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We study the behavior of scarlets of a stochastic radiation field of fixed frequency in the presence of a slit
pierced on an infinitely thin metallic screen of ideal conductivity. Our methodology involves the exact solution
of the Maxwell equations with appropriate boundary conditions, the only approximations being those due to
the numerical procedure. Our numerical simulations show that the field is unfolded into two components, a
dominant one that is disordered and a weaker one that is ordered. The former still presents scarlets although
modified, while the latter exhibits a pattern of perfectly coherent diffraction. Due to the dominant character of
the disordered component, the general appearance of the scattered field is stochastic; however, an underlying
order exists. Our results confirm, thus, a novel effect suggested previously in the context of stochastic
electrodynamics.
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I. INTRODUCTION

The problem of the scattering of electromagnetic fields by
diffracting structures such as a strip grating or a rough sur-
face has been widely studied for incident plane waves �1–4�
and, more recently, for more realistic electromagnetic beam
waves such as Gaussian �5�, Bessel �6�, Bessel-Gauss �6,7�,
or Hermite-Gauss �8,9� packets. These studies have been
mainly motivated by the vast and important technological
applications of the results �10�. Here, we revisit the problem
of diffraction of a stochastic electromagnetic field of a fixed
frequency. Besides our specific interest in this problem be-
cause of its possible relevance to stochastic electrodynamics,
as explained at the end of the paper, we consider that the
study of the diffraction of a stochastic electromagnetic field
and its effect on the scarlets �see below� has an interest of its
own. Our treatment has two important differences from pre-
vious studies. One is that the present calculation is exact, the
only approximations being those due to the numerical proce-
dures. The other is that we pay particular attention to the
scarlets, in the following sense. A few years ago it was found
that random superpositions of stochastic plane waves of
fixed frequency have surprising statistical properties �11�.
The common wisdom was that such random superpositions
would give rise to a speckle pattern. However, numerical
simulations showed unexpectedly that they form a random
pattern of ridges, known as scarlets, which may be quite
long, reaching sometimes 50 or even 60 wavelengths �11,12�.
�An example is shown in Fig. 2 below.� Here, we study how
these structures that reveal a large spatial coherence despite
the disorder of the field are affected by the presence of dif-
fracting objects. In this study, we report our results for an
infinite rectangular slit pierced on a metallic infinitely thin
screen of infinite conductivity and show that the diffracted
field can be expressed in terms of two components, namely a

stochastic one that still presents �modified� scarlets and a
much more organized one, whose order is exhibited in a
pattern of perfectly coherent diffraction.

Since the wavelength of the stochastic field is arbitrary in
principle, it becomes necessary to use a rigorous theory to
study this diffraction problem. Indeed, it is known and pre-
vious calculations with conventional fields have confirmed
that for wavelengths comparable to the width of the slit, the
tensor character of the electromagnetic field plays a very
important role �10,13�. These effects due to polarization are
neglected in the approximate diffraction scalar theories fa-
vored by the optics community �14�. Thus, one needs to re-
sort to a rigorous theory of diffraction, which means that the
only permissible approximations are those that simplify the
problem �such as considering an ideal system as is done
here� and the unavoidable numeric rounding errors along the
calculation. Therefore, the Maxwell equations and their as-
sociated boundary conditions are here solved exactly. From
among the rigorous theories of diffraction available in the
specialized literature, we use the so-called modal theory
�14,15�, since it seems to be the one that best adapts to our
problem. This means that the field inside the slit is expressed
by means of a modal expansion. The fact that the calculation
performed here is exact may be a point of particular interest
to some of our readers.

