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Impinging laminar jets at moderate Reynolds numbers and separation distances
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An experimental and numerical study of impinging, incompressible, axisymmetric, laminar jets is described,
where the jet axis of symmetry is aligned normal to the wall. Particle streak velocimetry (PSV) is used to
measure axial velocities along the centerline of the flow field. The jet-nozzle pressure drop is measured
simultaneously and determines the Bernoulli velocity. The flow field is simulated numerically by an axisym-
metric Navier-Stokes spectral-element code, an axisymmetric potential-flow model, and an axisymmetric one-
dimensional stream-function approximation. The axisymmetric viscous and potential-flow simulations include
the nozzle in the solution domain, allowing nozzle-wall proximity effects to be investigated. Scaling the
centerline axial velocity by the Bernoulli velocity collapses the experimental velocity profiles onto a single
curve that is independent of the nozzle-to-plate separation distance. Axisymmetric direct numerical simulations
yield good agreement with experiment and confirm the velocity profile scaling. Potential-flow simulations
reproduce the collapse of the data; however, viscous effects result in disagreement with experiment. Axisym-
metric one-dimensional stream-function simulations can predict the flow in the stagnation region if the bound-
ary conditions are correctly specified. The scaled axial velocity profiles are well characterized by an error
function with one Reynolds-number-dependent parameter. Rescaling the wall-normal distance by the
boundary-layer displacement-thickness-corrected diameter yields a collapse of the data onto a single curve that
is independent of the Reynolds number. These scalings allow the specification of an analytical expression for
the velocity profile of an impinging laminar jet over the Reynolds number range investigated of 200<Re

= 1400.
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I. INTRODUCTION

Axisymmetric jets impinging perpendicularly on a wall
are encountered in a variety of contexts, from large-scale
applications of fully developed turbulent jets impinging on
the ground, as in VTOL aircraft [1], to the small-scale use of
laminar jets to determine the shear strength of vascular tissue
in the study of atherogenesis [2]. Impinging jets are also used
in chemical vapor deposition (CVD) processes [3,4] and in
the study of laminar flames [5-9]. Work has also been done
on opposed-jet stagnation flow, a configuration widely used
in combustion experiments [10-13]. Definitive experimental
data for laminar impinging jets in the nozzle-to-plate separa-
tion distance L to nozzle diameter d ratio (see Fig. 1) range
of 0.5=<L/d=<1.5 are not widely available. This range of
L/d is useful in the study of strain-stabilized flames in com-
bustion research. Available data in this range do not include
detailed axial velocity profile measurements along the flow
centerline, except for the study of Mendes-Lopes [7]. Such
measurements are important in assessing one-dimensional
flame models. This work focuses on the hydrodynamics of
nonreacting impinging-jet flow, as a basis for related studies
of strained flames [8,9].

Flow velocities in impinging jets have been measured by
various means, such as laser-Doppler velocimetry (LDV)
[12] or particle image velocimetry (PIV) [14]. In this study,
particle streak velocimetry (PSV) [8,9,15], a technique simi-
lar to particle tracking velocimetry (PTV) [16], is used to
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obtain instantaneous flow-field measurements and, in par-
ticular, axial velocities along the flow centerline. A new PSV
methodology has been implemented in this work that in-
cludes digital imaging, image processing, and new analysis
techniques [8,9]. These improvements allow quantitative ve-
locity data to be obtained throughout the flow field with PSV,
without excessive post-processing. This allows PSV to
achieve accuracies that compete favorably with LDV or PIV,
while providing advantages such as low-particle-mass load-
ing, easy discrimination against agglomerated particles that
may not track the flow, short-run-time experiments, and re-

plate

FIG. 1. Experimental geometry.
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liable velocity measurement from Lagrangian particle trajec-
tories. The static (Bernoulli) pressure drop across the nozzle
contraction is measured concurrently, providing measure-
ment redundancy and a valuable independent parameter, as
will be discussed below.

Impinging-jet flows have been described analytically, or
simulated numerically, using different formulations and tech-
niques. Schlichting [17] presents a one-dimensional axisym-
metric model for an infinite-diameter jet impinging on a
plate, which has been used in flame studies [5,7]. This model
was extended to allow both the velocity and velocity gradient
to be specified at some distance from the stagnation plate
[10,18], providing a flexible boundary condition for finite-
nozzle-diameter impinging-jet flows. Two-dimensional,
steady, axisymmetric calculations of viscous [2] and inviscid
[1,19-21] impinging-jet flow have also been performed. Ex-
cept for the work of Strand [21], these calculations do not
include nozzle-to-wall proximity effects.

In this work, the flow is modeled with varying levels of
complexity: by means of an axisymmetric unsteady Navier-
Stokes simulation, an axisymmetric potential-flow formula-
tion, and a one-dimensional stream-function model. The first
method is a spectral-element scheme [22,23] that solves the
incompressible axisymmetric Navier-Stokes equations. The
unsteady spectral-element method is robust and time and
space accurate. The second method is a finite-difference
potential-flow solution based on the classical ideal-jet ap-
proach [24,25]. The potential- and viscous-flow calculations
presented here capture wall-proximity effects by including
parts of the nozzle and plenum assembly in the computa-
tional domain. The one-dimensional model relies on a
stream-function formulation that is used in CVD studies
[3,4] and by the combustion community [5-10,18].

