increase the width of the moving solutions, compared to their
stationary profiles.

Instead of solving Egs. (14) and (15) numerically we can
approximate the stationary profiles V(x;\) and W(x;\) using
a variational approach [31]. Inserting Gaussian trial func-
tions V(x;\)=a; exp(=x>/b?) and W(x;\)=a, exp(-x>/b3)
in the Lagrangian density (8) and integrating over the trans-
verse dimension, we find the reduced Lagrangian. The global
minimum of the reduced Lagrangian is found by varying
with respect to the amplitudes and widths (a;, a,, b;, and b,).
This leads to the following expressions for these quantities:

)\
=2(2p7+1 3/2\/ , 18
=2 DN ey Y
A2p" + 1)*?
ay= 222U (19)
p(4p=+1)
4p*+1
b= \/T, (20)
b2=pb1, (21)
(4p*+ D(2p* - 1)
= , 22
7 p\/ N2p2+3) 22)

where the waist ratio p=b,/b, has been introduced. We see
that we cannot express everything in terms of the system
parameters A and o, without using the explicit formula for
finding the roots of a third degree polynomial. Instead we
solve Eq. (22) numerically. It can be shown that for given
N,0=0 Eq. (22) has only one positive solution p= 1/42.
Hence the variational method determines the amplitudes and
widths of a and ¢ uniquely for given values of A\ and o. In
Fig. 2 exact numerical solutions are plotted together with the
corresponding variational approximation for A=1 and differ-
ent values of 0. We see that the two solutions agree well in
the region near the soliton peak. Deviations occur in the tails
of the solitons, which is a direct consequence of our Gauss-
ian ansatz. The tail dynamics of the exact solution is found
by neglecting the nonlinear terms in Egs. (14) and (15).
Solving the decoupled system we see that the tails are
exponentially decaying functions V(x;\)exp(—vA|x|) and
W(x;\) <exp(~|x|/d). The exact behavior of the soliton
tails is therefore different from the behavior of our Gaussian
ansatz. o

Also in Fig. 2 the power (P=\m/2a’h,) of the trial func-
tion is plotted as a function of A. The plot indicates that the
ground state solitons are stable, since dP/d\>0, which is a
necessary condition for stability [36]. In addition, in Fig. 2
the waist ratio p=b,/b, is plotted as a function of nonlocal-
ity. The plot shows that in the highly nonlocal region
(o>1) we have always p> 1, which again shows that in this
region the change in the refractive index extends far beyond
the optical field.
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IV. SOLITON BOUND STATES

In the following we consider interactions between station-
ary bright solitons for the system Egs. (5) and (6) when
neglecting the term proportional to €. Inclusion of this term
introduces a singular perturbation, which appears to be very
difficult to handle both analytically and numerically. A super-
position of two solitons with identical profiles separated by
2xy, and with opposite transverse velocities (xv) is substi-
tuted into the Lagrangian density (8) without the € term. If
we only consider solitons in phase or with a phase difference
of 7, we can assume symmetric interaction, i.e., there can be
no transfer of energy between the solitons. To proceed fur-
ther we apply the method described in Refs. [37,38] and
further developed in Ref. [39] for nonzero initial velocities.
Introducing a slow propagation variable (z;=uz,u<<1), and
assuming that the soliton phase and position vary adiabati-
cally through z;, we can reduce the governing equations
to the problem of a particle moving in an external potential
(“effective particle approach”). To the first order in w the
dynamics of this particle is described by the following
Lagrangian:

= %P(K)Uz - U(A5a-9x09v’ 0)7 (23)

where 6 is the phase difference between the solitons (6=0 or
7r) and P is the power of each soliton. U represents an inter-
action potential, and is given by

U=- J [+2V,V, W, cos(vx) + ViW,]dx, (24)

where V;=V(x—xy;\) and V,=V(x+x,;\) are stationary
profiles with peaks at +x,; W and W, are defined similarly.
The plus sign in Eq. (24) is for solitons in phase (6=0)
and the minus sign is for solitons with a phase difference of
0=

A remarkable fact about nonlocal bright solitons is that
solitons with a phase difference of 7 can attract each other if
the nonlocality is strong enough, as shown numerically in
Ref. [21] and experimentally in Ref. [26]. This is never the
case in a local medium, where bright solitons with a phase
difference of 7 always repel. An attraction of two out-of-
phase bright nonlocal solitons can be understood in the fol-
lowing way: Light is confined in regions with a high refrac-
tive index. In the middle between the two peaks, the intensity
will be zero, but the optically induced change in the refrac-
tive index is not zero because of the nonlocality. As shown in
Fig. 5, the induced change in the refractive index is almost
maximal at the midpoint between the intensity peaks, when
the nonlocality is strong (o> 1).

