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We give a complete description of the classical dynamics of two electrons in the Coulomb potential of a
positively charged nucleus for total energy E=0 and angular momentum L=0. The effectively four-
dimensional phase space can be divided into partitions spanned by the stable and unstable manifold of the
Wannier ridge space. We identify a further approximate symmetry by choosing an appropriate Poincaré surface
of section in this dynamical system. In addition, a dividing surface between the dynamics influenced by the two
collinear spaces, the stable Zee space and the strongly chaotic eZe space can be identified. We discuss potential
extensions of the binary symbolic dynamics found in collinear two-electron atoms to the noncollinear parts of
the phase space for E�0.
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I. INTRODUCTION

Two electron atoms play a special role in atomic physics.
On the one hand, the interaction strength between the three
particles are all of the same order which limits the scope for
perturbative approaches, especially for highly, doubly ex-
cited states. The small number of particles, on the other
hand, as well as the long-range potentials makes mean-field
approaches useless for large parts of the atomic spectrum
above the ionisation threshold.

A valuable source of inspiration for a qualitative and
quantitative theoretical analysis of quantum effects in two-
electron atoms has recently emerged in the form of classical
and semiclassical studies of the corresponding classical
three-body Coulomb dynamics. Electron-electron correlation
effects in double-ionisation processes �1� as well as the ex-
istence of approximate quantum numbers could be explained
qualitatively in terms of properties of the underlying classi-
cal dynamics, see Ref. �2�. The fact that two-electron atoms
show approximate symmetries has been established experi-
mentally and in numerical quantum calculations and ex-
plained qualitatively by group theoretical arguments �3� and
in terms of adiabatic invariants �4�, see Ref. �2� for an over-
view. This suggests a related, but yet unknown symmetry in
the corresponding classical problem. This symmetry can be
associated with a stable bending type of motion of the cor-
related electron dynamics near collinear subspace of the full
dynamics, that is, the eZe and Zee space �here, the name
indicates the order in which the three particles are aligned�
�2,5–11�. The dynamics in the neighbourhood of these two
subspaces is, however, not compatible, which suggests the
existence of a separatrix between eZe-like and Zee-like dy-
namics. A breakdown of the approximate quantum numbers
is expected in this region which has indeed been seen in
numerical calculations �12�.

To unveil the classical origin of approximate symmetries
in two-electron atoms, an analysis of the phase space dynam-
ics beyond the known two degrees of freedom subspaces is
essential. Recent progress in this direction has been reported
in Refs. �13,14� where a full analysis of the dynamics near
the triple collision for angular momentum L=0 has been pre-

sented. In particular, the behavior of the stable and unstable
manifold of the triple collision has been studied in detail and
self-similar structures in scattering data could be explained.

Already finding the a suitable Poincaré surface of section
�PSOS� is a major problem in such high-dimensional dy-
namical systems. In this paper, we will suggest a PSOS
which allows us to give an analysis of the effectively four-
dimensional dynamics of the zero-energy phase space for L
=0 which is complementary to the approach taken in Refs.
�13,14�. This allows us to study directly the transition from
the eZe to the Zee space and to show that the stable and
unstable manifold of the so-called Wannier ridge provides a
Markov partition in E=0. An associate symbolic dynamics
can be directly linked to the well known binary Markov par-
tition of the eZe space for E�0 �7,8�. The PSOS may thus
prove valuable for an extension of the analysis to the physi-
cally much more interesting and challenging phase space for
E�0.

II. BASIC EQUATIONS AND THE PSOS ��=�
E=0

In what follows, we will refer to the two-electron dynam-
ics at the double-ionisation threshold E=0 for total angular
momentum L=0 if not stated otherwise. The latter implies,
that all three particles move in a plane. The Hamiltonian in
the infinite-nucleus mass approximation can in appropriate
units be written as

H =
p1

2

2
+

p2
2

2
−

Z

r1
−

Z

r2
+

1

r12
= 0, �1�

where Z refers to the charge of the nucleus and r1 ,r2 ,r12 are
the electron-nucleus and electron-electron distances. We will
consider helium, that is Z=2, if not stated otherwise.