The experimental results are used to evaluate the accuracy
of the different simulation methodologies. Additionally, new
scaling parameters and empirical properties of the centerline
axial velocity field are discussed. The new scaling allows the
identification of an analytical expression for the axial veloc-
ity profile of a laminar impinging jet for Reynolds numbers
in the range investigated of 200 <Re = 1400.

II. EXPERIMENTS

In the experiments documented here, a room-temperature
jet was generated in atmospheric pressure air from a con-
toured nozzle with an internal (nozzle-exit) diameter of d
=9.9 mm. The nozzle interior was designed by optimizing
the inner radius profile r(x) through the contraction section,
expressed in terms of a seventh-degree polynomial, to mini-
mize the exit boundary-layer displacement thickness and
avoid the formation of Taylor-Gortler vortices in the concave
section (see Fig. 1 and [9]). The nozzle exterior was designed
with attention to the upstream entrainment-induced flow and
to avoid flow separation and unsteadiness (see Fig. 1 and
[9]). The air mass flux was controlled using a sonic metering
valve. The flow was seeded with particles, using a seeder
developed in-house, before entering the jet plenum, where
screen and honeycomb sections were used for flow unifor-
mity and turbulence management. The nozzle-plenum sys-
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FIG. 2. Nozzle-exit velocity profile (d=9.9 mm, Re;=1400):
(OJ) experimental data, (dashed line) viscous-simulation results.
Pitot-probe internal opening is dpio =~ 0.4 mm.

tem produced a uniform velocity profile in a free-jet configu-
ration. The jet-exit velocity profile was measured with a
flattened pitot probe (do=0.4 mm in the radial direction)
and an electronic-capacitance manometer (BOC Edwards
W57401100) with a  temperature-stabilized  1-torr
differential-pressure transducer (BOC Edwards
W57011419). Figure 2 compares the nozzle-exit velocity
profile with the profile obtained from the two-dimensional
viscous simulation, at a Reynolds number Re;=pdU;/u
=1400, where Uj is the centerline velocity at the jet exit, p is
the density, and w is the viscosity. The profile is uniform,
with less than 1% variation outside the wall boundary layers
(r/R<0.6, R=d/2). The slight disagreement between simu-
lation and experiment in the wall boundary layer region is
attributable to the finite pitot-probe extent in the radial direc-
tion do, for which no corrections were applied.

The jet was aligned normal to a solid wall (stagnation
plate assembly), at separation-distance to nozzle-diameter ra-
tios of L/d=0.7, 1.0, and 1.4. Significant changes in flow
characteristics are observed over this L/d range. The stagna-
tion plate was a circular, copper block, 7.62 cm (3 in.) in
diameter and 5.08 cm (2 in.) thick, with a 2.03-cm (0.8-in.)
bottom-edge radius. A bottom-edge radius was introduced to
mitigate upstream effects of flow-separation and edge-flow
unsteadiness in the stagnation-flow region (see Fig. 1).

PSV is well suited as a velocity-field diagnostic for this
flow. In this axisymmetric, steady flow, the axial velocity
component can be reliably measured on the centerline. Par-
ticle paths do not cross or overlap, and out-of-plane particle
displacements are small and easily discernible when they oc-
cur (in-focus and out-of-focus streaks). The high sensitivity
of the scattering cross section to particle size, in the size
range employed, allows easy identification of agglomerates
that may not track the high-spatial-gradient regions in the
flow. Streaks used for PSV processing were from in-plane,
nonagglomerated particles. A single image frame can capture
the entire velocity field, allowing PSV to be implemented in
short-run-time experiments. A sample image of a cold-jet
flow with particle streaks is reproduced in Fig. 3, for a
nozzle-to-plate separation distance to nozzle-diameter ratio
of L/d=1.0. In this flow, the jet-nozzle centerline velocity is
U;=106 cm/s, yielding a Reynolds number Re;=700. The
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FIG. 3. Impinging-jet flow (Re;=700, U;=106 cm/s, L/d=1.0).
Stagnation plate and nozzle exit are visible. The nozzle-exit diam-
eter is d=0.99 cm. The image width corresponds to =1.2 cm.

top and bottom portions of the laser sheet are masked to
minimize scattering from the solid plate and nozzle surfaces.

In a variable-velocity field, particles will follow the flow
if the dimensionless product of the local strain rate o
=du/dx and the Stokes time 7g is small—i.e., if,

2

d
oTg = O'BLE< 1. (1)
18w

Measurements relied on alumina particles (Al,O5; median
size, dpEO.S pum, ppE3830 kg/m3; Baikowski Malakoft,
RC-SPT DBM). At the maximum strain rates encountered in
these experiments, o7g=3 X 107>

A Coherent I-90 Ar-ion (CW) laser, operated at 2—3 W,
was the illumination source. Two cylindrical lenses gener-
ated a thin laser sheet (=500 um) in the field of view. An
Oriel chopper system (model 75155), with a 50% duty-cycle
wheel, modulated the laser beam. The chopper was placed at
a horizontal waist in the laser beam to minimize chopping
(on-off and off-on transition) times. Chopping frequencies
were in the range 0.5 kHz< v, <2.4 kHz, with v, optimized
depending on flow velocity, in each case.