Indeed, the structure of the potential (24) does predict a
bound state of two out-of-phase solitons, as shown in Fig. 3,
where the potential (24) is plotted as a function of peak sepa-
ration for A\=1 and o=10. We see that when using the Gauss-
ian profiles the potential has the same qualitative shape as
when using the exact profiles. In both cases the potential is
attractive for large separations and repulsive for small sepa-
rations. For xy=5.4 we have dU/dx,=0, which corresponds
to a bound state, where the strength of the attractive and
repulsive forces acting on the soliton have the same magni-
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FIG. 3. Interaction potential U as a function of peak separation
found with Eq. (24) with A=1, =10, and v=0. Lines show poten-
tial when using exact numerical profiles (dash-dotted line, solitons
in-phase; solid line, phase difference of 7). Points show the poten-
tial when using the Gaussian approximation for the profiles (O,
in-phase and @, phase difference ).

tude. In Fig. 3 the same potential, but now for in-phase soli-
tons is also plotted. Here we see that dU/dx is always posi-
tive, which means that two in-phase initially parallel
nonlocal solitons will always collide. Inserting the Gaussian
approximations for the solitons in the potential (24) and solv-
ing the equation dU/dxy=0 for x, with v=0 gives

l\/(8p4+6p2+ Din(p*+ 1)
2 Mp®-1)

Xo= (25)

We see that the perturbative analysis predicts that a bound
state only exists when p>1. Using Eq. (22) one finds that
this corresponds to No?> 1. Relating this to the physically
measurable quantities the power P and width b, we find the
requirement b P>\2mX54/5=27.1, when using the
Gaussian approximation. The criterion Ao?> 1 for the exis-
tence of a bound state was also found when solving the equa-
tions numerically. In other words, the bound state only exists
for a sufficiently large degree of nonlocality o->1/\ or
correspondingly a sufficiently high power P>27.1/b,. Fix-
ing the width of the input beam to be X, means b;=1. In this
case the threshold power for the existence of a bound state is
P=27.1, corresponding to P=1.4 mW/mm for the physical
parameter values given in Sec. II.

The separation in a bound state found numerically is
shown in Fig. 4, together with the separations found with Eq.
(25). The separations predicted by the perturbative analysis
are consistent with the results found numerically. Both re-
sults indicate that x,— % for Ao — 1 . In other words, when
the nonlocality is too weak (o— 1/\), the solitons are so
far apart that they cannot ‘“feel” each other, and the
state cannot be regarded as a bound state anymore. Further-
more, both approaches predict a local minimum around
o=3 for the case A=1. In Fig. 4 two times the exact width of
one of the solitons in the bound state is also plotted. We

PHYSICAL REVIEW E 72, 066611 (2005)

2)(0 22w,

FIG. 4. Peak separation (2x,) in a bound state of two out-of-
phase solitons for A=1. The solid line shows the numerically found
exact peak separation and dots (@) represent values predicted by
Eq. (25). The dashed line shows the width (2w,) of one of the
solitons found numerically; the circles (O) shows 2w, as predicted
by the effective particle approach with the Gaussian solitons.

see that the widths found numerically are consistent with
the widths predicted by our perturbative approach. The per-
turbative result is most accurate when the separations are
larger than the soliton width. This is to be expected since the
analytical approach relies on the assumption of weak soliton
interaction.

In Fig. 5 profiles of the bound states found numerically by
solving Egs. (14) and (15) are plotted together with the ap-
proximations found using the effective particle approach
with the Gaussian approximate profiles. The plots show that
the approximate results are in good qualitative agreement
with the exact ones, found numerically, in both weakly local
and highly nonlocal regimes. Again we see that the best

I
[ye?
(=)

I
|
(=
(o
—
(=
ol
(=3

!
[ae!
O

I
—|
O

= O
—|
O
ol
(=)

FIG. 5. Examples of bound states found numerically for A=1
(a, line; 4, dash-dotted line). Also the bound states predicted by the
effective particle approach using the approximate Gaussian profiles
are shown (a, points; ¢, circles).
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FIG. 6. Escape angle (3,) in degrees versus nonlocality for out-
of-phase solitons, width w,=6.9 and separation 2xy=3w,. The solid
line shows the escape angle calculated using the effective particle
approach. Numerical simulations where the solitons continued to
move apart after 60 diffraction lengths are marked with a @, and
simulations where they began to move towards each other are
marked with a O. The dashed line shows the power (P) of each of
the solitons. Below two examples are shown, one where the solitons
do not escape, and one where they, after 60 diffraction lengths, still
move away from each other. These simulations are for P=62.3 and
o=10.

quantitative agreement is found in the weakly nonlocal re-
gion, where the separations are highest, when compared to
the individual soliton width. In Fig. 1 we have already shown
that the bound state can be stable, which we found to be the
case in all our simulations.

