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Fundamental relations between the symmetry of excitation and the existence of spatiotemporal
subharmonic structures in a pattern-forming dynamic system
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In electrohydrodynamic convection of nematics, excitation with sine or square waves of period 7 leads to
convection structures in which the charge density, director, and velocity fields perform 7-periodic oscillations.
Nonconventional waveforms such as sawtooth excitation can lead to patterns with T-periodic as well as
T-antiperiodic (subharmonic) dynamics. We consider different classes of excitation fields E(z): such with
antisymmetry in the two half periods E(t)=—E(¢+T/2), such with time inversion symmetry E(¢)=E(-t), and
dichotomous waveforms (two alternating values E|,E,) and discuss their influence on the pattern dynamics.
From the analysis of linear differential equations that describe the system near threshold, we show analytically
that each of these conditions inhibits subharmonic dynamics at onset. Numerical and experimental support of

these predictions is provided.
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I. INTRODUCTION

In the field of dissipative pattern formation, nematic elec-
troconvection is among the most comprehensively investi-
gated and thoroughly understood systems. It was discovered
about four decades ago independently by Williams and Ka-
pustin [1], and the convection mechanism was later theoreti-
cally described by Carr [2] and Helfrich [3]. The classical
experiment uses sine or square wave electric excitation
fields, where two fundamental dynamic regimes have been
early identified, the conduction regime at low-frequency ex-
citation and the dielectric regime at high-excitation frequen-
cies (separated by some cutoff frequency). They are distin-
guished by the time symmetries of the system variables.

Interestingly, the system of EHC has long been thought to
produce only patterns that have the same temporal periodic-
ity as the electric excitation field, unlike many other dynamic
systems such as the parametrically excited pendulum [4] or
Faraday waves [5-10] that can produce T-periodic as well as
T-antiperiodic dynamics. Only recently, it has been shown
that a subharmonic EHC regime exists [11,12], e.g., under
excitation with certain triangular waveforms. In this regime,
the director, charge and velocity fields perform oscillations
that are periodic with 27 when the excitation has the period
T. Patterns in this regime differ from the two classical con-
vection structures not only by their temporal characteristics,
but also by the wave length selection mechanism. Since sub-
harmonic EHC structures remained undiscovered for a very
long time, it is natural to assume that they are principally
excluded for a large class of excitation waveforms because
of the particular symmetries of the dynamic equations for the
Carr-Helfrich effect.

In this paper, we study some general relations between
symmetries of the excitation waveform and the fundamental
time response of the system. We consider time-periodic elec-
tric driving fields and prove that certain symmetry properties
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of the excitation field are essential for the formation or inhi-
bition of subharmonic patterns. If the excitation matches at
least one of three conditions detailed below, subharmonic
patterns are generally inhibited. In the classical experiments
with sine or square wave excitation, at least two of these
inhibiting conditions are always fulfilled. This is the reason
that subharmonic EHC patterns have long remained undetec-
ted in the past. A mismatch of all three conditions does not
necessarily lead to subharmonic patterns, and we do not ex-
clude that additional inhibiting conditions may exist. How-
ever, it is shown in experiments and in numerical calcula-
tions that some other symmetry properties of the excitation,
for example E(t)=—E(~t), are compatible with the existence
of subharmonic patterns.

Apart from the aspect of the completely different pattern
dynamics in the subharmonic structures, additional scientific
interest lies in the new accessible range of pattern wave-
lengths, between the large-scale conduction rolls (wave num-
ber essentially determined by the container dimensions) and
short-scale dielectric rolls (wave number related to material
properties), as well as in the investigation of the wavelength
selection mechanism. Furthermore, higher instabilities (sub-
harmonic chevrons) and nonlinear interactions between pat-
terns belonging to different regimes in certain coexistence
ranges have remained uninvestigated so far.

The paper is structured as follows. In the theoretical part,
we provide arguments for description of the EHC dynamics
with the particular model, which leads to a linearized differ-
ential equation system, and we discuss limitations of the
model. Then, we analyze excitation waveforms with certain
time symmetries within this model. Similar concepts have
been applied in the analysis of solutions of differential equa-
tion systems, e.g., by Schulze [13]. Using different math-
ematical approaches, we derive three driving conditions for
inhibition of subharmonic patterns, and an additional condi-
tion on material parameters (dielectric anisotropy). Finally,
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FIG. 1. Sketch of the cell geometry with convection rolls (nor-
mal rolls), velocity and director fields, and the definition of the
coordinate system.

we discuss the structure of stability diagrams on the basis of
numerical calculations and present experimental data that
support the theoretical predictions.

II. THEORETICAL MODEL

For the description of the fundamental electroconvection
dynamics, we use a simple differential equation system for
the two coupled system variables, the space charge density g
and the director deflection ¢ in the liquid crystal cell. Other
dynamic variables, including the convective flow field, are
linearly coupled in their temporal behaviour to one of these
two system variables. The flow field amplitude is propor-
tional to the director deflection amplitude, since inertial ef-
fects can usually be neglected in the thin cells.

The differential equations used here have been derived
from the Maxwell and Navier-Stokes equations, and the bal-
ance of torques on the nematic director [14—19]. We apply
here the simplified two-dimensional description, i.e., direc-
tor, flow, and charge fields are assumed to be uniform in the
direction y normal to the ground-state director orientation in
the cell plane (normal rolls). The director field is assumed to
deflect only in the plane formed by the preferential director
alignment axis x and the cell normal z (Fig. 1). This is the
common situation mostly encountered in our experiments
near the convection threshold. Only at very low frequencies
can the first instability in the experiment be oblique rolls
with a component of the wave vector along y.

It has to be mentioned here that much more elaborated
theoretical models are available today, which describe the
complexity of EHC patterns in much greater detail (see
progress in the theoretical analysis, e.g., in Refs. [20-31]).
For special excitation waveforms such as sine waves, ana-
lytical expressions for the neutral curves have been derived.
Further progress has been the discussion of different test
functions for the dynamic variables, and inclusion of flexo-
electric terms [22,24]. These theoretical improvements are
able to describe oblique and abnormal rolls (wave vector or
director components in the third dimension) by a complete
three-dimensional ansatz of the spatial structure of the dy-
namic variables [23-25]. The origin of traveling rolls at on-
set has been described by a weak-electrolyte model where
the ionic mobilities are taken into account [26,27]. Pretilted
director anchoring can be considered [28]. Ginzburg-Landau
amplitude equations for a weakly nonlinear description have
been worked out [22,24,31]. Higher instabilities have been
treated theoretically, e.g., Refs. [30,32]. Reviews of these
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theoretical achievements can be found, for example, in Refs.
[20,21,29].