Image data were recorded with the in-house-developed
“Cassini” and “KFS” digital-imaging systems (see [9]). They
are based on low-noise, 10242-pixel charge-coupled devices
(CCDs), on a 12-um pitch. The Cassini camera is based on a
CCD developed for the NASA Cassini mission. The KFS
CCD was designed by M. Wadsworth and S. A. Collins of
JPL. The camera heads and data-acquisition systems were
designed and built by D. Lang at Caltech. Output for both is
digitized to 12 bits/pixel. Magnification ratios were in the
range of 1:1-1:1.5, using a Nikon 105-mm, f/2.8 macro lens.
Exposure times were varied for optimum particle-streak den-
sity in the images, with framing rates for these experiments
in the range of 8—10 fps.

Small-particle streaks approximate Lagrangian trajecto-
ries of the flow (see Fig. 3). Local velocities u(x) are esti-
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FIG. 4. PSV measurement implementation. The image width
corresponds to =1 mm.

mated from streak pairs as u(x)=AX(x)/At, yielding u
=L,/ 7, and uy=Ly/ 7., where 7,=1/v, (reciprocal of chopper
frequency) and Ly=x,,—x;, and Ly=x,.—x,. are the distances
from the start or end of one streak to the start or end of the
next, respectively (see Fig. 4). The velocity estimate u; is
located at x;=(x;,+x,54)/2+(w,+w,)/4, where x; is the spa-
tial location of the start of the ith streak and w; is the width
of the ith streak (see Fig. 4). Similarly, uy is located at xj
=(x1e+X2)/2— (W +wy)/4, where x;, is the location of the
end of the ith streak. Using the same intensity threshold on a
streak pair removes systematic errors in applying the La-
grangian time interval 7.. This methodology produces good
agreement between velocity values derived from each streak
pair. Streak lengths are estimated using bicubic fits on the
two-dimensional streak-intensity image data, sampled to a
0.1-pixel resolution in both dimensions. An intensity thresh-
old of approximately 0.4 of the maximum intensity of each
streak is used to determine streak dimensions to this sam-
pling resolution. The results are not sensitive to this choice
and yield an overall PSV error of <0.01Ug.

The (Bernoulli) pressure difference between the jet ple-
num interior, at the straight section upstream of any
contraction-section curvature, and the static pressure close
to, but outside the jet-core flow region, was measured with
an electronic-capacitance manometer (BOC Edwards
W57401100) and a temperature-stabilized, 1-torr full-scale,
differential-pressure transducer (BOC Edwards
W57011419). Bernoulli and mass-flow data were acquired
using the National Instruments LabView hardware-software
environment, synchronized to the digital-image acquisition
to provide independent concurrent estimates of jet-exit ve-
locity for every image. The Bernoulli velocity

| _2Aplp
Us= 1 - (dldp)* @

was then calculated, where Ap is the static pressure drop
across the nozzle, p is the density of the jet fluid (air), d is
the diameter of the nozzle exit, and dp is the plenum diam-
eter. At the flow velocities in this study, Bernoulli pressure
differences were in the range of 0.1-3 Pa. At the lowest
speeds investigated, an error of <(0.01Uy required an abso-
lute measurement accuracy for the Bernoulli pressure drop of
S(Ap)<2x1073 Pa=2X 107® bar. This accuracy is achiev-
able with the differential-pressure transducer employed if in-
strumental drifts and offsets are monitored. The Bernoulli
pressure drop cannot be used to determine the jet-exit veloc-
ity for L/d=<1 because streamline curvature in the nozzle-
exit plane produces a velocity deficit at the centerline [11].
However, the Bernoulli pressure drop is an important param-
eter for this flow, as discussed below. Mass flow rate was
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also measured concurrently (Omega FMA872-V-Air), pro-
viding an independent velocity estimate.

III. NUMERICAL SIMULATIONS

In this study, three different numerical simulations were
performed at varying levels of complexity. The first is an
axisymmetric viscous Navier-Stokes simulation, the second
is a potential-flow calculation, and the third is a one-
dimensional stream-function formulation.

A. Axisymmetric Navier-Stokes formulation

The first numerical study relies on a spectral-element
method [26] in an axisymmetric domain. The simulation
code was developed by the authors and integrates the axi-
symmetric Navier-Stokes equations, with boundary condi-
tions specified to capture this flow. Only a limited number of
studies have employed the spectral-element method to study
this type of flow. Frouzakis et al. [13] utilized the spectral-
element method to study the flow field of opposed jets and
flames, similar to the impinging-jet flows studied here. In
that work, velocity boundary conditions were prescribed at
the nozzle-exit locations. In this study, the inclusion of the
nozzle interior and exterior allows nozzle-to-wall proximity
effects, as well as entrainment, to be investigated.

The spectral-element method is a class of finite-element
methods that can handle complex geometries. Additionally,
this technique can achieve spectral accuracy by approximat-
ing the solution on Gauss-Lobatto-Legendre collocation
points within each element. For elements adjacent to the
axis, special Gauss-Radau-Legendre collocation points with
a quadratic argument are utilized to achieve the appropriate
parity for each field [27]. The code integrates a nondimen-
sional form of the unsteady, incompressible, Navier-Stokes
equations

V-u=0, (3a)

du 1
P N(u) + ReL(u) Vp, (3b)
where the nonlinear term N(u)=-—1/2[u-Vu+V-(uu)] is
cast into the skew-symmetric form to reduce aliasing errors.
The linear diffusion term is L(u)=V?u.

