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We study XY spin systems on small-world lattices for a variety of graph structures, e.g., Poisson and
scale-free, superimposed upon a one-dimensional chain. In order to solve this model we extend the cavity
method in the one pure-state approximation to deal with real-valued dynamical variables. We find that small-
world architectures significantly enlarge the region in parameter space where synchronization occurs. We
contrast the results of population dynamics performed on a truncated set of cavity fields with Monte Carlo
simulations and find fair agreement. Further, we investigate the appearance of replica symmetry breaking in the
spin-glass phase by numerically analyzing the proliferation of pure states in the message passing equations.

DOI: 10.1103/PhysRevE.72.066127

I. INTRODUCTION

Typically, given a model of an interacting spin system on
a d-dimensional regular lattice, the first approach in under-
standing its properties is through the Weiss mean-field
theory. Equivalently, one can neglect the underlying lattice
structure completely, where each spin interacts with a finite
number of particles, and assume that all spins interact with
each other. In other words, one substitutes the original model
by its (exactly solvable) fully-connected version. This crude
step may fail either completely, for instance predicting phase
transitions where there are none, or give a rather good quali-
tative picture of the physics of the model. In order to im-
prove results both qualitatively and quantitatively one must
then use sophisticated techniques, such as renormalization
group.

During the last two decades, since the seminal paper of
Viana and Bray [1], we have witnessed that it is still possible
to consider interesting exactly solvable versions of the origi-
nal model, other than the fully connected ones, while keep-
ing the coordination number finite. Since then, interacting
spin systems on random graphs have attracted quite some
attention in spin glasses [1-6], neural networks [7-9] and
small-world networks [10,11].

Surprisingly, during the last decade we have encountered
interesting problems that can be mathematically formalized
precisely as interacting spin systems on random graphs. Ex-
amples can be found in optimization problems [12-15],
error-correcting codes [16—18] and cryptography [19,20].

In order to tackle this type of problems the replica ap-
proach and cavity method, fairly well understood for fully
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connected systems [21], had to be reconsidered [2,3]: while
in the one pure-state approximation [21] a few order param-
eters suffice to describe the thermodynamics in the fully con-
nected case, this no longer holds as soon as the coordination
number is finite. In the latter case an infinite set of param-
eters, or a function order parameter, is required [22].

Unfortunately, while most analytic studies of interacting
spin systems have considered spins of a discrete nature, e.g.,
Ising spins, much less attention has been given to systems
with real-valued variables and in particular their model real-
ization on random graphs. Needless to say, such systems are
not only more realistic from a fundamental physical point of
view, but are also of special relevance in several contexts, as
for instance in Josephson junctions arrays [23-25], Kura-
moto models [26,27], etc.

The goal of this paper is then twofold. Firstly, we wish to
extend the cavity method to spin systems with real-valued
variables. Secondly, and following the steps in [28], we
would like to study here the thermodynamical properties of
Kuramoto models in small-world networks [29]. Small
worlds, more than just curious structures, are apparently uni-
versal and can be observed in many different circumstances:
from linguistic and social networks to the world-wide-web
(for a recent review see, e.g., [30]). A large body of work has
been devoted to the study of small-world networks, mainly
numerically (see, e.g., [31]) and to a lesser extent analyti-
cally [10,11].

This paper is organized as follows: in Sec. II we general-
ize the cavity method to real-valued dynamical variables to
specific graph instances and in the ensemble case. We then
use the cavity method on the XY small-world spin model in
Sec. III: we first apply bifurcation analysis to calculate the
continuous transition lines exactly. We also use population
dynamics and compare the results with simulations. We fin-
ish Sec. III by studying the proliferation of pure states. The
last section is for conclusions.
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II. GENERALIZED CAVITY METHOD
A. Cavity method on an instance

The cavity approach for diluted disordered systems with
Ising-type variables has been developed in [2,3]. The exten-
sion of the cavity method to any type of dynamical variable
was worked out by one of us in [32] and we would like to
recall it here. To do so, let us first consider the Hamiltonian

H{o})=-7 X o;-Ujo, (1)
(i)

where the nature of the spins is unspecified (Ising, real vari-
ables, spherical, multicomponent, and so on) and we will
require only that the partition function is well-defined. Let us

assume that the graph G is tree-like (short loops are rare). It
is then clear that the spins belonging to the neighborhood of
i are mainly correlated through the spin at site i. If, however,
we consider the fictitious situation of removing the spin at
site 7, then in the resulting cavity graph the joint probability
distribution of its neighbors approximately factorizes and we
can write