In view of the availability of these improved models, it
seems appropriate to discuss the relevance of the simple
model considered in this work, and to evaluate its merits and
shortcomings, before the equations are further analyzed. The
main advantage and attractiveness of the model used here is
its evident simplicity as well as its appropriateness to de-
scribe all basic dynamic features, pattern stability diagrams,
threshold fields and wave numbers with sufficient accuracy.
Several details are not included, for example, possible flexo-
electric terms. Further, we do not consider the three dimen-
sionality of the patterns. This is appropriate as long as the
experiments confirm the formation of normal rolls at the pat-
tern onset, i.e., the wave vector of the rolls has only compo-
nents in the plane formed by cell normal and the director
surface alignment axis. Since we perform a linear analysis,
we detect only the thresholds for the driving parameters and
cannot make statements about higher instabilities. Strictly,
the dynamic description is only correct at the threshold. The
most serious problem is the choice of test functions, which
yield unrealistic boundary conditions for the flow field. The
harmonic ansatz which considers only the ground mode nor-
mal to the cell plane satisfies free boundary conditions for
the velocity component parallel to the electrodes. Other test
functions can in principle be used, as has been demonstrated
in Refs. [22,24]. The choice of the spatial test functions will,
however, not influence the qualitative dynamic behavior of
the system. Quantitatively, it may lead to slight systematic
mismatches of calculated and experimental threshold volt-
ages and wave numbers. As earlier experiments have shown
that our model reproduces the experimental measurements
consistently and with satisfactory accuracy, we sacrifice the
complications related to more complex description in favor
of a most achieveable simplicity of the model. An incorpo-
ration of other, more realistic test functions will certainly be
possible and will lead to the same structure of the differential
equation system with slight quantitative differences in the
parameters. The symmetries in the dynamic equations that
are exploited in the analysis are not influenced by the choice
of better test functions. In particular, an extension to oblique
rolls would not affect the symmetry properties under consid-
eration. They will be modified when flexoelectric terms enter
the equations, but such terms will also affect the symmetries
of conduction and dielectric regimes [28]. In most experi-
ments, such terms are commonly neglected. For the purpose
of this paper, the model serves well to give insight into the
basic mechanisms leading to structures with different time
symmetries of the dynamic variables for the standard experi-
ment with planar parallel anchoring at both cell plates.

III. MODEL EQUATIONS

We use a test mode ansatz that splits the two dynamic
variables, the charge density g(7,¢) and the director deflec-
tion respective to the x axis @(7,) into a spatially modulated
part and a time-dependent amplitude
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G(x,z,1) = q(t)sin(k,x)cos(k.z),

@(x,z,1) = @(t)cos(kx)cos(k.z), (1)

where d is the cell thickness and k,=m/d. The further analy-
sis deals with the time evolution of the amplitudes ¢(¢) and
q(t). Tt is described by two coupled ordinary differential
equations (ODE’s) of the form

dii(r) — A(Z(), @)
t

with

- q(r)) _( A ALE(1) )
Zm_<¢m » Al= AE(t) Ay+AsEXD)) 3)

Both equations are linear in ¢ and g. The coefficients A;
contain liquid crystal material parameters, wave numbers of
the test mode and cell parameters (see the Appendix). The
electric field is time periodic with period T, E(t)=E(t+T),
and consequently A(r)=A(t+7). We may write the matrix
A(r) in a general form

ay(t) a12(¢))

ay (1) ax(t)

A®=<
This ODE system has a fundamental solution of the form

Z(1) = P(1)Z(0), 4)

with the 2 X2 matrix P(¢) that fulfills the matrix equation
P(/)=A(1)P(¢), and P(0)=E is the unit matrix. In the case
when A is time independent, the ODE system (2) reduces to
a system with constant coefficients with the solution P(z)
=exp(Ar). This can be exploited to compose analytical solu-
tions for piecewise constant excitation waveforms, such as
square or superimposed square waves [11].

For a time-periodic matrix A(r+7T)=A(z), the Floquet
theorem yields the particular form P(z)=R(7)exp(Br), with
R(7)=R(z+T) and B=const. The regular transfer matrix M
=exp(BT) determines the evolution during one excitation
field period P(r+T)=P(r)M. The eigenvalues of M, the char-
acteristic multipliers u;, are related to the trace Tr(M) and
the determinant det(M) of the transfer matrix by

=S ITO) = TP~ 4 deM)]. (5)

A necessary and sufficient condition for asymptotic stablility
is that both |u;| < 1. In the following, we sort the character-
istic multipliers so that |u|=|u,)|.

When the elements of A are not constant, the determina-
tion of the matrix M is not straightforward, and there is no
simple relation between the elements of A(z) and the multi-
pliers w; [33]. However, it is well known for homogeneous
ODE systems such as Eq. (2), that [34]
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T
detM) = w = exp(f TrA(t)dt) ) (6)
0

In the standard EHC model, the matrix A(z) has only real
coefficients, thus det(M) is positive according to Eq. (6). As
a consequence, both eigenvalues are either real or complex
conjugated, their real parts have the same sign. Since the
elements of A depend upon several experimental and mate-
rial parameters, in particular on the wave number &, of the
test mode and the electric field E(¢), the characteristic mul-
tipliers that determine the type of solutions may depend upon
these parameters in a complex way. Even though the ODE
system in Eq. (2) may have some superficial similarity with
the parametrically driven pendulum equations, it is evident
that it is far more complex because a stability analysis for
certain excitation parameters involves the consideration of
the full wave number spectrum in k, (or even in the two
wave numbers k, and k, if the equations are generalized to
oblique roll patterns). Moreover, all four matrix elements are,
in general, nonzero in the EHC system, and the two nondi-
agonal elements as well as one of the diagonal elements de-
pend upon the excitation parameter.

In order to determine the stability of the ground state at a
given “simple” excitation waveform (e.g., sine, triangular, or
square waves of fixed frequency) numerically, one can char-
acterize the excitation by the electric field amplitude E, and
calculate the characteristic multipliers in the two-parameter
diagram of E;, and wave number k,. For more complex ex-
citation schemes, such as those considered in the following,
it is useful to fix all parameters of the driving field except
one and to calculate the stability in a two-parameter diagram
of one electric field parameter and the wave number k,. For
example, at superposition of two square waves one ampli-
tude, the two frequencies and the mutual phase shift are fixed
and the second amplitude is used as the parameter. From a
set of stability diagrams, two- or more-dimensional pattern
state diagrams can be constructed (see below, Sec. VIII).
With respect to the recognition of subharmonic patterns, this
has been demonstrated in earlier work [11,12].