Figure 5 shows the elements and boundary conditions
used for L/d=1.424. In the current simulations, 9th- to 15th-
order polynomials are used in each element. These choices
provide a balance between desired solution accuracy and rea-
sonable computational time. These boundary conditions rea-
sonably model the experimental apparatus used in this study.
The unsteady Navier-Stokes equations are integrated in time
until the solution attains a steady-state condition, starting
with the flow at rest in the domain interior.

A study of the effects of boundary conditions on the flow
field was undertaken to ascertain that the near-field solution
was insensitive to the particular choices. A nearly flat veloc-
ity profile is introduced at the nozzle inlet (Fig. 5),
u,(r)/Up=—tanh[c,(1-r/rp)], where rp=dp/2 is the radius
of the plenum, Up is the centerline velocity at the plenum,
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FIG. 5. Axisymmetric Navier-Stokes simulation domain and
boundary conditions. f(u)=Vp=N(u)+L(u)/Re. u;(r) and v(x)
are the nozzle and entrainment inlet velocity profiles, respectively.

and c; was set to 50. This profile mimics the outflow from
the turbulence-management section in the experiments. As
expected, the jet profile at the nozzle exit is insensitive to the
choice of inlet profile, owing to the high contraction ratio in
the nozzle design (see Fig. 1).

To simulate the entrained flow, an entrainment flux Q. is
introduced through the lower portion of the outer boundary.
Over the range 1/4<Q,/Q=<4, where Q=27 [Fru,(r)dr is
the mass flux through the nozzle, the maximum difference in
the velocity field was 0.008Ug in the near-field region of
interest (0<r/d<1, 0<x/d<L/d). For the entrainment
flux (bottom right), v,(x)/Up=—c, tanh[c5(x—x;)(x;—x)/(x,
-x,)%] is specified (Fig. 5), with ¢,=0.0785 and c;=50.
These choices yield Q./Q=1.8. A uniform-pressure condi-
tion is specified near the wall at the boundary of the domain
exhaust, marked “outflow” in Fig. 5.

B. Potential-flow formulation

For axisymmetric flow, the continuity equation can be sat-
isfied by expressing the velocity field in terms of a stream
function, ¢(x,r)—i.e.,

_1d4
T ror

v=—l(9—dj (4)

rox’

In the absence of swirl, the azimuthal vorticity w is related to
the stream function by (e.g., Batchelor [28])

—ro= =
x>t ror dy

: (5)

where H(i)) is the Bernoulli constant,
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FIG. 6. Potential-flow simulation domain and boundary
conditions.

H(p) = %(u2+v2)+§. (6)

One approach to the inviscid impinging-jet problem is to
specify an inlet axial velocity profile at some distance from
the wall, determine H() at that location, and then solve Eq.
(5) in a domain bounded by the axis of the jet, the wall, and
specified inlet and outlet boundaries [1]. This approach is
satisfactory provided the inlet conditions are not affected by
the jet impingement.

In this study, we follow the conventional ideal-jet ap-
proach [24,25], where the interior flow is irrotational, the
shear layers are infinitesimally thick, and the exterior flow is
stagnant. Setting the right-hand side of Eq. (5) to zero, the
equation for the stream function in the jet interior is then

Py b 1o

+ 0. 7
wr o ar ror M

The surface of the jet is a streamline; hence, ¥(xg,ry) =y,
where 4, is a constant and (xq,r,) are coordinates of any
point on the surface of the jet. The location of the jet surface,
(x0,70), is not known a priori and must be determined as part
of the solution to satisfy the constant-pressure boundary con-

dition
RN B AR AN B
u +v =3\ % + o =Ug, (8)

where Ug is the Bernoulli velocity. Schach [20] solved this
problem using an integral equation approach, assuming the
nozzle outflow was not affected by proximity to the wall.
Strand [21] used a truncated series solution (up to four
terms) to solve for two cases: L/d=1 (ignoring wall-
proximity effects) and L/d<<1. This approach, however,
omits the transitional regime 0.5<L/d=<1.5 of interest in
this study.

The physical domain and boundary conditions are sum-
marized in Fig. 6. Equation (7) was discretized using second-
order centered finite differences on a fixed rectangular com-
putational domain. This domain was mapped to the physical
domain by the solution of two elliptic partial differential
equations for the physical coordinates x and r. These equa-
tions were coupled to Eq. (7) through the boundary condition
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of Eq. (8). The simultaneous solution of these equations de-
termines the shape of the free constant-pressure boundary. To
capture wall-proximity effects, a constant-diameter nozzle is
included in the computational domain. Instead of prescribing
the nozzle radius, a finite-velocity constraint is applied at the
trailing edge of the nozzle. Uniform axial and radial velocity
profiles were prescribed at the inlet and outlet of the domain,
respectively. The inlet and outlet were positioned about four
and eight nozzle radii from the wall stagnation point, respec-
tively.