We will work in hypersphercial coordinates, that is, we
introduce the hyperradius R=�r1

2+r2
2, the hyperangle �

=tan−1�r2 /r1� and the interelectronic angle �= � �r1 ,r2�. By
employing a McGehee transformation �15� of the form
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�̄ = �, �̄ = �, R̄ =
1

R
R = 1,

p̄R = �RpR, p̄� =
1

�R
�sin � cos �p�,

p̄� =
1

�R

1
�sin � cos �

p�,

dt̄ =
1

R3/2dt, H̄ = Ē = RE �2�

and rewriting the equations of motion in the new coordi-

nates, one obtains H̄
˙

=0 both for E=0 or R=0, thus reducing
the phase space to effectively four dimensions �8,13�. The
dynamics for E=0 is therefore equivalent to a dynamics at
the triple collision point R=0 and appropriate coordinates are
� ,� , pR , p� , p� together with the constraint

H̄ =
1

2
�pR

2 +
p�

2 + p�
2

sin � cos �
� − Z

cos � + sin �

sin � cos �

+
1

�1 − 2 cos � sin � cos �
= 0. �3�

We dropped the bar notation here again for convenience,

except for H̄. Note that the scaling for p� and p� differs from
the one defined in Refs. �13,14� and is chosen here to regu-
larize the coordinates at the two-body collisions �=0, � /2,
that is, the momenta take on finite values at these points �16�.
Furthermore, for E=0 one obtains ṗR�0, that is, the pR co-
ordinate is monotonically increasing in time.

In the scaled dynamics, there are two fixed points at

� = �/4, � = �, p� = 0, p� = 0,

pR = ± ��2�4Z − 1� = ± P0,

the triple collision point �TCP� with pR=−P0 and its time
reversed partner, the double escape point �DEP� with pR
= P0 corresponding in unscaled coordinates to a two-electron
trajectory approaching or escaping the nucleus symmetri-
cally along �=�. There are no periodic orbits in the system
due to ṗR�0. There are, however, three invariant subspaces
of the dynamics: the collinear spaces �=�, p�=0 �the eZe
configuration� and �=0, p�=0 �the Zee configuration� and
the so-called Wannier ridge �WR� of symmetric electron dy-
namics with �=� /4, p�=0. Note that the fixed points lie at
the intersection of the eZe and the WR spaces.

For completeness, we also give the discrete symmetries of
the system, that is, particle exchange, inversion, and time-
reversal symmetry in the new coordinates. The Hamiltonian
and the equations of motion are invariant under the transfor-
mations

particle exchange:

��,�,pR,p�,p�� → ��/2 − �,− �,pR,− p�,− p�� ,

inversion:

��,�,pR,p�,p�� → ��,− �,pR,p�,− p�� ,

time reversal:

��,�,pR,p�,p�� → ��,�,− pR,− p�,− p�� .

In Refs. �13,14�, an analysis of the dynamics in the E=0
space is given using the PSOS defined as �=� which will be
denoted by 	�=�

E=0. The boundary of the PSOS is the eZe
phase space in E=0. Note that Fig. 1�a� differs from the one
presented in, e.g., Refs. �8,14� at �=0 or � /2 due to the
different scaling chosen for the momenta.

The PSOS consists actually of two sheets corresponding
to either p�
0 and p��0 on the PSOS; only one sheet is
shown in Fig. 1�a�. The two sheets can be mapped onto each
other by the inversion symmetry and are connected at the
binary collision planes �=0 and � /2, the shaded areas in
Fig. 1�a�. Furthermore, on the eZe boundary, a point �� , p��
on the p�
0 sheet is identical to its counterpart on the
p��0 due to p�=0 there. That is, the boundary belongs
actually to both sheets. There is, however, no flux
across the boundary as it is an invariant subspace of the
dynamics.