II. FORMULATION OF THE PROBLEM

We place the diffracting structure coinciding with the
plane ZX as shown in Fig. 1; this divides the empty space
into two regions, the upper region R�+�= ��x ,y ,z��R3 �y
�0� and the bottom region R�−�= ��x ,y ,z��R3 �y�0�. The
slit extends on the Z axis from −� to � and on the X axis
from x=0 to x= l. The stochastic electromagnetic radiation
field to be considered spreads downward on this device and
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consists of a random superposition of stochastic plane waves
with wave vectors parallel to the plane XY as shown in Fig.
1. Thus, the incident field is given by �16�

Ein�r� = �
j=1

N

E je
i�kj·r+�j�,

Hin�r� = �
j=1

N

H je
i�kj·r+�j�, with H j =

k j � E j

��0

. �1�

The wave vector of the jth plane wave has the form
k j = �kxj ,−kyj ,0�, with components

kxj = k sin � j and kyj = k cos � j . �2�

The magnitude of each vector k j is fixed �since the frequency
is fixed�, but its direction of incidence on the screen is as-
sumed to obey a uniform statistical distribution with � j uni-
formly distributed in the interval �−	 /2 ,	 /2�; the phase � j

of each plane wave is uniformly distributed in the interval �0,
2	�. The amplitudes Ej and Hj follow a Gaussian distribu-
tion centered around zero and of fixed variance. In Fig. 2, we
show the contour maps for a realization of this stochastic
electromagnetic field, assuming that the electric field of each
plane wave of the random superposition oscillates along the
Z axis, i.e., the electric and magnetic fields have the form
E= �0,0 ,Ez� and H= �Hx ,Hy ,0�. The contour map of Fig.
2�a� corresponds to the electric field Ez

in, whereas Figs. 2�b�
and 2�c� show the components Hx

in and Hy
in of the magnetic

field, respectively. The presence of the scarlets is clearly ob-
served. To obtain each of these figures, we have superposed
10 000 random plane waves, and the scales of the graphs
were normalized to the size of the wavelength.

Our physical problem is to find the total fields E and H at
each point of space in the presence of the diffracting struc-
ture. According to the condition of incidence shown in Fig.
1, the diffracted fields in the upper region of space can be

written as the difference between the total field and the inci-
dent field, Ed

�+�=E−Ein, Hd
�+�=H−Hin, while in the bottom

region, we have Ed
�−�=E and Hd

�+�=H.

III. MATHEMATICAL FORMULATION

The description of the system is invariant under transla-
tions along the Z axis, since neither the stochastic incident
field nor the diffracting structure change under these transla-
tions. This implies that if E�x ,y ,z� and H�x ,y ,z� are solu-
tions of the Maxwell equations, E�x ,y ,z�� and H�x ,y ,z��
will be solutions for any z��z. Uniqueness of the solution
implies then that the electromagnetic field should be inde-
pendent of the z coordinate. Under this condition, the Max-
well equations can be decomposed into two independent sets
of equations �15,17�. One set corresponds to the transverse
electric �TE� polarization, which contains the components
Ez, Hx, and Hy of the electromagnetic field,

�2Ez + k2Ez = 0, �3a�

Hx = −
i

��0

�Ez

�y
, �3b�

Hy =
i

��0

�Ez

�x
. �3c�

Here k=�	�0
0=2	 /� is the magnitude of the wave vector,

0 and �0 are the electric permittivity and magnetic perme-
ability of the vacuum, respectively. The second set of equa-
tions corresponds to the transverse magnetic �TM� polariza-
tion, described by the components Hz, Ex, and Ey, so that

�2Hz + k2Hz = 0, �4a�

Ex =
i

�
0

�Hz

�y
, �4b�

Ey = −
i

�
0

�Hz

�x
. �4c�

These sets of equations together imply that the polarization is
conserved, i.e., if the stochastic incident field possesses po-
larization TE or TM, the diffracted field will also have po-
larization TE or TM, respectively. We denote, thus, by
U�x ,y� the component Ez in the TE case or Hz in the TM
case and look for solutions to the Helmholtz equations �3a�
or �4a� that satisfy the following conditions: �1� the electro-
magnetic field is bounded for large y �boundary condition at
infinity�, and �2� the stochastic incident field propagates
downward in the upper region �initial condition of inci-
dence�.