Second-order accuracy was verified by solving for infinite
stagnation-point flow on grids generated from the solution of
the impinging-jet problem at resolutions ranging from 20
X80 to 80X 320. The analogous plane-flow impinging-jet
problem was also solved and compared to the analytic solu-
tion outlined by Birkhoff and Zarantonello [24]. The error in
the discharge coefficient was less than 1% with excellent
agreement between the numerical and analytic free bound-
aries. For the axisymmetric impinging-jet problem, conver-
gence studies were conducted at resolutions ranging from
20X 80 to 80X 320. Differences in the centerline axial ve-
locity were less than 0.01Ug. Sensitivity to the radial extent
of the domain was studied by reducing the outlet radius to
four nozzle radii. The difference in the centerline axial ve-
locity was, again, less than 0.01Ug. The gradient of the cen-
terline axial velocity decayed to almost zero at the nozzle
inlet, indicating that the inlet was placed sufficiently far from
the wall.

C. Stream-function formulation

The one-dimensional solution for constant-density stagna-
tion flows models the flow in terms of a local stream function
y(x,r)=r*U(x)/2, which leads to u(x)=U(x) and
v(x,r)=—rU'(x)/2 [see Eq. (4)]. The axisymmetric Navier-
Stokes equations can then be expressed in terms of the axial
velocity, U(x)—i.e.,

" 1" 1 12 2A
vU"-U0U"+-U""=-—, 9)
2 p
where A is termed the radial-pressure eigenvalue of the prob-
lem,

14
A=-2

b
r or

(10)

which, in this formulation, must be a constant. Appendix A
provides further discussion on the spatial variation in A. The
third-order ordinary differential equation requires three
boundary conditions at x=0. It is common to specify bound-
ary conditions at x=0 and x=€ with 0 <{ <L some interior
point, by adjusting the curvature boundary condition at x
=0 to achieve the desired boundary condition at x=¢. A
fourth boundary condition can be satisfied by adjusting A,

U(0) =0,
U'(0)=0,
U)=-U,,
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U'(6)=-U,, (11)

Since u(€,r)<0 (flow is towards the stagnation plate), the
negative signs are chosen for convenience to make the con-
stants U, and U, positive. Plug-flow boundary conditions—
i.e., U'(€)=0—at the nozzle exit plane, {=L, are commonly
specified with this formulation. The inviscid outer solution to
Eq. (9) is a parabola. In the inviscid limit, the flow is irrota-
tional if A=-p(U;)*/4, for which the solution reduces to
potential stagnation flow where the coefficient of the curva-
ture term is identically zero—i.e., linear outer flow, U é
=U,/€. For more general boundary conditions, the resulting
flow has vorticity, whereas the core of the experimental jet is
irrotational. The introduction of vorticity to the flow is nec-
essary to accommodate outer flows with curvature. The
equations are solved using the CANTERA software package

[4].

IV. RESULTS AND DISCUSSION

The experimental velocity data reported here were re-
corded at three nominal Reynolds numbers

pdU,

Re = ——2 =400, 700, and 1400, (12)
)7

with actual values within +35, in each case, and at three
nozzle-to-stagnation plate separation distance to nozzle-exit-
diameter ratios L/d=0.7, 1.0, and 1.4. Figure 7 compares
measured axial velocities, scaled by the Bernoulli velocity,
for the three L/d ratios at the three Reynolds numbers. The
velocity profiles collapse to a single curve, independent of
L/d, if the axial velocity is scaled by the Bernoulli velocity.
A centerline axial velocity deficit at the jet exit develops as
the separation distance is decreased due to the influence of
the stagnation point on the nozzle flow [11]. Notably, the
velocity and its gradient adjust to maintain self-similarity,
with the Bernoulli velocity scaling the flow.

Figure 8 shows the axisymmetric viscous simulation re-
sults at Re=700 and variable L/d. The velocity profiles fol-
low a single curve when velocities are scaled by the Ber-
noulli velocity, consistent with the experimental results.
Figure 9 gives pressure contours at L/d=0.5 and 1.4, with
pressures scaled by the Bernoulli pressure. The near-wall
pressure field is not significantly altered by changes in the
nozzle position. As the separation distance is reduced, the
stagnation-point pressure field extends into the nozzle, alter-
ing the nozzle flow. Figure 10 compares the experimental
data with the axisymmetric viscous calculations at L/d=1.4
and Re=400, 700, and 1400. The inset of Fig. 10 shows the
residuals between the simulated, u,,, and measured, upgy,
velocities, normalized by the Bernoulli velocity Ug. The dif-
ferences between experimental and numerical results for
these three cases are less than 0.015Uy root mean squared
(rms), indicating that the experimental flow field is ad-
equately modeled. Figure 11 compares particle-streak-image
data and streamlines from the axisymmetric viscous simula-
tions. Good qualitative agreement can be seen, even in the
entrainment region where the velocities are low (<0.02Up).
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FIG. 7. (Color) Comparison of velocity versus axial distance
from plate at three nominal Reynolds numbers. Velocities are scaled
by the Bernoulli velocity and axial distances by the nozzle diameter.
Experimental results for separation distances of L/d=0.7(X), L/d
=1.0(+), and L/d=1.4(O).