V. SOLITON INTERACTION

In this section we will use the Lagrangian given in Eq.
(23) to determine the outcome of the interaction of two
ground state bright solitons launched with a small relative
angle, so they move initially at diverging trajectories. As the
total energy Etot=%Pvz+ U is conserved, this quantity can be
used to determine whether or not the “effective particle” (the
soliton) is trapped by the potential. If the energy is greater
than 0, the particle can escape from the potential barrier, i.e.,
the two solitons will keep moving away from each other. If
the total energy is negative the particle is trapped by the
potential, i.e., the two solitons will propagate together, with
their separation exhibiting periodic oscillations. Using the
potential (24) we can predict the escape velocity, which is
the velocity where the total energy is 0. Here we cannot use

PHYSICAL REVIEW E 72, 066611 (2005)
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FIG. 7. Escape angle (3,) in degrees as a function of nonlocality
for in-phase solitons. The parameters are the same as those in
Fig. 6.

the Gaussian approximations for the soliton profiles since the
interaction for large separations is dependent on the soliton
tails, but the tail of the exact profile is different from a
Gaussian as discussed earlier. Therefore we find the escape
velocity numerically by solving

P2+ U=0, (26)

where v,. is the escape velocity. U and P are evaluated using
the numerically found exact profiles. In Fig. 6 the escape
angle B.=tan"' v, is plotted as a function of the degree of
nonlocality for solitons out of phase (6=). Notice that be-
cause of different normalization parameters in the x and z
direction, the physical escape angle is given by ,8:
=tan™' (v Xy/Lp). The width of the optical field is kept con-
stant (w,=6.9) and the soliton peak separation is also con-
stant (2xy=3w,) to ensure small initial overlap between the
solitons for all degrees of nonlocality, since this is the re-
quirement for our adiabatic theory to work. We see that the
effective particle approach enables us to give a good estimate
of the escape velocity, although the effective particle ap-
proach tends to slightly overestimate the escape angle. For
the soliton parameters used in this experiment o=3 is the
critical value of the nonlocality, below which out-of-phase
solitons no longer attract, even if launched in parallel. There-
fore the plot for the escape angle in Fig. 6 does not extend
below o=3.

Interaction of in-phase solitons was also investigated. The
results for the escape angle in the highly nonlocal regime
were almost identical to those of the out-of-phase solitons as
shown in Fig. 7. This agrees with experimental results of
Peccianti et al. [26] where interactions between both out-of-
phase and in-phase nematicons were investigated. The main
qualitative difference in the interaction of nonlocal in-phase
solitons and out-of-phase solitons, is the fact that for the
in-phase solitons there always exists a finite escape angle for
all values of 0=0, indicating that, as it is well known, in-
phase solitons always attract.
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VI. CONCLUSION

We studied interactions between nonlocal spatial solitons
using a perturbative analytical approach, as well as direct
numerical simulations. Bound states consisting of two out-
of-phase solitons were analytically described. The analytical
results agree well with the exact numerical results for all
degrees of nonlocality o. The best quantitative results of the
perturbative approach are found in the weakly nonlocal re-
gion. Both the perturbative approach and the numerical
simulations indicate that a bound state solution of systems
(14) and (15) exist for N\o>> 1, where \ is the soliton eigen-
value. For a Gaussian input beam with power P and width
b, we showed that this requirement approximately could be
expressed as by P>27.1. Because of the scaling of the gov-
erning equations a physical initial beam width of X,

PHYSICAL REVIEW E 72, 066611 (2005)

corresponds to b;=1, and the power threshold becomes
P=1.4 mW/mm for typical parameter values.

Escape angles for solitons in phase and out of phase
(phase difference ) are also predicted using the perturbative
method. The results are found to be quantitatively consistent
with numerical simulations of the full set of governing equa-
tions for all degrees of nonlocality. Here it was found that
in-phase solitons always attract, while a certain degree of
nonlocality is necessary for out-of-phase solitons to attract.
This degree of nonlocality was shown to be equivalent to the
criterion stated above for existence of a bound state.
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