It is convenient to keep the variable y in the configuration
space, but to perform a Fourier transformation in the variable
x, so that the solution in R�+� can be expressed as

FIG. 1. Diffracting structure, plane screen of infinite conductiv-
ity �coincident with the plane XZ� with a rectangular slit that ex-
tends on the Z axis from −� to � and on the X axis from x=0 to
x= l. This figure also shows, in a pictorial way, an incident stochas-
tic field of fixed wavelength, which consists of a random superpo-
sition of stochastic plane waves with wave vector parallel to the
plane XY.
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U�x,y� =
1

	2	



−�

+�

I���ei��x−���y�d�

+
1

	2	



−�

+�

R���ei��x+���y�d� � U�+��x,y� ,

�5a�

whereas in R�−�, we have

U�x,y� =
1

	2	



−�

+�

T���ei��x−���y�d� � U�−��x,y� . �5b�

Here and in the following, the � and � signs refer to the
upper and lower half planes, respectively. Further ���
=	k2−�2 is a real number �����0� for traveling waves,
and a purely imaginary number �−i����0� for evanescent
waves. I��� is the spectral distribution of amplitudes of the
stochastic incident field. Since U�+��x ,y� is bounded for large
y, we must have

I��� = 0 ∀ ��� � k . �5c�

Our problem has been reduced to the determination of R���
and T���, the spectral distributions of the backward �re-
flected� and downward �transmitted� diffracted fields, respec-
tively.

A. TM case

In this case, U�x ,y� is the tangential �to the metallic
screen� component of the magnetic field Hz. The boundary
condition of the electromagnetic field at y=0 �on the diffract-
ing structure� implies that the tangential component of the
magnetic field is continuous on the slit

Hz
�+��x,0� = Hz

�−��x,0�, ∀ x � �0,l� , �6�

while the tangential component of the electric field Ex is
continuous on both the screen and the slit, so that from Eq.
�4b� it follows that

�Hz
�+�

�y
�x,0� =

�Hz
�−�

�y
�x,0�, ∀ x � �− �, + �� . �7�

Since the tangential electric field Ex is null on the metallic
screen, we have the additional conditions

�Hz
�+�

�y
�x,0� = 0,

�Hz
�−�

�y
�x,0� = 0, ∀ x � �− �,0� � �l, + �� . �8�

From Eqs. �5a� and �5b� together with Eq. �7�, it follows that
the spectral distributions I���, R���, and T��� are related by

I��� = R��� + T��� . �9�

This result allows us to cast the second term of the right-
hand side �rhs� of Eq. �5a� �backwardly diffracted field,
Hz,d

�+��x ,y�� into the form

FIG. 2. XY contour map of an incident stochastic electromag-
netic field with polarization perpendicular to the plane XY, over a
region of 80 wavelengths on each side. The stochastic field is a
superposition of 10 000 plane waves, each with a random orienta-
tion k in the semicircle of incidence, a random phase shift, and a
Gaussian random amplitude. Panel �a� corresponds to the electric
field Ez

in, �b� shows the component Hx
in of the magnetic field, and �c�

the component Hy
in.

REORDERING OF THE RIDGE PATTERNS OF A… PHYSICAL REVIEW E 72, 066605 �2005�

066605-3



Hz,d
�+��x,y� =

1
	2	



−�

+�

R���ei��x+���y�d�

=
1

	2	



−k

+k

I���ei��x+���y�d�

−
1

	2	



−�

+�

T���ei��x+���y�d�

� Hz,sr
�+� �x,y� + Hz,pd

�+� �x,y� . �10�

In writing the second equality, we used condition �5c�. We
see that the backwardly diffracted field can be separated into
two parts: the one denoted by Hz,sr

�+� is the specular reflection
of the stochastic incident field Hz

in represented by the first
term on the rhs of Eq. �5a�, which exists even in the absence
of the slit; the other one, denoted by Hz,pd

�+� , represents a
purely backward diffraction field and is due to the presence
of the slit. The specular reflection field oscillates in phase
with the stochastic incident field as follows from Eqs. �10�
and �5a�, while the backwardly diffracted field experiences a
phase shift of 	 radians with respect to the upwardly dif-
fracted field, see Eqs. �10� and �5b�.