Figure 12 compares the experimental data at the highest
Reynolds number to the potential-flow results, with the nor-
malized residuals between simulation and experiment plotted
in the inset. Here the axial distance is normalized by the
effective diameter d«, where d. is the nozzle diameter cor-
rected for the nozzle-wall boundary-layer displacement
thickness. One of the main effects of the Reynolds number in
this flow is the change in the effective jet diameter through
the boundary-layer displacement thickness. This effect
should be removed before comparing the experiments to the
inviscid potential-flow results, which are valid in the limit of
infinite Reynolds number. The boundary-layer thicknesses
are estimated from axisymmetric, viscous simulations of the
nozzle flow. The small disagreement close to the wall is at-
tributable to wall boundary-layer displacement effects. This
discrepancy leads to a difference in the maximum centerline
axial velocity gradient. As with the experimental results, the
axial velocity profiles collapse independent of L/d.
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FIG. 8. Scaled velocity versus axial distance from plate. Viscous
calculations at Re=700 and L/d=0.3 (dash—double-dotted line), 0.5
(dotted line), 0.7 (dash-dotted line), 1.0 (dashed line), and 1.4 (solid
line).

Figure 13 compares the experimental axial velocity data,
at Re=700, to four different one-dimensional simulations,
with plug-flow boundary conditions and different choices of
the interior boundary location €. Plug-flow boundary condi-
tions capture the flow only for €/d=0.8. This is due to the
fact that the outer solution to the one-dimensional equations
is a parabola and cannot capture the free-jet behavior (zero-
gradient region of flow) that is exhibited for x/d>1.0.
Finite-velocity gradients are evident for x/d <0.8. The value
of €/d=0.8 is an intermediate case for which plug-flow
boundary conditions capture the flow. The approximations
invoked in arriving at the one-dimensional stream-function
model are valid in the limit of an infinite-diameter jet im-
pinging on a surface. However, from Fig. 13 it appears that
the model should be able to capture the flow in the region
0=<x/d<0.8 if appropriate boundary conditions are speci-

,o,z/
[ 0.

[ 0.5

R R N

0.5 0 0.5
r/d

FIG. 9. Pressure contours, normalized by the Bernoulli pressure,
at L/d=0.5 (left) and L/d=1.4 (right).
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FIG. 10. (Color) Scaled velocity versus axial distance from
plate. Viscous calculations (lines) and experimental data (symbols)
at Re=400 (dashed line, +), 700 (solid line, O), and 1400 (dash-
dotted line, X). The inset shows the residuals between the simu-
lated, ug;,, and measured, upgy, velocities, normalized by the Ber-
noulli velocity Ug. Symbols and colors correspond to the Re of the
main plot.

fied. The velocity and velocity-gradient boundary conditions
at a given axial location, U(€) and U’(f), can be specified
from an error-function fit to the experimental data [see Eq.
(13)]. The one-dimensional solution calculated using this

lurmmm .
"mmuu\nw
I‘ \I
Tk

"mu||||1|\\\“
I

FIG. 11. (Color) Particle streak image (monochrome) detailing
entrained flow with superimposed axisymmetric viscous calculation
(blue lines) at Re=700 and L/d=1.0.
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FIG. 12. Scaled velocity versus axial distance from plate nor-
malized by the effective diameter d.. Experimental data at Re
=1400 (OJ) and potential-flow simulations (lines) at L/d«=0.7
(dash-dotted line), L/d«=1.0 (solid line), and L/d:=1.4 (dotted
line). The inset shows the residuals between the simulated, ug,,, and
measured, upgy, velocities, normalized by the Bernoulli velocity
Ug.

method at Re=700, over the range 0.3<¢/d=<0.7, has a
maximum error of less than 0.03Ug when compared to axi-
symmetric viscous simulations. Figure 14 shows the one-
dimensional simulation results compared to experimental
data at Re=700, with boundary conditions taken from the
experimental data at €/d=0.6. The normalized residuals be-
tween simulation and experiment are plotted as an inset.

In their study of turbulent jets, Kostiuk et al. [12] showed
that opposed- or impinging-jet velocity data are well charac-
terized by an error function and used the parameters obtained
from the error-function fit to collapse their experimental
data. Their error function contained three adjustable param-
eters: the velocity at infinity U, a strain-rate parameter «,
and a wall-offset length &/d,

12—
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@ o 40 B
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FIG. 13. Comparison of one-dimensional stream-function simu-
lations with plug-flow boundary conditions (lines) to experimental
results (CJ) at Re=700, varying €: €/d=0.6 (dashed line), €/d
=0.8 (solid line), €/d=1.0 (dash-dotted line), and €/d=1.4 (dash—
double-dotted line).
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FIG. 14. Comparison of one-dimensional stream-function simu-
lation (line) to experimental data (CJ) at Re=700. Boundary condi-
tions calculated from error-function fit to the data at €/d=0.6. The
inset shows the residuals between the simulated, u;,, and mea-
sured, upgy, velocities normalized by the Bernoulli velocity Usg.

@zerf[a({—é)}. (13)
U, d d

The collapse of the experimental and numerical data dis-
cussed above suggests that the appropriate velocity scale for
laminar impinging jets is the Bernoulli velocity—i.e., U,
=Upg. From one-dimensional viscous stagnation-flow theory
(see Appendix B), the scaled-offset length &/d, which is pro-
portional to the scaled wall boundary-layer thickness, can be
related to the strain-rate parameter «, such that

s | 1
—(Re,a) =0.755\/ =—. 14
(Re.a) Re o (14)

Thus, the only free parameter in this error-function fit to the
data is the strain-rate parameter «, which should be a func-

1.2————— 1

1.0

0.8

0.6

u/ Uy

0.4

x/d

FIG. 15. Comparison of error-function fit (line) to experimental
data ((J) at Re=1400. The inset shows the residuals between the
error function, ugrg, and measured, upgy, velocities, normalized by
the Bernoulli velocity Usg.
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TABLE I. Error-function fit parameters and rms error €, of fits
to experimental and viscous-simulation data.