We will briefly turn to the binary collisions planes restrict-
ing the discussion to �=0 in what follows. From Eq. �3�, one
obtains

p�
2 + p�

2 = 2Z

at a binary collision independent of pR. The values of p� are
thus between ±�2Z with p�= ±�2Z on the eZe boundary.
Other points in �=0 correspond to binary collisions with an
interelectronic angle ��� near the collision. Note in par-
ticular, that p�=0 is part of the Zee subspace. For near col-
lision trajectories, the colliding electron makes a 2� turn
around the nucleus, see Fig. 2; binary collision trajectories
are thus self-retracing in the limit �→0 and initial condi-
tions p� , p� on �=0 are identical to their time reversed part-
ners −p� ,−p�. This means in particular, that the two sheets of
	�=�

E=0 are continuously connected at the binary collision
planes as stated earlier once we make the identification
�p� , p����−p� ,−p�� at �=0.

The PSOS cuts through the WR and contains both fixed
points. 	�=�

E=0 is therefore ideally suited to study the connec-
tion between the various stable and unstable manifolds of the
fixed points. In fact, the WR forms a heteroclinic connection
between the TCP to the DEP; this, together with the topology
of the E=0 phase space leads to a characteristic foliation of
the three-dimensional stable manifold SD of the DEP as it
progresses from pR→−� toward the DEP. �By time reversal
symmetry, the same holds for the unstable manifold UT of
the TCP.� This leads to a five-leaves structure of the SD for
pR�−P0, that is, five distinct pieces of the SD come arbi-
trarily close to the 1D stable manifold ST of the TCP in E
=0, as described in detail in Ref. �14�.

This mechanism has a big effect on classical scattering for
E�0; the DEP acts as an entrance gate to chaotic scattering,
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that is, only those trajectories approaching the nucleus close
to the SD can enter a chaotic scattering region. They do so
along the five leaves forming five distinct paths into the cha-
otic region, which can clearly be seen in numerical scattering
signals such as the scattering time plots presented in Ref.
�14�. In fact, for E�0 another connection between the two
fixed points emerges; the unstable manifold of the DEP in
the eZe subspace coincides with the stable manifold of the
TCP along the so-called Wannier orbit �WO� with �=� /4,
�=�, p�= p�=0 in E�0. This leads to a conveyor belt
mechanism along which trajectories can be transported back
and forth between the two fixed points and can thus reenter
the chaotic scattering region leading to self-similar patterns
in the scattering signal �14�.

The PSOS 	�=�
E=0 is not very well suited for analysing the

transition from the eZe to the Zee subspace or for studying
the possibility of a global symbolic dynamics. In fact, the
Markov partition associated with the binary symbolic dy-
namics in eZe is defined with respect to the binary collision
planes �7,8� and so is the dynamics near Zee in 	�=�

E=0. To
separate these dynamical features, it is advantageous to
switch to a different PSOS. An ideal candidate is the PSOS
�=0 which will be discussed in the next section �17�.

III. THE PSOS ��=0
E=0

The PSOS 	�=0 is defined by the condition �=0 in the
full phase space E�0. We will in the following mainly re-

strict ourselves to 	�=0
E=0 defined on E=0. The boundary of the

PSOS is now formed by the Zee space and consists of two
disconnected parts separated by the e-e repulsion peak in the
potential at �=� /4, see Fig. 1�b�. Again, we plot here only
the p�
0 section of the PSOS; the two sheets p�
0 and
p��0 are connected at the binary collision planes �=0 or
� /2 in the same way as outlined for 	�=�

E=0. The full PSOS
consists thus of two disconnected cylinders centered at �
=0, p�=0 and �=� /2, p�=0. The two parts are related by
the particle exchange symmetry and the dynamics can be
restricted to only one of the components by symmetry reduc-
tion �7�.