The Helmholtz equation for the field Hz within the slit
becomes an eigenvalue problem with Neumann boundary
conditions, since at the edges of the slit ∀ x� �0, l�, we have

d2Hz�x,0�
dx2 + k2Hz�x,0� = 0 with

�Hz

�x
�0,0� = 0,

�Hz

�x
�l,0� = 0. �11�

The general solution to these equations is a linear superpo-
sition of the eigenfuctions �usually called modal expansion�,

Hz�x,0� = �
n

an�n�x� , �12a�

where

�n�x� = �cos�	nx/l� if x � �0,l�
0 if x � �0,l� , n � N � �0� .

�12b�

The completeness property of the eigenfuctions �n�x� allows
us to write the normal derivative �Hz /�y inside the slit as
given by Eq. �7� in the form

�Hz
�+�

�y
�x,0� =

�Hz
�−�

�y
�x,0� = �

n=0

�

qn�n�x�, ∀ x � �0,l� .

�13�

A Fourier analysis of this equation allows us to write the
spectral distributions R��� and T��� as functions of the
modal coefficients qn

I��� − R��� = T��� = �
n=0

�

qn
i�̃n���
���

, �14a�

where

�̃n��� =
i�

	2	

1 − �− 1�ne−i�l

�	n/l�2 − �2 �14b�

is the Fourier transform of �n�x�. In its turn, the continuity of
the magnetic field Hz on the slit Eq. �6� allows us to define a
function f�x� identical to zero by means of

f�x� � Hz
�+��x,0� − Hz

�−��x,0� = 0, ∀ x � �0,l� , �15�

which can be expressed also as a superposition of the eigen-
functions in the form f�x�=�fn�n�x�, where the coefficients
of the expansion fn are all equal to zero. Using now the
Parserval-Plancherel theorem, we obtain

fn = ��̃n���, f̃���� = 

−�

+�

�̃n
*��� f̃���d� = 0,

∀ n � N � �0� . �16�

Here, �̃n��� and f̃��� are the Fourier transforms of �n�x� and
f�x�, respectively.

With the help of Eqs. �5a�, �5b�, �14a�, and �15�, Eq. �16�
acquires the form

�
m=0

� ��̃m���,
2i�̃n���

���
�qm = ��̃m���,2I���� ,

∀ n � N � �0� , �17�

or, written in matrix form,

�Q00 Q01 ¯

Q10 Q11 ¯

] ] �

��q0

q1

]

� = �P0

P1

]

� , �18�

where the matrix elements are given by

Qmn =��̃m���,
2i�̃n���

���
�

=
i

	



−�

+� �2�1 − �− 1�mei�l��1 − �− 1�ne−i�l�
	k2 − �2�	2m2/l2 − �2��	2n2/l2 − �2�

d� ,

�19a�

Pm = ��̃m���,2I����

= − 2ik�
j=1

N

Hj
ei�j sin � j�1 − �− 1�meikl sin �j�

	2m2/l2 − k2 sin2 � j

. �19b�

The latter expression can be evaluated directly, and its deri-
vation is shown in Appendix A. However, the Qmn will be
expressed in terms of the eigenfunctions and evaluated nu-
merically. Once all the matrix elements have been deter-
mined, the modal coefficients are calculated multiplying both
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sides of Eq. �18� by Q−1, and from these results, the spectral
distributions R��� and T��� are determined using Eq. �14a�.
This procedure allows us to determine the total electromag-
netic field at all points in space by means of Eqs. �5� and �4�.
In this way, the TM case is completely solved.

B. TE case

In the TE case, U�x ,y� in Eqs. �5a� and �5b� is the com-
ponent Ez of the electric field, so the boundary conditions
applied to the tangential components of the electromagnetic
field at the interface become

Ez
�+��x,0� = Ez

�−��x,0�, ∀ x � �− �,�� , �20�

�Ez
�+�

�y
�x,0� =

�Ez
�−�

�y
�x,0�, ∀ x � �0,l� . �21�

The supplementary condition is now

Ez
�+��x,0� = 0, Ez

�−��x,0� = 0, ∀ x � �− �,0� � �l, + �� .