Experiment Simulation
Re a old €ms/ Up €ms/ Up
400 2.21 0.027 0.017 0.014
700 2.00 0.020 0.010 0.009
1400 1.88 0.015 0.011 0.010

tion of Reynolds number alone—i.e., a=a(Re). Therefore,
the axial velocity field for an axisymmetric impinging lami-
nar jet is fully specified by the Bernoulli velocity Uy, since
the Reynolds number is, in turn, derived from it.

The error-function fit to the data at Re=1400 is plotted in
Fig. 15, with the normalized residuals between the error
function and experiment shown in the inset. The error func-
tion was fit to each experimental and viscous simulation case
by adjusting « such that the root-mean-squared (rms) error
was minimized. For each Reynolds number, the strain-rate
parameter « was averaged over the range 0.7<L/d<1.4.
This single @(Re) dependence was subsequently used in all
error-function fits to determine the resulting rms error €.,.
The fit parameters and €., are shown in Table I. The strain-
rate parameter is found to scale with Reynolds numbers as
a=a,+C/Re, with the constants a..=1.775 and C;=153
determined by fitting the a(Re) values in Table 1.

As previously mentioned, the main Reynolds number ef-
fect for this flow is through the nozzle-wall boundary-layer
thickness. The effect of the nozzle-exit velocity profile is
studied in Fig. 16 for profiles varying from a top-hat shape,
representative of the outflow from a high-contraction ratio
nozzle, to a parabolic profile, representative of laminar pipe
flow. Real nozzle-exit velocity profiles will lie in between
these two extremes (see Fig. 2). Intermediate cases are stud-
ied by specifying hyperbolic tangent profiles whose coeffi-

R———

x/d

FIG. 16. Simulated velocity profiles at Re=700 and L/d=1.4
for variable nozzle-exit velocity profiles: parabolic (d«/d=0.71,
long-dashed line), hyperbolic-tangent profiles with d«/d=0.76
(medium-dashed line), d«/d=0.82 (dashed line), d«/d=0.87 (dotted
line), d«/d=0.91 (dash-dotted line), d«/d=0.95 (dash—double-
dotted line), and top-hat (d«/d=1.0, solid line) profiles.
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FIG. 17. Simulated velocity profiles versus axial distance from
plate normalized by the effective diameter d- at Re=700 and L/d
=1.4 for variable nozzle-exit velocity profiles. Legend as in Fig. 16.

cients are adjusted to obtain a variation of boundary-layer
displacement thicknesses. The results in Figs. 16 and 17 are
obtained by removing the nozzle interior from the
axisymmetric-viscous-simulation domain and specifying the
velocity profiles at the nozzle exit. Due to the lack of a
plenum in the simulations, velocities are scaled by the veloc-
ity at the axis of the jet U;, instead of the Bernoulli velocity.
Figure 16 indicates that there is a significant effect of the
nozzle-exit velocity profile on the resultant axial velocity
field. Figure 17 plots the axial velocity profiles with the axial
distance normalized by the boundary-layer thickness cor-
rected diameter d-«. For d«/d>0.9 this scaling results in a
good collapse of the profiles.

From the previous results, the displacement-thickness-
corrected diameter d- is an appropriate scaling parameter for
axial distances. Figure 18 shows the scaled velocity profiles
from axisymmetric viscous simulations at four Reynolds
numbers. For low Reynolds numbers (Re=200) viscous

12—
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FIG. 18. Axisymmetric viscous simulation velocity profiles ver-
sus axial distance from plate normalized by the effective diameter
d« at L/d=1.4 and Re=200 (long-dashed line), 400 (dash-dotted
line), 700 (dotted line), and 1400 (solid line).
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losses result in a jet-exit velocity that is less than the Ber-
noulli velocity. There is an additional weak Reynolds num-
ber effect exhibited for Re=200 and 400 that is not fully
captured by the current scaling and is manifested in the slope
of the profiles. However, the velocity profiles collapse rea-
sonably well using this scaling, and this allows the specifi-
cation of an analytical expression for the velocity profile of
the impinging jet in this Reynolds number range,

ulx)

x 6
U, erf{a*<z—z):|, (15)

where ax=1.7 and 6/d-=0.016 were found from fitting this
error function to the axisymmetric-viscous-simulation data.
The rms error of the error-function fit is less than 0.5% for
Re=700 and 1400 and less than 2% for Re=200 and 400. In
the limit of infinite Reynolds number, the wall boundary-
layer thickness will tend to zero and the potential flow for-
mulation will accurately model the flow. In this limit, the
velocity field is given by u/Ug=erfla,(x/d-)], with «,
=1.59 found by fitting this error function to the potential
flow simulations. These expressions yield the velocity profile
for an impinging jet with a measurement of the Bernoulli
pressure across the nozzle contraction, the gas density and
viscosity, the diameter ratio of the nozzle inlet and outlet,
and the boundary-layer thickness at the nozzle exit.