In what follows, we will discuss only the lower part of the
PSOS in Fig. 1�b�, that is, ��� /4. The two halves of the
cylinder are connected at �=0 due to the identification p�

�−p�, p��−p� in that plane in the same way as described in
Sec. II, see Fig. 2. The dynamics in the two halves is related
by inversion symmetry, and we will often only consider the
p�
0 part of 	�=0

E=0. Note that �=0, p�=0 corresponds to the
eZe space; 	�=0

E=0 thus provides a PSOS topologically equiva-
lent to a cylinder which contains both collinear subspaces
spatially well separated, the eZe space as the axis and the
Zee space as its surface. �Note, that on the Zee surface,
points �� , p�� are identical on both halves.� It is natural to
parametrise the PSOS in cylindrical coordinates pR ,� ,

which for each half may be written as

FIG. 1. �Color online� The PSOS �=� �a� and �=0 �b� in �− p�− pR coordinates for E=0. Only the sheet for p��0 is shown in both
cases.

FIG. 2. �Color online� Dynam-
ics near binary collisions with re-
spect to an angle �. The trajecto-
ries become self-retracing at the
collision leading to an identifica-
tion �p� , p����−p� ,−p�� at �=0
or � /2.
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� = �g�pR,
�cos 
, p� = �g�pR,
�sin 
 . �4�

Here g�pR ,
�
0 is chosen such that the radial coordinate
�� �0,1� and 
� �−� /2 ,� /2�. Before turning to the sym-
bolic dynamics in 	�=0

E=0, we need to review some aspects of
the symbolic dynamics in the eZe space, which will be done
in the next section.

A. The symbolic dynamics in the eZe space

In eZe the symbolic dynamics is defined with respect to
the PSOS �=0 after symmetry reduction, which will be de-
noted 	�=0

eZe �7�. The PSOS’s 	�=0
E=0 and 	�=0

eZe intersect along
the line �=0 in E=0, see Figs. 1�b� and 3. The one-
dimensional Poincaré map defined on �=0 may be written in
the form

pR
�n+1� = f�pR

�n�� , �5�

where f is a monotonically increasing function �8�. Of spe-
cial interest are here the intersections of the stable and un-
stable manifolds of the two fixed points TCP and DEP, with
the 	�=0

eZe ; let Ai, i�0 be the intersections of the ST with the
	�=0

eZe in E=0 such that A−1 is the point from which the ST
leads directly into the TCP fixed point. In the same way, Ai,
i�0 are the points at which the UT intersects 	�=0

eZe in E=0;
we identify f�A−1�=A0 which continues the map across A−1

in a natural way. Analogously, Bi are the intersections of the
invariant manifolds of the DEP with the PSOS such that Bi is
part of the SD for i�0 and of the UD for i
0. We make
again the identification f�B0�=B1; note that Bi=−A−i by time
reversal symmetry �18�, see Fig. 3 along the axis R=0.

An appropriate symbolic dynamics for the full eZe space
is given by the condition

0 if � � �/4 between subsequent binary collisions,

1 if � = �/4 between subsequent binary collisions. �6�

For the map f , this rule is equivalent to assigning a symbol 1
to initial conditions in A−1� pR�B0 and 0 otherwise. The
possible admissible symbol sequences in the eZe space for
E=0 is limited; in particular, for the physically relevant cases
Z�1 and large nucleus/electron mass ratios �8,11�, only two
types of sequences occur, namely,

¯0001100¯ for pR � �Ai,Bi� ,

¯0001000¯ for pR � �Bi,Ai+1� .

For E�0, a complete binary symbolic dynamics emerges
in eZe; this is due to the fact that the ST coincides with the
UD along the Wannier orbit �WO�. Points close to B0 are thus
mapped both onto B1 as well as A0; similarly, A0 can be
reached both from A−1 and B0, see inset in Fig. 3. In fact, the
Poincaré map associated with 	�=0

eZe can no longer be contin-
ued across the points A0 and B0 as was the case in the 1D
map �5�; instead, the whole ST including A−1 and B0 are
mapped onto A0; similarly, B0 is the preimage of the UD
including both B1 and A0. This creates the folding mecha-
nism necessary for providing the partition of the full 	�=0

eZe in
terms of the two-dimensional manifolds ST and UD as shown
in Fig. 3, see Refs. �7,8� for details. We will come back to
this partition in Sec. III C; first, we will discuss an extension
of this symbolic dynamics into the full E=0 space.