�22�

Thus inside the slit, we have a Dirichlet eigenvalue problem
on the boundary, with Ez�0,0�=0, Ez�l ,0�=0, so the electric
field can be expressed in the form

Ez�x,0� = �
n

bn�n�x� , �23a�

where the eigenfunctions are now

�n�x� = �sin�	nx/l� if x � �0,l�
0 if x � �0,l� , n � N . �23b�

The mode n=0 has been suppressed to avoid the uninterest-
ing identically null solution.

The x-Fourier analysis of the continuity condition Eq.
�20� applied to Eqs. �23� shows that the spectral distributions
I���, R���, and T��� are related by

I��� + R��� = T��� = �
n=1

�

bn�̃n��� , �24a�

where

�̃n��� =
n		

	2l

1 − �− 1�ne−i�l

�	n/l�2 − �2 �24b�

is the Fourier transform of �n�x�. The backwardly diffracted
field is now

Ez,d
�+��x,y� = −

1
	2	



−k

+k

I���ei��x+���y�d�

+
1

	2	



−�

+�

T���ei��x+���y�d�

� Ez,sr
�+� �x,y� + Ez,pd

�+� �x,y� , �25�

where once more condition �5c� has been used. We see that
in this case, the specular reflected field oscillates in phase

opposition to the incident field �as is well known�, while the
purely backwardly diffracted field oscillates in phase with
the upwardly diffracted field, as follows from Eq. �5b�.

In analogy to the TM case, the continuity condition for
�Ez /�y on the slit leads to the matrix equation

�B11 B12 ¯

B21 B22 ¯

] ] �

��b1

b2

]

� = �S1

S2

]

� , �26�

where the matrix elements are given by the expressions

Bmn = ��̃m���,i����̃n����

=
2inm	

l2 

−�

+� 	k2 − �2�1 − �− 1�nei�l��1 − �− 1�me−i�l�
��	n/l�2 − �2���	m/l�2 − �2�

d� ,

�27a�

Sm = ��̃m���,2i���I���� .

=
2i	mk

l
�
j=1

N

Ej
ei�j cos � j�1 − �− 1�meikl sin �j�

�	m/l�2 − k2 sin2 � j
.

�27b�

�See Appendix A for the explicit derivation of Eq. �27b�.� We
arrive at a situation similar to that of the TM case, where the
matrix elements Sm can be calculated directly and Bmn are to
be evaluated numerically. With this the TE problem is
solved, since it suffices to multiply Eq. �26� by the inverse of
matrix B in order to obtain the modal coefficients bn. These
are then used to calculate the spectral distributions R��� and
T��� using Eqs. �24�, and the total electromagnetic field at
any point of space is thus obtained from Eqs. �5� and �4�.

IV. NUMERICAL IMPLEMENTATION

The first step for the numerical solution of the matrix
equations �18� and �26� is to replace the infinite matrices Q
and B with finite ones. We implemented this using a conver-
gence criterion, by which the numerical stability of the re-
sults was checked as the number of eigenmodes in the ex-
pansions Eqs. �12�, �13� and �23a� was increased. The
numerical evaluation of the matrix elements Qmn �Eq. �19a��
and Bmn �Eq. �27a�� is very delicate and cumbersome, due to
the violent oscillatory behavior of their integrands. This
problem was solved by an appropriate change of the integra-
tion path into the complex plane, as shown in Ref. �5� for the
TE case. During the convergence process, the criteria of en-
ergy balance and reciprocity relations were also checked �see
Appendix B�. In our calculations both criteria were always
substantiated, the former to three significant digits and the
latter to an accuracy better than 10−5, even when the use of a
small number of modes leads to erroneous results. Thus,
these criteria are very important to check the numerical code,
but cannot be used to control the results. The required num-
ber of terms in the modal expansions depends critically on
the angle of incidence of the field impinging on the slit, as
well as on the optogeometric parameter � / l. This point is just
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the weakness of the modal theory, since it may lead to un-
stable or erroneous results if an important mode happens to
be omitted from the computation. In the specialized litera-
ture, it is asserted that this number rarely exceeds 15 for a
plane wave or a beam wave arriving at an angle close to
normal incidence �5�. However, in our simulations, we have
found that when the incidence angle is larger than 50° or 60°
with respect to the normal, the number of terms should be
increased up to at least 80 or 90 to attain the required preci-
sion. In our random superpositions, we have incidence
angles of all values, since they follow a uniform distribution
in the interval �−	 /2 ,	 /2�. Therefore, in the simulations,
we used a minimum number of 50 terms. Once the modal
coefficients had been calculated subject to the control crite-
ria, the diffracted fields were evaluated by means of the Fou-
rier transform given by Eqs. �5�, with Eq. �14a� or Eq. �24a�
for the TM or TE case, respectively. The integrand of these
integral transforms has violent oscillations in the vicinity of