In parameter ranges where both u; are real and positive,
the differential equation system has 7-periodic solutions.
When the two eigenvalues are real and negative, the system
has T-antiperiodic solutions. In both cases, the envelopes of
these solutions grow (|u;|>1) or decay (|u;|<1) exponen-
tially. In case of complex multipliers, the system exhibits
solutions with periods that are in general incommensurate
with the excitation frequency. In our particular system
(e,=g—¢&, <0, see the Appendix), the trace of A is negative
for all E and all k,. It follows from Eq. (6) that the product
M1, is smaller than 1. When the two eigenvalues are com-
plex conjugated, their absolute values are equal, thus both
are smaller than 1. This ensures that the ground state is stable
in the parameter range where the u; are complex, and we do
not need to consider this narrow transition region (around the
separatrix S in the diagrams shown below) in the stability
analysis.

The neutral curve N is given by w;==1. When |u,|<1
for all k, at a given excitation parameter, the ground state is
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stable. Otherwise the threshold field and critical wavelength
are given by the global minimum E,, of the neutral curve in
the (E,k,) plane. When this minimum is located in a section
of N with p;=-1, subharmonic patterns appear at onset,
otherwise the classical dielectric or conduction patterns form
the first instability. For some combinations of waveform, ma-
terial and cell parameters, there are regions with growing or
decaying subharmonic solutions in the (Ej,k,) plane, but the
global minimum of the neutral curve remains in the region of
1=+ 1. Then, subharmonic patterns are not observed in the
experiment but one cannot exclude in general that for other
cell or material parameters, subharmonic patterns may be
found. On the other hand, there are excitation waveforms, for
which subharmonic solutions do not exist at all, because of
certain symmetry properties of the excitation. Such condi-
tions will be tested in the following. It turns out that essen-
tially the special structure of the nondiagonal elements of the
matrix A(r), a;,=A,E(t) and a,;=A;E(t) are of importance
for the following calculations. Three different conditions for
the excitation waveform will be considered separately. Since
we do not make other assumptions about the properties of A
other than the symmetry conditions specified, the calcula-
tions may be easily adopted to any other pattern forming
dynamic system with similar symmetries of the dynamic
equations.

IV. ANTISYMMETRY IN THE TWO HALF PERIODS
OF THE EXCITATION

First, we test the properties of the fundamental solution of
Eq. (2) for an excitation field with E(f)=—FE(t+T/2). Such an
excitation field symmetry leads to

ay(t) —912(1)>
—ay(t) an() )

For the elements of P in Eq. (4) after one half period ¢
=T/2, we use the notation

A(t+T/2) = (

P(T/2)=(p” P12>.
P21 P2

Since all elements a;; are real, the elements p;; are real as

well. The fundamental matrix solution in the second half
period of the excitation differs from P(7/2) only by the sign
of the off-diagonal elements p, and p,;. We substitute

1 0
A(t+TR2)=D'A(r)D, D=D"'= (o . )

and introduce g(t)=D2(t+ T/2). Then, the equations
2(t+ T/2)=A(t+ T/2)2(t+ T/2) transforms to the ODE’s
2(t)=D-A(t+ T/2)D‘lg(t)=A(t)E(tZ. These equations have
the same coefficients as those for Z(¢), and therefore lead to

the same fundamental matrix solution Z(T/ 2)=P(T/2)Z(O).

After the reverse transformation Z(T):D‘lg(T/ 2) one
obtains

PHYSICAL REVIEW E 72, 066218 (2005)
, T\ -(T\ (T\T
an=vt-#{ 1 or{ 7] o[ 1)2(5)
@ 2/PA7)=A2)A3

T —
Q(—>=< P Plz).

2 -Pa Pn
This result is trivial. If one changes the sign of one of the
dynamic variables, leaving the other variable unchanged, the
signs of the coupling coefficients in the matrices are in-
verted. This reproduces but the standard result in EHC, either
charge density or director deflection are antiperiodic in 7/2,
while the respective other quantity is periodic in the half
cycles. After a full cycle T of the excitation Z(T)=MZ(0),
where M=Q(T/2)P(T/2) has the form

Piap1 —Pzz))
P%z‘l’121721

Without explicitely calculating these terms, one recognizes
the type of solutions immediately. The sum of both charac-
teristic multipliers [cf. Eq. (5)]

pr+ o =Tr(M) = (py; — pp)* + 2 det[P(T/2)]  (8)

with

2
M = < P11 = P12P21 )

P21(pn—pr11)

is always positive because

72
det[P(T/2)] = exp(f Tr[A(r)]dr) > 0.

0

Since it has been derived already from Egs. (5) and (6) that
the signs of the real parts of both multipliers are equal, none
of them can have a negative real part, and consequently sub-
harmonic solutions are excluded.

In conclusion, if the two off-diagonal elements of the ma-
trix A have the time symmetry a;(t)=-a;(t+T/2), ie.,
under the condition E(f)=—E(r+7/2), the EHC system can-
not have subharmonic solutions. All solutions can be classi-
fied as the standard conduction or dielectric patterns, with
q(t)=—q(t+T/2), o(t)=¢(t+T/2) or vice versa [36]. This
excludes, among other waveforms, subharmonic patterns at
dc free sine or square wave excitation, excitation with anti-
symmetric triangular waves, and all superpositions of sine or
square waves with odd integer frequency ratios.

V. TIME REVERSAL SYMMETRY

We consider now excitation fields that have time reversal
symmetry, i.e., waveforms where one can define a time 7,
such that E(r)=E(t+T)=E(ty—1). In order to show that such
waveforms also inhibit subharmonic patterns, we focus on
another property of the off-diagonal elements of A. The time
dependence of the electric field is contained in these ele-
ments in a peculiar way. Both a, and a,; are linearly pro-
portional to E(r), thus they have the same time dependence,
they differ only by a constant factor. We can consequently
symmetrize A by rescaling the variable ¢(z) to the dimen-
sionless quantity §(r)=\ay /a;q(1)=\A3/A,q(1), and set

_—

a=\aya,-sgn(E)= V"A2A3EI
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A(t):(a”(t) a(t) >’

a(t) ax(t)

and we choose the time axis such that #,=0. If we split one
excitation period into infinitesimally small time intervals in
which A can be treated as constant, then one can integrate
the ODE system with constant coefficients in each of these
intervals

i(ti+1) = exp(Ai5fi)2(f;) ,
with

ay(t) alt) )
aty) an(t))

We now set P;=exp(A;dt;). As a consequence of the symme-
try of the A;, the matrices P; are also symmetrical. The fun-
damental solution for the half-period (0,7/2), Z(T/2)
=P(T/2)Z(0), is given by the product of the P; of all infini-
tesimal intervals:

P(7/2)= limPy-Py_,- -+ - P, P,
N—ow
Wlth 5tl—>0 and 215t1=T/2
Now, we calculate Z(0) from Z(-T7/2). Because of the

assumed symmetry A(t,)=A(-t;) and P(¢)=P(-t,), the ma-
trices P; have to be multiplied in exactly reversed order to
yield the solution Z(0)=QZ(-T/2),

Q(T72) = limP, - P,- --- - Py_, - Py.