V. CONCLUSIONS

Scaling the centerline axial velocity for an impinging jet
by the Bernoulli velocity, calculated from the static pressure
drop across the nozzle contraction, collapses centerline axial-
velocity data on a single curve that is independent of the
nozzle-to-plate separation distance for separation-to-diameter
ratios of L/d=0.5. The axisymmetric viscous and potential-
flow simulations reported here allow nozzle-to-wall proxim-
ity effects to be investigated by including the nozzle in the
solution domain. Using this simulation domain, axisymmet-
ric viscous simulations yield good agreement with experi-
ment and confirm the velocity profile scaling. The potential-
flow simulations reproduce the collapse of the data; however,
at these Reynolds numbers, viscous effects result in disagree-
ment with experiment. One-dimensional stream-function
simulations provide an adequate approximation of the flow
in the stagnation region if the boundary conditions are cor-
rectly specified.

The scaled axial velocity profiles are well characterized
by an error function with one Reynolds-number-dependent
parameter «. The error function provides a good fit to both
experimental and viscous-simulation data, with root-mean-
squared errors of €.,,,=0.02Ug. In this Reynolds number
range, viscous effects are captured by scaling the axial dis-
tance by the effective (displacement-thickness-corrected) di-
ameter d-. This scaling relies on thin nozzle boundary layers
(d«/d close to unity) and negligible viscous losses through
the nozzle. These scalings allow the specification of an ana-
lytical expression for the velocity profile of an impinging
laminar jet over the Reynolds number range investigated of
200=<Re = 1400.
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FIG. 19. Comparison of the radial-pressure eigenvalue profile at
several radial locations, r/R=0 (long-dashed line), r/R=0.2 (dash-
dotted line), and r/R=0.5 (dashed line), to that of the one-
dimensional model (solid line), which is constant in both x and r.
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APPENDIX A: RADIAL-PRESSURE EIGENVALUE

The one-dimensional formulation for stagnation flows re-
lies on the introduction of a stream function to reduce the
axisymmetric Navier-Stokes equations to a third-order ordi-
nary differential equation. One of the assumptions used to
derive this simplified model is that the radial-pressure eigen-
value A=(1/r)dp/dr must be a constant. In their study of
cold and reacting opposed-jet flow, Frouzakis et al. [13]
found that this quantity varies in the axial direction when the
inlet axial velocity varies radially, while it is close to con-
stant if plug-flow boundary conditions are specified. These
authors found that the average value of A was approximately
equal to that of the corresponding one-dimensional simula-
tions. Figure 19 plots A as a function of the axial coordinate
at several radii from the present axisymmetric-viscous simu-
lations of impinging-jet flow at Re=700. It can be seen that
the radial-pressure eigenvalue is nowhere constant in this
flow, even for small x/d where the one-dimensional model
appears to yield reasonable agreement with experiment. Near
the axis, the radial-pressure eigenvalue is only a function of
the axial direction and the radial variation is small. The good
agreement between the one-dimensional simulations and ei-
ther experimental data or two-dimensional simulations indi-
cates that, for this flow, the axial velocity is not sensitively
dependent on the spatial variation of A.
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APPENDIX B: WALL BOUNDARY-LAYER THICKNESS

From one-dimensional stagnation flow theory, the wall
boundary-layer thickness is dependent only on the velocity
gradient in the potential-flow region [17,18]. The solution to
the boundary-layer equations is a linear function in the far
field, with a viscous boundary layer close to the wall. The
only free parameter in this flow is the far-field velocity gra-
dient U.. In the far field, the high-order derivatives vanish
(U",U"—0) and, from Eq. (9), the radial pressure gradient
eigenvalue is equal to A/p=—(U.)*/4. The resulting equa-
tion can be nondimensionalized through the transformations
E=x\U., UL/v and ¢= U /NUL, resulting in the following
equation for ¢(&):

2¢" =2¢¢"+(¢')*=1. (B1)

The boundary conditions are ¢(0)=¢’'(0)=0 and ¢'(x)=1.
Equation (B1) can be solved using a shooting method, where
¢"(0) is adjusted to satisfy the boundary condition at infinity.

Figure 20 shows the solution to Eq. (B1). The nondimen-

sionalized wall boundary-layer displacement thickness &

can be calculated in the linear region of the flow (£>5),

5§=§—@—080 (B2)

¢'(&)

Using Eq. (13), the velocity gradient can be computed at
any point on the axis using the error-function fit

du(x) 2Uga { 2(x 5)2]
= expl—a’| ——— . B3
dx \’,;d p (B3)

This yields a maximum velocity gradient of 2Uga/(\md) at
x=20. Therefore, the slope of the error function as it ap-
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FIG. 20. One-dimensional stagnation flow solution with
potential-flow boundary conditions (solid line) and linear fit (dashed
line) showing wall boundary-layer offset &.

proaches the boundary layer is given by du/dx
=2Uga/ (wrd) Equating this to U, allows the boundary-
layer thickness to be determined analytically from the other
error-function parameters Uy and «. Thus, the wall
boundary-layer displacement thickness in physical space is

equal to
5 1/4
_= g(g))l/z Ve =055\ ==, (B9

where Re=dUg/v, as defined previously. Since a scales as
a=a,.+C|/Re, 6/d=0.755/VRea,.+C].
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