) Bethe )
Pay) = [1 PPy, @)

jedi

where PE.’)(O'j) denotes the cavity probability distribution of
finding spin j in state o; in the absence of site i. This is
usually called the Bethe approximation. Let us now consider
the reverse situation where we start from a cavity graph with-
out the spin at site i and reincorporate the spin i and recon-
nect all sites i to i. Then the physical (marginal) probability

distribution for o; on the original graph Gis given by

1 .
P{(o) = Z f do P>V pO(g,)
i

Bethe 1 )
= E da-ﬁieﬁjzke(ﬂ'ai'Uiéaf H P(fl)(()-(), (3)
i Cedi

with Z;=[do P{(o). The marginal P,(o;) is used to calculate
the physical one-site quantities in the original graph G. Un-
fortunately the cavity distributions P(g)(a'e) are still not
known. To overcome this problem we notice that we get

closed relations for them if we reconnect all sites but one j
€ di

P?)(Ui):ﬁjd"&i\jeﬁjzfeai\joi'Uifa{ IT PP(o),
i

Ceaij

Z¥ = f do PV (a). 4)

We see now that Eqs. (4) provide recursion relations for the
cavity distributions PEI)(O',-)V i=1,...,Nand V j e di. Once
these are known we can calculate any physical one-site quan-
tity by using Egs. (3). For instance the magnetization vector
M and the spin-glass parameter matrix Q are given by
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N
1
Ma: _E do Pi(o-)o-aﬁ
Ni=l

N
0u=13 | dodrriop(no,m, (5)
i=1

where a,b labels the spin components. Note that the cavity
distributions appearing in Egs. (3) and (4) are not expressed
in terms of parameters. We will call this choice of represen-
tation of the cavity equations the parameter-independent rep-
resentation.

In contrast, let us go now to a parameter-dependent rep-
resentation of the cavity distributions. We denote a param-
etrization explicitly as P?)(O')HP(O'| Mf’)). Since any prob-
ability distribution is defined to be positive the following
exponential parametrization is convenient

P(olp’) = exp(E uﬁ{;lqsn(a)>, (6)
n=0

where MY)={M§2}n>o are the so-called cavity fields and

{¢,(0)} is a set of orthogonal polynomials with respect to a

weight w(o)

J do w(o)e, ()¢, (o) =6,,,. (7)

We will assume that the first polynomial ¢,(o) is a constant
(the normalization constant of the probability). Now, using
(6) in (4) we find the following recursion relations for the
cavity fields {,u,l(’,z}

Ml(,ll?n= E um(ﬂ(gl)
Ceai\j

JyU[€)7 m >Oa

Ul A) = f dow(o)e,(o)

X logfdTe,BJ(r-AT+E:>O,un<pn(T)’ (8)

where u(/ui;') J,Uyp) ={um(;z§’) J,U;0)},.=; are the messages or
propagated fields. Notice that if the dynamical variables are
Ising-type, then only one cavity field suffices to parametrize
the cavity distributions and we recover the method of [2,3].

Let us also use the same parametrization of the marginal
distribution P;(o;) — P(0or;|m;), where the u; are the physical
fields. Then from Egs. (3) we get the following relation be-
tween the physical fields and the cavity fields

Mim = > um(nif) J,Uy), m>0. 9)

Cedi
Equations (8) and (9) are usually referred to as message
passing equations and have the following interesting physi-
cal meaning: when site je di is removed then each site
€ € 9i\j sends a message u(p,(gi) J,U;e) to site i according to
the interaction between spins ¢ and i and the state of spin o.
Then the spin o finds its optimal configuration (through its
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cavity fields MY)) in the cavity graph by adding all messages
up, Eq. (8).