N—x

o=t —t, A= (

A product of N matrices has the property {P;-P,----
=Pl..--. Pg -PIT and the product of symmetric matrices P;
=P;, in particular, gives {P;-P,----- Py =Py P,-P,.
Thus, Q(7/2)=P7(T/2), i.e., the fundamental matrices in the
two half periods represent transponsed matrices of each

other. We combine Z(T/2)=P(T/2)Z(0) and 2(0)
=PI(T/2)Z(-T/2) to
Z(T72) = P(T12)PT(T/2)Z(~ T/2)
and
2 2
Pitrn P11P21+P12P22)
PuiP21+ P12l P%z +P%1

The trace of the matrix M as the sum of the two character-
istic multipliers, is

M:P~PT:<

2. 2 2 2
Pi1+ P+ Py +pn=>0.

As in the previous section, M=P(T/2)P7(T/2) has either
two positive real eigenvalues or two complex conjugated ei-
genvalues with positive real parts. Subharmonic solutions are
excluded for this type of excitation, too. There are only
T-periodic solutions if the eigenvalues are real, or oscillating
solutions otherwise. Since the expansion of the excitation
waveform is done into infinitesimally small intervals, the re-
sult holds for arbitrary waveforms that match the time inver-
sion symmetry condition.
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Summarizing, if the two off-diagonal elements of A(r)
have the symmetry a;;(t)=a;/(t,—1) for a certain ¢, i.e., the
excitation field symmetry is E(1)=E(ty—1t) in the EHC sys-
tem, subharmonic solutions cannot exist as a consequence of
the structure of A(r) given in Eq. (3). Such symmetry of E(z)
is found at sine or square wave excitation with and without
dc offset, at superposition of two square waves with odd
integer frequency ratio and zero phase shift (positive slope of
the slow frequency coincides with a positive slope of the
high frequency) and superposition of two square waves with
even frequency ratio but 90° phase shift between both com-
ponents, also for all types of periodic rectangular pulses
(constant E; in an interval 0<t<t, and E, in the interval
t;<t<T), with and without dc offset.

VI. DICHOTOMOUS WAVEFORMS

Finally, we consider the case of dichotomous waveforms,
i.e., waveforms that consist of arbitrary periodic sequences
of intervals with constant E with only two possible values E
and E,. The waveforms may have dc offset or not. The dis-
cussion is based on the observation that both dynamic vari-
ables have to change their signs in the subharmonic regime
after one period 7 of the excitation. It will be shown that this
is impossible when the waveform is dichotomous.

The symmetrisized equation system is rewritten in polar
coordinates by a transformation from ¢, ¢ to r, ¢:

> [A
r=\g*+¢*= A—3qz+<p2, tan ¢ =
2

The two resulting nonautonomous equations are [19]

s 6

aptayp ap—a
+
2

2 cos 2¢+ asin 2¢>r,

)

F=glE(1). ¢lr= (

b= hEQ), ] =acos 24+ (“22;—““) sin2¢.  (10)

Both functions g and & are independent of r, and since Eq.
(9) is linear in r, it can be integrated immediately,

r(t) = r(O)exp{f g[E(T),qb]dT}. (11)
0

We concentrate on the differential equation for ¢, which de-
scribes the relation between charge field and director field,
and we look for the phase flow, the fixpoints and their sta-
bility. It is useful to introduce for convenience the quantities
Q and ¢ with

2a
tan 2 ¢bg = T (12)
11— axn

—_——
0= \r’(an - a22)2 + 4(12,

such that Eq. (10) adopts the form
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E a< ay,
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a4y~ Ay a,> ay

a= 4y

0 k, 0 &

X

FIG. 2. The line sketches qualitatively the field strength E(k,)
where the denominator in Eq. (12) changes its sign, k, is the wave
number at which A;=A,. The two graphs represent the cases of (a)
negative dielectric anisotropy (g,<0, A5<<0), the standard situation
and (b) positive dielectric anisotropy (g,>0, As>0).

. Q
=Esin2(¢—¢s)- (13)

Both ) and ¢ are functions of the momentary electric field.
In the periods where the electric field is constant, there is an
analytical solution

tan(¢ — ) = tan[ $(1,) — d’s]eﬂ(t_to)' (14)

Fixed points are ¢=¢g+nm/2, (n=0,1,2,...). The coef-
ficient a has the same sign as the electric field E, and de-
pending upon the sign of a,,—a;; (see Fig. 2), the angles 2 ¢
will be found in different quadrants. It will become evident
later that for square waves composed of electric fields E( and
—E,, the region to the left of the curve E.(k,) in Fig. 2
corresponds to solutions where the electric charges alternate
with the field (conduction patterns), the region to the right
corresponds to dielectric solutions (alternating director de-
flection ¢). In terms of the coefficients A; introduced
in Eq. (3) and specified in the appendix, the E (k)
curve is defined by Eq=\(A,-A,;)/As for all k., where
(A —Ay)/A5>0.

Figure 3 sketches the location of the fixed points and their
stability and the phase flow field in the interval —7/2< ¢
< 7r/2 in dependence upon the electric field strength E,. The
stable fixed points pass —7/4 or 7/4, respectively, at E.. In
the following, we will only discuss the standard case ¢,<0,
the case ,>0 can be treated analogously [37].

From the flow diagrams of Fig. 3, one can construct the
qualitative phase flow for special waveforms: Figure 4 shows
two possible scenarios when the excitation field is composed
of only two values, E; and E,. In the first case (a) the abso-
lute values of both fields are found to the left of the E(k,)
curve in Fig. 2 and |¢g(E;)— ¢s(E,)|> /2, in the second
case (b) they are to the right of that curve, |¢g(E;)
—¢s(Ey)| < /2. All other cases with |E||>E->|E,| are
qualitatively similar to one of the two scenarios presented in
Fig. 4, depending upon the value of |¢g(E,)— pg(E,)|.