�=k when ����k, so in this region it is important to use a
technique of adaptive quadrature in the integration proce-
dure. In the region ����k �that of evanescent waves�, the
integrand goes quickly to zero as the field is evaluated far-
ther from the slit. In our calculations, the integration interval
was initially limited to �−�k ,�k�, where � is a positive real
scaling factor. The convergence process in the evaluations of
the Fourier transforms was checked by enlarging the range of
the variable � by means of the scale parameter �; a typical
maximum value was about �=5.

V. EXAMPLES OF A NUMERICAL SIMULATION

As a first example of the results obtained with the de-
scribed procedure, in Fig. 3�a�, we show the XY contour map
of the electric component of a realization of the stochastic
incident field with TE polarization. The wavelength in units
of the length of the slit, which extends from 0 to 1 on the X

FIG. 3. Shows the diffraction process for a specific realization of the stochastic electromagnetic field with TE polarization
�E= �0,0 ,Ez�� and wavelength normalized to the width of the slit. Here and in the following figures, all distances are measured relative to
the width of the slit. Panel �a� shows the corresponding XY contour map of the incident electric field �Ez

in�, �b� is the XY contour map of the
backward diffracted electric field, �c� corresponds to the XY contour map of purely backwardly diffracted electric field, and �d� shows the XY
contour map of the upwardly diffracted electric field.
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axis, is �=0.628 32 �k=2	 /�=10�. Once more the scarlets
are clearly visible. Figure 3�b� shows the contour map of the
backward diffracted electric field Ez,d

�+��x ,y�; comparing this
figure with the previous one, we notice that the distribution
of the electric scarlets is modified by the presence of the
diffracting structure, albeit no clear evidence of the presence
of the slit is noticeable. Figure 3�c� shows the contour map
of the purely backwardly diffracted electric field Ez,pd

�+� �x ,y�;
here, we observe that a perfectly ordered pattern of coherent
diffraction emerges in spite of the stochasticity of the incom-
ing field �we recall that here the specular reflected electric
field has been subtracted from the diffracted electric field�.
Figure 3�d� shows the contour map of the upwardly dif-
fracted electric field Ez,d

�−��x ,y�; here, only an ordered diffrac-
tion pattern appears since in region R�−� there is no stochastic
incident field. Of course the stochastic appearance of the
diffracted field in reflection �backwardly diffracted� in Fig.
3�b� is due to the fact that in R�+� both the specular reflection
that is stochastic �according to Eq. �10� it has the same gen-
eral characteristics of the incident field�, and the well ordered
purely backwardly diffracted field �Eq. �10� and Fig. 3�c��
contribute to the diffraction field; however, the dominant
component is the stochastic one �specular reflection�, as one
can readily observe from Fig. 4, where a comparison is made
of both fields at different places in front of the screen at y
=0.5 and y=4.0. From this figure, we also observe that the
magnitude of the ordered field swiftly diminishes as one goes
away from the diffracting structure, while the specular re-
flection is sustained. Thus, any possible effect due to diffrac-
tion should occur in the proximity �a few wavelengths� of the
slit.