B. Cavity method on the ensemble

Looking at the expressions of the order parameters we
notice combinations like (1/N)Eﬁ1P,-(o')(1/N)EﬁlPi(o')
X P;(7) and so forth. It is therefore instructive to introduce a

density of marginal distributions W,,[{P}] as follows

N
Wl (PH1= 13 8l P@) = P(@)],  (10)
i=1

with 8- -] a functional Dirac delta. Thus we can rewrite
the order parameters as follows:

Ma = J {dP}thys[{P}] f do P(O’)O’a,

Qab_f{dp} phys[{P}] f do dTP(U)P(T)UuTb- (11)

Analogously, we can also define a density of cavity distribu-

tions WI{P}]

W[{P}]——E 25<F[P -P()].  (12)

|(9 |jE(71

If we then assume that the graph ensemble is characterized
by a degree distribution p,, from Egs. (4) and (12) we obtain
the following self-consistency equations for the density
WI{P}] and by using Egs. (3), (10), and (12) we relate the
densities Wy,o[{P}] and WI{P}]

WH{P}] = 2 IZ]];I; [H {dP WP (}]dUeD(U()] 3r)
| k-1 y
X[P((") -7 f [g dT(P(g(Te)]ejﬁzhl""Uﬂe] i

(13)

3 k
Wng{P} = 2 pi f [H {dpf}W[{Pe}]dU(D(Ue)] S
k=0

€=1

k
X[P(U) - %f LH dTeP{z(Te)]
-1

><efﬁ2’5=1"“m] . (14)

Notice that the probability of choosing a cavity site randomly
is proportional to the number of its bonds, i.e., p;k, as re-
flected in the preceding equation. Finally we can also write
self-consistency equations for the cavity fields g in the en-
semble. We can do this in two ways. Let us start from Eq. (8)
and analogously to the definition of the density of cavity
distributions (12) we define a density of cavity fields
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N
W) = 12|&|2 S - ), (15)
i=1 jeadi

we then get

w(p) = E’Zl’; f [H dﬂew(ﬂe)dUeD(U()]

Xﬁ(ﬂ—zum(ﬂg ) ) (16)
=1

Alternatively, we would like to get the self-consistency equa-
tions for w(u) directly from those of W[{P}] as done in [28].
It is instructive to notice that we can get the transformations
w(m) < W[{P}] from the definition (12) and (15) of the den-
sity of cavity fields w(u) and cavity distributions W[{P}],
respectively. Indeed, let us simply assume that for a given
set of cavity fields [L(] there is a unique cavity distribution
Pl@’)((r) and vice versa so that we are entitled to write [L(])
= [.L({P(])}) Then from Eqs (12) and (15) we obtain

> Sp—p(PY})

jead

w(p) = EW

= J {dPYWI{PY]8(p — p({P))

W[{P}]——E 91 E onlP(a) - PV (a|p)]
l 1 jeadi
=fd/u w(p) 8 P(e) - P(alw)], (17)
respectively, which is precisely the transformation

w(pm) < W[{P}] for switching between parameter-dependent
and parameter-independent representations used in [28].

Finally the order parameters can be expressed as an inte-
gral over the density of cavity fields by using the transfor-
mations (17)

Ma=fdl"' thys(M)JdO'P(a-'”')o-a

de:fd,u wphys(p,)fd(TdTP(O’|M)P(7|M)UaTb,

(18)

where w_;,(u) is the density of physical fields.

phys

III. APPLICATION TO THE XY SPIN SYSTEM IN SMALL
WORLDS

Let us now consider the XY model in small worlds. This is
defined by the Hamiltonian

H({(T}) _JOEO- O~ J E ;- Ul] J? (19)
(i.)eg
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which describes a system of N 1nteract1ng XY spins o
=(07,0)) with i=1,...,N and with |o|?=07=1. The first
term represents a ferromagnetlc interaction along a one-
dimensional chain. We will consider that J,>0. The second
one describes a more complicated (e.g., chiral) interaction.
The factors U;; are orthogonal matrices drawn from some
general distribution D(U). Here G=(,€) represents a graph
with vertex set V={1,...,N} and edges €3 (i,j), EC(V,)).
We denote by di the neighbors of site i and for any subset of
vertices ACV we write o, ={0/|i € A}.

The application of the cavity method is straightforward.
We must take into account that the spins are XY, so that the
integral over spin degrees of freedom is over the unit circle,
Jdo— [sdo with S={(0,,0,) € R*:||o]|=1}, and that the en-
ergetic contribution coming from the chain and from the
graph is different.