B. The symbolic dynamics in ��=0
E=0

We propose to generalise the eZe symbolic dynamics to
the full E=0 space with respect to 	�=0

E=0 such that

symbol n ⇔ n crossings of � = �/4

in one step of the associate Poincaré map. The manifold
generating the partition is the stable manifold of the Wannier
ridge, SW. This manifold consists of the three-dimensional SD
together with the one dimensional ST �which is a boundary of
the SD �14��. Only those trajectories converging to the WR
will not return to the 	�=0

E=0. The qualitative difference in the
behavior on either side of the partition is shown in Fig. 4
depicting a swarm of trajectories in the �-� plane starting on
the 	�=0

E=0 with p�
0. The symbol codes in the left panel are
¯0.110¯ and ¯0.10¯, where the dot in the symbol code
represents the position for a given initial condition. �Thus,
¯0.110¯ refers to an initial condition which will lead to
symbols 1 in the next two steps; the ellipses indicate infinite
strings of symbols 0.� Similarly, we have ¯0.20¯ and
¯0.10¯ on the right-hand part of Fig. 4 due to the fact that
the trajectories cross the line �=� /4 once or twice in one
step of the Poincaré map. The dividing trajectory is in each
case on the SW converging to the DEP �=� /4, �=�.

In fact, the 	�=0
E=0 defines a three-dimensional map for

which the coordinate pR increases monotonically in time
similar to the one-dimensional map f in Eq. �5�. The SW
provides a partition of the space in the sense that sections of
the SW in the 	�=0

E=0 are mapped onto each other in accordance
to their end points Ai and Bi on the pR axis. The most striking
feature is, however, the regularity of the partition with re-

FIG. 3. �Color online� The partition generating the binary sym-
bolic dynamics in the eZe space. The one-dimensional map f is
defined on R=0 or equivalently on E=0. Here, ST

�n� denotes that part
of the stable manifold of the TCP which reaches the triple collision
after n steps. Likewise, UD

�n� is the nth generation of the unstable
manifold of the DEP.
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spect to a change in the angle 
 defined in Eq. �4�. The 	�=0
E=0

unveils an approximate rotational symmetry in the �− p� co-
ordinates. In Fig. 5, the SW is shown in cuts through the 	�=0

E=0

for different angles 
. The origin of the cylindrical coordi-
nates is the pR axis at �=0 which is nothing but 	�=0

eZe re-
stricted to E=0. The Zee space forms the outer boundary
which is here rescaled to �=1 using �4�. In Fig. 5, a more or
less uniform behaviour is observed for angles in the regime
−0.97�
 /� /2�0.76. The time reversed partner of the SW,
the UW, is obtained by the symmetry operation pR→−pR and

→−
; the first part of the UW starting at A0 is also shown
in Fig. 5. Note, that the five leaves structure emerges out of
the ST at points Ai, i�0 as well as at Bi, i
0 at the UD.

The SW and UW provide a partition of the PSOS. Essen-
tially, 4 different regions emerge, each mapped onto itself
under the Poincaré map. This is depicted in Fig. 6, which is
an enlarged version of the cut at 
=0 in Fig. 5. In terms of
the symbolic dynamics these regions can for pR�B−1 and
A1� pR be labeled as

¯000¯ bounded by Zee and �SW or UW� ,

¯010¯ bounded by �Bi,Ai+1� and �SW or UW� ,

¯0110¯ bounded by �Ai,Bi� and �SW or UW� ,

¯020¯ bounded by SW or UW only.

Compared to the 1D map f in Eq. �5�, there are two new
regions. The first is the region ¯020¯ which is completely
surrounded by the leaves of the SW emerging from the ST at
points Ai, i�0. It originates from the folding mechanism of

the SW described in Refs. �13,14�. Trajectories in this region
cross the line �=� /4 twice while traversing the interval A0

� pR�B0, see Fig. 4; the corresponding parts of this region
for pR
0 are bounded by the UW emerging from points Bi,
i
0. The second region ¯000¯ borders onto the Zee
boundary and approaches the eZe subspace only in a narrow
strip between the leaves of the SW or UW at points Ai, i�0 or
Bi, i
0, respectively. The SW and UW thus provide a natural
boundary between the eZe and the Zee spaces at least in the
limit E→0. This is of importance for understanding the
range of validity of approximate quantum numbers in two-
electron atoms and the transition between quantisation
schemes based on the dynamics in the neighborhood of the
collinear subspaces �2�.