Similar qualitative results are obtained changing the ini-
tial conditions of the incident field, such as the polarization
or the specific realization of the disorder, as well as the op-
togeometric parameter � / l. For example, Fig. 5 shows the
diffraction in reflection and in transmission for a stochastic
field impacting with polarization TM, the wavelength and the

realization of the disorder being the same as in the previous
case. Figures 5�a� and 5�b� show the contour maps of the
magnetic component Hz. When comparing the graphs of this
simulation with those corresponding to the previous case,
one observes, in a qualitative way, the effects of the tensor
character of the stochastic incident electromagnetic field. In a
forthcoming paper, we present a quantitative analysis of the
effects of all these parameters on the diffracted field and
extend the study to more than one slit; here, we restrict our-
selves to presenting just the qualitative aspects of this behav-
ior by showing that the slit works somehow as a corrective
mechanism of the stochastic field.

VI. CONCLUSION

The main conclusion that one can draw from the above
analysis is of a qualitative character, namely that a stochastic
electromagnetic radiation field in the presence of a diffract-
ing structure contains two components: a stochastic one that
still presents scarlets and another much more organized one,
whose order is exhibited in a pattern of perfectly coherent
diffraction. The dominant component is the stochastic one,
with the result that the general appearance of the diffracted
field is stochastic. This qualitative behavior is quite robust,
since it is manifested independently of the value of the pa-
rameters that characterize the stochastic field, such as the
specific realization of the disorder, the polarization or the
size of the optogeometric parameter � / l, and even the pres-
ence of the incident field in whole space, and not restricted to
the R�+� region, as was done here for clarity of the exposition.
Thus, we are confirming the existence of a novel effect sug-
gested elsewhere several years ago �20�, namely that under-
lying the scarlets of a stochastic field in presence of a dif-
fracting structure, a perfectly ordered field exists, manifested
in a coherent pattern of diffraction.

From a conceptual point of view and in a more specula-
tive vein, we may add the following remark. The disclosed

FIG. 4. Comparision between the specular re-
flection field �Ez,sr�x ,y�, which is stochastic� and
the well ordered purely backwardly diffracted
field �Ez,pd

�+� �x ,y�� at different distances �y� of the
screen: �a� at y=0.5 and �b� at y=4.0. The mag-
nitude of the fields �vertical axis� is given in ar-
bitrary units.
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behavior of the field may be of importance for a physical
understanding of the origin of the phenomenon of quantum
diffraction of matter. Indeed, during the last decades there
has been substantial investigation on the hypothesis that the
quantum behavior of matter can have its origin in the inter-
action of matter with the vacuum radiation field �20–23�.
This universal background field is called the zero-point field,
because it is supposed to exist even at zero absolute tempera-
ture and also because its properties are close to those of the
vacuum or zero-point field of quantum electrodynamics
�20–25�. According to the present results, this stochastic
zero-point field in presence of a diffracting structure acquires
an underlying coherent diffraction component. Would elec-
trons immersed in this vacuum field somehow follow the
ordered diffraction pattern, filtering out the disordered com-
ponent, perhaps due just to its disorder? Such a possibility

would open the door to an explanation with deep physical
meaning of the diffraction of matter. This is an issue that
needs much more investigation to determine its potentiality,
but the prospect is certainly worth the effort.
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APPENDIX A

Let us denote the stochastic incident field by Uin�x ,y�; in
the case of TE or TM polarization, Uin�x ,y�=Ez

in�x ,y� or
Uin�x ,y�=Hz

in�x ,y�, respectively. Then, Uin�x ,y� is the ran-
dom superposition of plane waves with the statistical char-
acteristics defined in Sec. III, so

Uin�x,y� = �
j=1

N

Uj exp�i�xk sin � j − yk cos � j + � j�� .

�A1�

Denoting by Ũin�� ,y� the x-Fourier transform of the Uin�x ,y�
field, we have

Uin�x,y� =
1

	2	



−�

+�

Ũin��,y�ei�xd� , �A2�

so that

Ũin��,y� = �
j=1

N

	2	Uje
i�j��� − k sin � j�e−iky cos �j

� I���e−iy���, �A3�

where I��� is the spectral distribution of the incident field
introduced in Eq. �5a�.