The figure demonstrates that for any excitation waveform
composed of two constant electric fields £, and E,, indepen-
dent of the sequence and duration of the periods, there are
ranges of ¢ where the flow is unidirectional at all times
(thick arrows at the right border of the images). In regions
with only inward flow at the boundaries (hatched in Fig. 4),
trajectories of ¢(z) are “trapped” (see Ref. [19]). The width
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Y] i
(a)

(b)

-n/2
(c)

-t/2
(d)

FIG. 3. The figure sketches qualitatively the phase flow in de-
pendence upon the electric field strength E, and the positions of the
fixed points ¢g+n/2. The insets indicate which part of the (Ey,k,)
plane the diagrams belong to (cf. Fig. 2), test mode wave lengths
are k,<ky in (a) and (b), k,>k, in (c) and (d). Stable fixed points
are indicated by solid lines, unstable fixed points by dashed lines.
(b) and (d) describe the standard situation ,<<0, (a) and (c) belong
to the case £,>0.

of the traps is always narrower than 7/2, consequently the
solutions ¢(r) are confined to one or two quadrants and (at
least) one of the system variables keeps its sign. In Fig. 4, the
grey areas mark regions with unidirectional flow, and the
hatched areas mark regions with inflow only, these areas trap
the trajectories ¢(¢). In Fig. 4(a), |E,|, |E,| <E¢, the ¢(1)
curve oscillates around (n+1/2)r, where cos ¢ changes its
sign and consequently, the charge amplitude ¢(z) o cos ¢(r)
alternates with the electric field (conduction regime). In the
situation shown in image Fig. 4(b), |E,|, |E,| > E, the trajec-
tories ¢(7) oscillate around nr, where sin ¢ changes its sign
and thus the director deflection amplitude ¢(z) «sin ¢(z) al-
ternates with the electric field (dielectric regime). A similar
situation as that shown in Fig. 4(a) is found in general when
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FIG. 4. The figures show schematically two possible structures
of the flow of ¢(f) when the excitation waveform is composed of
two constant electric fields E| and E,, for the case £,<0. (a) abso-
lute values of both fields are below the E. curve, 0 <E; <E and
—E-<E,<0 for a given k,<kg (b) k,>k, or both E;>E and
—E->E,. Solid lines mark stable fixed points, dashed lines mark
unstable fixed points of ¢. The grey areas are regions with unidi-
rectional flow, hatched areas have only inflow at the borders. The
latter trap the trajectories of ¢(r) (exemplary trajectories are
sketched).

|bs(E))— pg(E,)|> /2, a situation as that shown in Fig. 4(b)
is found when |@g(E,)— ¢g(E,)| < /2. We note that for sto-
chastically driven EHC, it has been demonstrated earlier by
similar arguments [19] that the trajectories cannot rotate in
(g, ¢) space when the excitation field is dichotomous.

One prerequisite for subharmonic solutions of the differ-
ential equation system is that both dynamic variables have to
change their signs after one excitation period (u;<<0). A
confinement of ¢ to two quadrants as in Figs. 4(a) and 4(b)
generally excludes the existence of subharmonic solutions of
the standard EHC system.

If, however, one applies an appropriate excitation scheme
consisting of at least three constant voltages to the nematic, it
is in principle possible to rotate the trajectories continuously
so that all four quadrants are passed during two cycles of the
excitation. After one period T of the excitation, the trajectory
is in a range of ¢ where both dynamic variables have
changed their signs (Fig. 5). With a rearranged excitation
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FIG. 5. A possible excitation scheme with three electric field
values (trichotomous waveform) E, > E., E;<-E, and E3=0. An
exemplary trajectory is sketched qualitatively.

sequence, it is possible to rotate ¢ in the opposite sense as
well. In all these cases, the asymptotic behavior of r(z) is
essential for the stability of the ground state and the defini-
tion of the threshold field, so the absence of barriers in the
flow map does not necessarily mean that subharmonic pat-
terns are developed, the subharmonic solutions may exist but
may not destabilize the ground state if 0> u;>—1. On the
other hand, for all periodic excitation waveforms assembled
of only two values for the electric field strength, subhar-
monic solutions of the differential equation principally can-
not exist.

VII. OTHER EXCITATION WAVEFORMS

From the flow diagram for ¢(¢) in Figs. 4(a) and 4(b), it is
evident that the statement about dichotomous waveforms can
be generalized. We consider the situation in Fig. 4(b) and
extend it to arbitrary sequences composed of steps with con-
stant electric field E;. Gaps with unidirectional flow around
¢=+r/4 also persist when the ¢g(E;) of all individual steps
are distributed within a range smaller than 7/2. We consider,
for example, the case ¢,<0: for any given wave number
k,> k, of the test mode, the ¢y at arbitrary electric fields are
in the range —m/4 < ¢¢< /4 [Fig. 3(d)]. Thus subharmonic
solutions cannot occur in that wave number region for any
excitation waveform. They may only be found in the region
0<k,<k, when the electric excitation field is appropriately
constructed so that E adopts values above as well as below
the E.- curve in Fig. 2. This argument holds not only for
piecewise constant, but also for arbitrary continuous or dis-
continuous waveforms. For materials with ,>0, the exis-
tence of subharmonic solutions is restricted to wave numbers
k,>k, by the same arguments [see Fig. 3(a)].

In the special case when the nematic material has zero
dielectric anisotropy g =€, the two diagonal elements of
the matrix A(¢) become time independent. The line E(k,) in
Fig. 2 that separates regions of opposite signs of a;;—a,,
becomes exactly vertical, i.e., for any test mode k,, the dif-
ference a;,—ay, has the same sign independent of the electric
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field. In that case, the denominator in Eq. (12) for a given
test mode has the same sign for all field strengths. With the
arguments given in the previous paragraph, one has to con-
clude that ¢ remains confined to two or less quadrants for
any excitation and any test mode. For a material with isotro-
pic dielectric properties, one can thus exclude the existence
of subharmonic solutions of the ODE system completely for
arbitrary excitation waveforms. For the formation of subhar-
monic solutions, it is essential that the electric field enters the
diagonal elements of the evolution matrix.

The above discussions do not exclude that further condi-
tions can be formulated which lead to the inhibition of sub-
harmonic solutions of the EHC model equations. However,
the three criteria allow us to decide a priori for a large en-
semble of periodic waveforms whether or not subharmonic
solutions can be excluded in general.

For waveforms which lack the above discussed symmetry
properties, the formation of subharmonic patterns depends
upon material and cell parameters and cannot be predicted
generally. On the other hand, some symmetries have been
proven to be compatible with subharmonic patterns. For
example, the sawtooth waveform has the symmetry
E(f)=—E(T-1), and subharmonic patterns have been found
experimentally in a certain frequency range for that excita-
tion [12]. In addition, superposition of sine or square waves
with even integer frequency ratios can produce subharmonic
patterns if frequencies and amplitudes are chosen properly
and the mutual phase shift of the superimposed waves is
chosen such that the time inversion symmetry is broken (see
below).

VIII. NUMERICAL RESULTS

The trajectories of the system variables can be calculated
analytically only in a few special situations, in particular if
the waveforms consist of piecewise constant segments. In
general, one has to solve the equations numerically. The fol-
lowing chapter shows the structure of the stability diagrams
for a few selected typical situations. For the construction of
these stability diagrams (Fig. 6 and following), a sufficiently
fine grid of the two parameters (e.g., wave number and elec-
tric field amplitude) is chosen. For each parameter set, two

independent initial vectors Z,(0), Z,(0) are chosen, and their
evolution is calculated for a full excitation period by solving
Eq. (2). From the results Z,(T), Z,(T), the eigenvectors and
eigenvalues of M are obtained.