The dynamics of the ¯010¯ and ¯0110¯ regions are
more or less similar to the 1D case for 	�=0

eZe restricted to E
=0, see Fig 3. It remains to be added that the ¯01.10¯
region is bounded by the interval �A0 ,B0� and the SW as well
as the UW up to the crossing point C in Fig. 6. Similarly,
¯0.10¯ comprises the area bounded by �B−1 ,A0� as well as
the SW and UW. In fact, as in the eZe partition for E�0, the
Poincaré map can no longer be uniquely continued at points
A−1 and B1 which end in or come out of the triple collision.
Instead, the image of A−1 must be identified with the whole
UD bounded by A0 and B1; A−1 is in particular also mapped
onto C. In the same way, the whole two-dimensional SD in
	�=0

E=0 may be identified by being eventually mapped onto the
point B1 which is part of the UD.

FIG. 4. �Color online� Swarm
of trajectories starting on 	�=0;
the thick, dashed line divides the
swarm into trajectories with dif-
ferent symbol code and lies on the
SW converging to the DEP at �
=� /4, �=�.

FIG. 5. �Color online� Cuts through the 	�=0
E=0

along 
=const together with the invariant mani-
folds of the WR.
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C. Extensions to E�0

The rotational symmetry of 	�=0
E=0 makes it possible to dis-

cuss the full PSOS 	�=0. Putting the Poincaré cuts from Figs.
3 and 6 together, we end up with a scenario as sketched in
Fig. 7. We stress that the 	�=0

E=0 is three dimensional, the full
PSOS for E�0 �or R�0� is thus four dimensional. How-
ever, any cut in E=0 with constant angle 
 gives a similar
picture which indicates that it may be possible to study the
full 	�=0 in a three-dimensional cut as indicated in Fig. 7,
�here for p�=0, that is, 
=0�. A smooth continuation from
the complete binary symbolic dynamics in the eZe space to
the symbolic coding in 	�=0

E=0 becomes apparent. An addi-
tional complication arises due to the five leaves structure
emerging from the stable and unstable manifolds ST

�n� and
UD

�n� when considering �
0. These leaves transform into a
self-similar chaotic scattering region due to the conveyor belt
mechanism discussed briefly in Sec. II. We will not enter into
a detailed analysis of a possible extension of the symbolic
dynamics to the full phase space; this is indeed part of on-
going studies at the moment. We hope, however, that Fig. 7
helps to visualise how the different parts of these high-
dimensional Poincaré cuts join together and why an exten-
sion of the self-similar structure related to a binary symbolic
dynamics is so robust even far from the eZe space as re-
ported in Ref. �14�. The new PSOS 	�=0 is also helpful to

identify the separatrix between eZe- and Zee-like behavior in
the dynamics at least in the limit E→0. We note that the SW
can in principle provide a dividing surface in the full four-
dimensional 	�=0; it is, however, no longer a nice, simple
surface but undergoes a complicated folding pattern related
to the conveyor belt mechanism. Still the SW seems a very
promising candidate for a global partition.

IV. CONCLUSIONS

The dynamics in the PSOS 	�=0
E=0 has been analysed in

detail; the PSOS makes it possible to discuss the partition of
the phase space in terms of the stable and unstable manifold
of the Wannier ridge, the SW and UW. We identify a symbolic
dynamics which matches smoothly onto the binary symbolic
dynamics in the eZe space reached here in the limit �→0
and E→0. It becomes apparent that the SW and UW act as a
separatrix between neighborhoods of the Zee and eZe spaces,
a fact which will be important in understanding the break-
down of approximate symmetries and associated quantum
numbers in quantum treatment of the problem.
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