For the TM case, the matrix elements Pn, Eq. �19b�, can
now be readily evaluated. Sustituting �̃n from Eq. �14b� and
I��� from Eq. �A3� in Eq. �19b�, we obtain, in an immediate
way,

Pn = 2

−�

+�

�̃n
*���I���d�

= 2

−�

+� − i�
	2	

1 − �− 1�nei�l

	2n2

l2 − �2
�
j=1

N

	2	Uje
i�j

���k sin � j − ��ei����−k cos �j�yd� , �A4�

which after performing the integration acquires the form

Pn = − 2ik�
j=1

N

Hj
ei�j sin � j�1 − �− 1�neikl sin �j�

	2n2

l2 − k2 sin2 � j

. �A5�

In a similar manner for the TE case, the direct substitution of
Eqs. �24b� and �A3� for �̃n and I���, respectively, in Eq.
�27b� allows us to obtain for Sn, the expressions

FIG. 5. Diffraction in reflection and in transmission for a sto-
chastic electromagnetic field with TM polarization �H= �0,0 ,Hz��.
The optogeometric parameters and those of the specific realization
of the field are the same of Fig. 3. Panel �a� shows in the upper half
the XY contour map of the backward diffracted magnetic field Hz,
while in the lower half, the upward magnetic field Hz. Panel �b�
corresponds to the XY contour map of the purely backward and
upward diffracted magnetic field.
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Sn = 2i

−�

+�

�̃n
*������I���d�

=
2i	nk

l
�
j=1

N

Ej
ei�j cos � j�1 − �− 1�neikl sin �j�

	2n2

l2 − k2 sin2 � j

. �A6�

APPENDIX B

Applying the Cadilhac-Maystre-Mata lemma �17–19� to
the Pointing vector, we may write the conservation of energy
theorem in the form



−k

k

����I����2d� = 

−k

k

����R����2d� + 

−k

k

����T����2d�

�B1�

that simply states that the diffracted and incident energies are
equal.

However, in our problem, the expression �B1� has serious
complications, because the spectral distribution I��� of the
incident radiation is a random superposition of delta func-
tions �see Eq. �A3��, so the first integral in Eq. �B1� is diver-
gent. This problem can be circumvented substituting Eq. �9�
for the TM case or Eq. �24a� for the TE case in Eq. �B1�, so
that the divergencies cancel out. In this form, we obtain the
following expression for the energy balance condition:



−k

k

����T����2d� − Re�

−k

k

���T���I*���d� = 0.

�B2�

Using the explicit expression for I��� given in Eq. �A3�, the
balance of energy can be recast into the form



−k

k

����T����2d� − �
j=1

N

	2	Ujk cos � j

�Re�e−i�jT�k sin � j�� = 0. �B3�

T�k sin � j� is the upwardly diffracted spectral distribution at
the random direction defined by � j.

Another important application of the lemma is the estab-
lishment of reciprocity relations, which are just those ob-
tained by demanding time reversal symmetry for the diffrac-
tion problem. The direct application of the lemma to our
physical problem leads to reciprocity by reflection,



−k

k

���R1���I2�− ��d� = 

−k

k

���R2�− ��I1���d� ,

�B4�

where I1��� and I2��� are the spectral distributions for two
different realizations of the incident field, and R1��� and
R2��� are the corresponding backward diffracted spectral
distributions. Using Eq. �9� or Eq. �24a� and the explicit
expressions for the specific realizations of the field given by
Eq. �A3� according to the case, one gets

I1��� = �
j=1

N

	2	Uj
�1�ei�j

�1�
��� − k sin � j

�1��ei����−k cos �j
�1��y ,

�B5�

I2��� = �
j�=1

N�
	2	Uj�

�2�ei�
j�
�2�

��� − k sin � j�
�2��ei����−k cos �j

�2��y .

�B6�

Thus, the reciprocity relation can be written in the form

�
j=1

N

Uj
�1�ei�j

�1�
cos � j

�1�T2�− k sin � j
�1��

= �
j�=1

N�

Uj�
�2�ei�

j�
�2�

cos � j�
�2�T1�− k sin � j�

�2�� . �B7�

Here, Ts represents the upwardly diffracted spectral distibu-
tion corresponding to the incident field whose spectral distri-
bution is Is, s=1,2.
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