We present the Floquet multiplier w; as a function of the
test mode wavelength and a selected electric field strength
parameter characterizing the excitation. In the numerical cal-
culations, we use the data of the material Mischung 5 [11,12]
which has been studied in previous experiments. If not oth-
erwise indicated, =96 s™! (cgs, esu), y;=3.65 gcm™! s—1
(cgs), €/=5.6, ¢ | =6.0. With this set of material parameters,
one has k;=0.735 um~'. We assume a cell thickness of d
=48.5 um. This is the thickness of the cell used in the ex-
periments in Sec. IX.

Of course, such numerical results can only positively
prove the existence of subharmonic solutions. Their absence
in the numerical results is only an indication that subhar-
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FIG. 6. Numerical calculated stability diagrams for superposi-
tion of rectangular waves with frequency ratio 1:4, f;=30 Hz, f,
=120 Hz, and with phase shifts of #=90° (a) and 6§=0° (b), (c), see
graphs at the bottom. The vertical axis is the amplitude of the low
frequency voltage, U;=E d. Regions with |u,|>1 are shaded. La-
bels denote conduction (c), subharmonic (s), and dielectric (d) pat-
terns. The high frequency voltage amplitudes are U,=30 V (a), (b)
and U,=39 V (c).

monic solutions do not exist for a given excitation wave-
form, because their existence ranges depend in detail upon
the choice of a particular set of material parameters. Never-
theless, the numerical data may be appropriate to support the
above made statements.
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First, we refer to the numerical results published in Ref.
[12] where triangular wave excitation has been discussed. In
that paper, stability diagrams have been presented for a
strictly antisymmetric excitation with the triangular wave-
form

(44/T)E, for 0 <t <T/4,
(2-44T)E, for T/4<r<3T/4,

E(t)= (15)
(44/T-4)E, for3T/4A<1<T,

E(t mod T) elsewhere,

which fulfills the condition of Sec. IV. The stability diagrams
show that only conduction and dielectric regimes are formed
while the tongue of subharmonic solutions is missing com-
pletely in the stability diagram, w; is non-negative every-
where. In contrast, a region with subharmonic solutions is
found for certain nonsymmetric triangular waveforms

(t/T,)E, for0<t<T,,
(T2 -0)(TI2-Ty)JE, for Ty;<t<T-T,,
[(t=T)IT,]E, for T-T,<t<T,
E(t mod T) elsewhere,

E(t) =

(16)

with T/4 <T,=<T/2. Subharmonic solutions exist in a given
parameter range and a subharmonic island with wp;<-1
can even provide the global minimum of the neutral curve
(Jus|=1) so that subharmonic patterns form at onset of the
instability.

Other typical examples are excitations with superimposed
square waves with even and odd frequency ratios. The sub-
harmonic tongue is missing completely when two electric
square waves with odd frequency ratio are superimposed,
while it is present in situations where the two superimposed
square waves have an even frequency ratio and none of the
inhibiting conditions given in Secs. V-VII is fulfilled. It has
been shown experimentally as well as theoretically already
in Ref. [11] that with certain parameter sets, subharmonic
patterns may form the first instability.

In order to test the time inversion symmetry condition, we
choose a superposition of square waves with even frequency
ratio and different phase shifts between the two frequencies.
We define the phase shift by the position of the first positive
slope of the high-frequency component following a positive
slope of the low frequency component, measured in units of
the period of the high-frequency component.

Figure 6 shows the exemplary stability diagrams for su-
perposition of two square waves (E|,f;) and (E,,f>), with
1:4 frequency ratio. \is the neutral curve, where |u|=1 and
S marks the separatrix where the real parts of w,, change
their signs. Dark shaded areas mark regions with u;<-1,
bright shaded areas correspond to u;>1. In these shaded
areas, the nonconvecting ground state is instable with respect
to conduction (c), subharmonic (s), or dielectric (d) patterns.
The voltages U; are given by Ed.

In Fig. 6(a), the phase shift is 90°, and the excitation has
time reversal symmetry. The subharmonic tongue is com-
pletely absent for any choices of material and geometry pa-
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FIG. 7. Calculated stability diagram for excitation with a di-
chotomous waveform (see text and graph at the bottom) that lacks
the time symmetries discussed in the previous sections, t;=7/3, f
=1/T=20 Hz.

rameters. In Figs. 6(b) and 6(c), the phase shift is zero and
the time inversion symmetry is broken. In the stability dia-
gram of Fig. 6(b), a subharmonic tongue is found, but does
not provide the global minimum of the neutral curve for the
given parameter set. With the parameters chosen in Fig. 6(c),
the global minimum of A/ lies on the border of the subhar-
monic tongue and subharmonic patterns provide the thresh-
old for pattern onset. The experimental confirmation is given
in the next section. In all pictures, we have marked the wave
number k; where the theoretical E. curve intersects the k,
axis. As discussed in the previous section, subharmonic pat-
terns can be expected only at wave numbers smaller than &,
for the particular material with negative dielectric anisotropy.

Figure 7 shows a typical stability diagram for a waveform
composed of two electric field values +E,

E(1) = E, sgn[sin(27ft) + sin(47rf1) ], (17)

where the condition of Sec. VI (dichotomous function) is
fulfilled but none of the other conditions. The tongue with
subharmonic solutions is absent. In contrast, such a tongue of
subharmonic solutions can be found for waveforms com-
posed of three or more electric field values, as is demon-
strated in Fig. 8. The waveform used in the computation of
that stability diagram was

E(t) = Eo{sgn[cos(2mft)] + sgn[sin(47f1)]}. (18)

The detailed structure of the stability diagram depends upon
the frequency f=1/T of the excitation. The subharmonic
tongue is present at all frequencies tested in our numerical
calculations, whereas the global minimum of the neutral
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FIG. 8. Calculated stability diagram for rectangular wave exci-
tation with the shape shown in the bottom graph. It lacks the time
symmetries discussed in the previous sections. A subharmonic
tongue is formed. Sawtooth excitation, f=1/T=25 Hz (a) and
35 Hz (b).

curve is provided by the subharmonic structures only in a
certain frequency interval, as in the case of sawtooth excita-
tion.

Figure 9 compares the stability diagram for a material
with £,=0 (b) with two cases £,<0 (a) and £,>0 (c). With
£,=0 [Fig. 9(b)] the two diagonal elements a,, and a,; are
both time independent, subharmonic solutions cannot exist
as derived in Sec. VI. The border between the region of
conduction roll-like solutions (¢ varies around 7/2) and di-
electric roll-like solutions (¢ varies around 0) is a vertical in
the image starting at k;. Note also that the subharmonic
solutions appear for test modes with k,>k,; in the case
£,>0 [Fig. 9(c)], and in the range k,<k, in the case
£,<0 [Fig. 9(b)], as we had predicted from the model.

In addition to the stability diagrams, numerically calcu-
lated trajectories support the predictions of the analytical
model. The restriction of ¢ to two quadrants in the case of
dichotomous waveforms can be seen from Fig. 10(a), where
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FIG. 9. Calculated stability diagrams for sawtooth excitation,
£,=6.0 (a), £, =5.6, (b), and &, =5.55 (c). &=5.6 in all cases.

q(@) is presented exemplarily for the dichotomous waveform
of Eq. (17), Fig. 7 at (U,.,k.). For comparison, the calculated
trajectory in the case of the trichotomous waveform of Eq.
(18), Fig. 8(b) at (U,,k,) is shown in Fig. 10(b). It passes all
quadrants in the subharmonic regime.

IX. EXPERIMENT

Figure 11 shows different structures in the subharmonic
regime (b)—(d), and for comparison, normal rolls in the con-
duction regime of the same cell (a). All photos are instant
images (exposure time shorter than the period of the excita-
tion). Time averaged optical textures of the subharmonic pat-
terns in (b)—(d), as seen by eye, have half the wave length of
the spatial director pattern, since the pattern shifts by a half
wavelengt after each period of the excitation. The chevron
formation seen in images llc,d is very similar to what one
observes in the dielectric regime.
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FIG. 10. (a) Calculated trajectories in the (g, ¢) plane for the
dichotomous waveform of Fig. 7 at the critical (U,.,k,.). The trajec-
tory is restricted to two quadrants of the (g, ¢) space. There exists a
second, separate branch in the other two quadrants which is found
by inversion of the signs of both g and ¢. (b) Calculated trajectories
for the waveform of Fig. 8(b), the corresponding trajectory at
(U,,k,) in the subharmonic range passes cyclically through all four
quadrants within the time period 27.

For an identification of subharmonic dynamics, these im-
ages are not sufficient. Even though the agreement of critical
voltages and wavelengths measured in the experimental with
the numerical predictions is a strong indication for subhar-
monic patterns, a strict experimental confirmation of their
dynamics is only possible in the spatiotemporal analysis. The
Floquet multiplier of —1 for the subharmonic patterns can
always be compensated by a spatial shift of the pattern by
half a director period. Thus, the subharmonic nature of the
dynamics is not discernible in integral signals such as dif-
fraction intensities or the electric current through the cell.

As well as the numerical results given in the previous
section, experiments cannot prove the absence of subhar-
monic patterns. The latter can only demonstrate the presence
of subharmonic patterns when these form the first instability.
However, all experiments performed confirm the predictions
of the model and show that the model is not only appropriate
for the description of the fundamental time symmetries of the
pattern dynamics but it describes also, with great detail, the
trajectories of ¢ [11,12,35]. This has been done for two spe-
cial cases already in previous publications, for the superpo-
sition of phase shift free rectangular waves with an even
frequency ratio, it has been shown that subharmonic patterns
appear in a certain frequency range. The stability diagrams
and trajectories of the dynamic variables have been given

PHYSICAL REVIEW E 72, 066218 (2005)

(b)

FIG. 11. EHC patterns at sawtooth excitation: (a) normal rolls in
the conduction regime 60 Hz, 42.1 V, (b) normal rolls in the sub-
harmonic regime 76 Hz, 128.45 V, (c) chevron formation in the
subharmonic regime 80 Hz, 153.65 V, (d) chevrons in the subhar-
monic regime 80 Hz, 165.1 V.

and the comparison with the experiment has been performed
on the basis of the time-dependent laser diffraction intensity
and evaluation of the pattern wavelengths [11]. In a subse-
quent paper, it has been shown that for a much simpler ex-
citation waveform, the sawtooth, subharmonic patterns are
experimentally observable, the observation technique has
been improved there so that the time dependent pattern dy-
namics could be directly recorded with a high-speed camera
[12]. In that study, the experimental thresholds have been
measured not only for the sawtooth [Eq. (16) with T,=T/2],
and the antisymmetric triangle [Eq. (15)], but also for the
general case of Eq. (16), and a transition behavior has been
observed with increasing deviation from the antisymmetry of
the excitation.

We extend these experiments here to the conditions of
Sec. V by studying the superposition of square waves at a
frequency ratio 1:4, with and without a mutual phase shift.
We use the material Mischung 5, its chemical composition,
phase transition temperatures and material parameters can be
found, e.g., in Refs. [11,12]. As seen in Fig. 6, the numerical
analysis confirms the absence of the subharmonic tongue
when the phase shift is 90° and the excitation is time anti-
symmetric. In this experiment, three parameters can be ad-
justed, the frequency f; and the two voltage amplitudes
U,=Ed, U,=E,d of the low- and high-frequency compo-
nents. In the experiment, U, is increased at fixed U, until the
homogeneous ground state vanishes and the first convection
pattern appears. An exception is the right hand slope of the
threshold curve (see Fig. 12) where U, is kept constant and
U, is varied to find the threshold. The first frequency f; is
chosen below the cutoff frequency for square wave excita-
tion, and the second frequency f,=4f lies above the cutoff,
thus the threshold curve intersects the U, and U, axes at the
threshod voltages for conduction and dielectric patterns, re-
spectively, for pure square wave excitation. The bifurcation
is forward in all parts of the curve, the pattern onset is non-
hysteretic.
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FIG. 12. Plot of the experimentally determined thresholds at
superposition of two square waves (solid circles). The frequencies
are f1=80 Hz, f,=320 Hz. The solid line is the numerically calcu-
lated threshold curve, where o=185 s! and y;=3.62 gcm™! 57!
have been fitted. The open symbols represent the measured critical
wavelengths, the dashed line is the calculated curve. Note that all
critical wavelengths are below k;=1.04 um™' in the subharmonic
regime, as predicted.

Figure 12 shows a typical threshold curve measured for
zero phase shift. At low amplitudes of the high-frequency
component U,, the instability is towards conduction patterns
(normal rolls), at high voltages of the high frequency com-
ponent, the instability is towards dielectric rolls, and at an
intermediate voltage range, the subharmonic patterns provide
the first instability. Similar results have been presented in
Ref. [11]. The numerically calculated stability diagrams are
qualitatively similar to those depicted in Figs. 6(b) and 6(c).
At the two voltages U, and U, of the high-frequency com-
ponent, the first instability changes from conduction to sub-
harmonic patterns and from subharmonic to dielectric pat-
terns, respectively. Small quantitative deviations of the
theoretical threshold curves in the plot of Fig. 12 may reflect
the limits of the model for an exact quantitative description.
It has been discussed in the introduction that more elaborate,
more complex mathematical models exist which yield quali-
tatively equivalent results but may give a slightly better fit of
the threshold curves in some situations.

According to the considerations in Sec. V, the subhar-
monic patterns should vanish if the phase shift § between the
two superimposed frequencies reaches 90°. One expects the
“classical” direct transition from conduction to dielectric pat-
terns at U, Consequently, we have varied the phase shift
between the two superimposed rectangular waves, at fixed
frequencies f| and f,=4f, in steps from 90° to 0°. Figure 13
shows a diagram of the transition voltages U,,, U,,, and Uy,
as a function of the phase shift # between the two compo-
nents. In agreement with the model, subharmonic patterns
are not observed when the phase shift is #=90°. When
6+ 90°, the time reversal symmetry is broken and the sub-
harmonic tongue forms in the stability diagram. This tongue
does not provide the global minimum of the neutral curve
when 6 is in the vicinity of 90°. When the phase shift be-
tween the two superimposed excitation waves reaches some
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FIG. 13. Plot of the experimentally determined transitions be-
tween the conduction, subharmonic and dielectric regimes (dots) at
superposition of two square waves with phase shift 6. The solid
lines depict the prediction from the numerical solution of the
model differential equation system. Frequencies are f;=30 Hz,
f>=120 Hz. Note that the choice of different f;, f, compared to Fig.
12 has no qualitative consequences on the threshold diagram pro-
vided the same frequency ratio and phase shift § are maintained and
f1, f> are chosen below and above the cutoff for pure rectangular
wave excitation, respectively.

critical value, the subharmonic patterns are seen experimen-
tally, and their existence range is largest at #=0. The experi-
mental situation is symmetric with respect to the substitu-
tions §——6 and 6— 180°—6. The numerical results are in
excellent qualitative agreement and even in satisfactory
quantitative agreement with the measurements, as is shown
by the solid line in Fig. 13.

It is noticeable that in this excitation scheme, the fre-
quency spectra of excitations for different 6 are equivalent
except for phase factors. The disappearance of the subhar-
monic patterns at #=90° has to be attributed exclusively to
the particular time symmetry of the excitation. Time scales
related with dynamical properties of the material cannot be
used to explain the qualitative differences between threshold
curves for different 6.

X. CONCLUSIONS

We have derived some fundamental relations between
symmetries of the electric excitation fields and the time re-
sponse of the electroconvection patterns in nematic cells.
Only patterns described by the Carr-Helfrich mechanism
have been considered, which are the most comprehensively
investigated convection structures in liquid crystals. Certain
symmetries of the dynamic equations lead to fundamental
consequences for the pattern dynamics.

It has been shown analytically that three conditions can be
formulated for the symmetries of the excitation waveforms
that inhibit the formation of subharmonic patterns in EHC.
Subharmonic patterns are excluded when at least one of the
following conditions is fulfilled. (i) The excitation E(r) is
antisymmetric with respect to a shift of one half excitation
period in time E(¢f)=E(t+T)=—E(¢t+T/2). (ii) The excitation
E(r) is symmetric with respect to time reversal, i.e., there
exist certain f, for which E(1)=E(t+T)=E(ty—1). (iii) The
excitation is dichotomous, i.e., it consists of segments of
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constant electric field strength and the driving field adopts
only the two values E; # E,.

Obviously, the first conclusion is generally valid for a
two-variable dynamic system with the structure of Eq. (2)
when the two off-diagonal elements of the matrix A(f) are
odd functions and the diagonal elements are even functions
of the driving parameter E, a;(E)=a;(-E) for i=j, and
a;(E)=-a;(-E) for i# j, with i,j={1,2}. The second con-
clusion holds for any similar dynamic system where the two
off-diagonal elements have the same dependence on the
driving parameter E and differ only by a constant factor
a,(E)=const ay,(E).

Furthermore, it is necessary that the liquid crystal material
has a nonzero dielectric anisotropy €, in order to produce
subharmonic solutions of the differential equation system. If
the material is dielectrically anisotropic, the sign of g, deter-
mines in which part of the stability diagram (k, above or
below k,;) the subharmonic solutions can form. In a more
general formulation, the subharmonic patterns are not
present at any periodic excitation if the diagonal elements of
A are independent of the driving field E(z).

These analytical predictions have been tested by numeri-
cal calculations of stability diagrams and threshold curves.
Experimental data have been presented in this study that sup-
port the second condition. Experiments supporting the first
condition had already been provided earlier [12]. Similar ex-
periments could be performed in support of the third predic-
tion by the investigation of arbitrary periodic dichotomous
waveforms, but such experiments can on principle never
verify the theoretical prediction. In order to test the last pre-
diction of our model, it is possible to prepare a material with
g,=0, by slightly modifying the concentrations of the four
components of Mischung 5 (increasing the content of the
compound with the cyano substituent). Then, one may test
that subharmonic patterns are absent at arbitrary excitations.
This requires, however, an extensive preparational effort. It
might be a subject of future experimental studies.

Within this linear analysis, only statements about the pat-
terns at onset can be made, above the threshold, the situation
is far more complex and neither experimental nor theoretical
data are available so far that support or contradict the appear-
ance of subharmonic patterns for general periodic waveforms
far from the thresholds. Furthermore, we have neglected pos-
sible flexoelectric terms that can modify the symmetries of
the pattern response, in particular when hybrid anchoring
conditions at the two cell plates are assumed.
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APPENDIX: MATRIX COEFFICIENTS

The coefficients in Eq. (2) in the cgs system are given by

[19]

O'Hk)zc + O'J_k?
Ay=—dm—5 7,
gk, + e k;

. (oje, — g0 )(K; +k2)

A2= k

X3

8||k)2C + Slkg

_ L L1 n= wlk+ (n + y)kik
Az=+ 5 2.2 2 2 2 2
FL2 ik + (K + K2) (g, K + mak?)

£k 1
8”]{)26 + SJ_kg kx ’

Kssk? + K 1k
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1| s,k +K)
f 4’77(8”]()2( + slk?) ’

with k,=m/d, e,=¢,—¢&, and the abbreviation

A5:+

% [(y - Yz)k)zc +(y + Yz)kf]z

1
f= Y~ 5
4T a4 (R KD (K + k)

with the elastic constants K;; and K33 of the nematic, the
rotational viscosity vy, viscosities ay, y,, 7, the components
g, €, of the dielectric tensor parallel and perpendicular to
the director, respectively, and €,=g;—& . The conductivities
of the material parallel and perpendicular to the director are
o, and o, respectively, and k is the wave vector of the
convection rolls.

Most of the material parameters are accessible by inde-
pendent experiments and have been determined earlier. The
conductivities vary from cell to cell, therefore we use o as a
fitting parameter (it essentially determines the cutoff fre-
quency), keeping the ratio oy/o, fixed.
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