Indeed, let us define C(i)={i—1,i+1}. We will distinguish
whenever the neighbor je di belongs to the immediate
neighbors of the chain, j e C(i), or not, j e di\C(i). Then
messages transmitted along the chain between two spins o
and 7 have an energetic contribution of —Jyo-7 while for
those messages along the graph the contribution is —Jo-U7.
Thus the message passing equations in this case simply read

wh= 2 w1+ 2w (1,05,
€eC(i) Ceadi\j
j e ai\C(i),
ph = 2w (o) + 2 u,(pP12,U,),  j e ),

LeCli)y e

(20)

where 1 is the 2 X2 identity matrix. For the physical fields
we get

lu’i,m= 2 um(ME‘ii)|JO’L€)+ E u (

€eC(i) {edi

z() (21)

In order to have the equations in the ensemble we define two
densities of cavities fields, similar to definition (15), as fol-
lows

N

1 1
wel @) = 2 E Apr MIU))
e NS 10iNCG) ;e

pik
Wl{PH= E W

2
><6<F>[P<a>—zi Lﬂdwpé’m} f [
grd § =1
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1 N

o .
Ch(ﬂ) % |C(l)|]ezc(l) (’L M[ )

which lead us to the self-consistency equations

we(p) = f [H dWWch(W):| > Bk

=0 (k)

(22)

k-1
X J Ll_[ dﬂ€wgr(M€)dU€D(U{’)]
-1

2 k-1
><6<u—2u(leo,1>—E : )
€=1 =1

Wen(p) = fdech(”)z Dk

k=0

J LH dmwgr(umdUeD(Uf)]
=1

k
-2, u( , ) (23)

€=1

X 6(;1 —u(vlJy,

Similarly, we get the following equation for the density of
physical fields:

phys(”‘) J |:H dVeWch(Ve)] 2 Pk

k=0

f {H dﬂewgr(ﬂe)dUeD(Ue)]
¢=1

€=1

2 k
X5(M‘2“(”e|fos“)—2 ; )
t=1
(24)

A. Parameter-independent equations and bifurcation
analysis

The above set of self-consistency Egs. (23) do not allow a
general analytical treatment. However, we can extract some
information exactly. To do so, it is convenient to switch to
the parameter-independent representation. After using the
transformations (17) we obtain

2 k-1
L[[ {dPGIWal{P fh}]] f LH {dPIW[{P ér}]dUeD(Ue)]

k- 2 k-1
HdT(Pgr(T()]eXp<ﬁ‘]02 o o+ I o Uﬂe)]

€=1
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o k
Wal{PY =2 f {dP Wl {P s} f LH{dPér}wgr[{Pg}]dugD(Ue)]
k=0 =1

and similarly for the density of physical distributions

k k
X 5(F)[P(0') - Zihf do' Py (o) [H da'{Pgr(Te)]exp<ﬁJo(r- o'+ ,6’]2 o-.Ueq)] , (25)
chJ/ § S =

=1

0 2 k
Wonys[{PH = 2 py J [H{deh}Wch[{P } f [H{dP }Wgr[{Pér}]dUeDwg)}
k=0

=1 (=1

1 k 2 k
X 5@{1)(0) -~ f [H dO'(Pch(a'g):| LH d7Py(Ty) |exp ﬁJoez oo+ ,BJ;: o U | |. (26
S =1 =1 =1

€=1

Even though Egs. (25) and (26) still look rather nontrivial
they allow us to locate the continuous transitions in a clean
way. Let us start by noticing that from the definitions of the
magnetization and the spin-glass matrix overlap, the para-
magnetic solution (M,=Q,,=0) is simply given by

1
Wonys {P}]= 8| P(0) = 1. (27)

which implies

P(o) - %‘r . (28)

Wgr/ch[{P}] = 5(F)

To find bifurcations away from (28) we follow [28] and
make the so-called Guzai expansion P(o)— (2m)~'+A(o),

with Wgr,ch[{P}]HWgr/ch[{A}] and where normalization re-

quires that Wgr,ch[{A}]:O if f¢do A(o)#0. We then exam-
ine quantities such as [ S{dA}Wgr,ch[{A}]A(a'l)- --A(o,) for
r=1, 2, and assume that close to a continuous phase transi-
tion they are of order O(€’) with € arbitrarily small. Inspect-
ing the possible bifurcations in first and second order in € we
find the following two transition lines written in terms of the
moments (k) and (k%) of the graph degree distribution p, (for
details see similar calculations in [28]):

o h(B)
P-F: l—cos(w)lo(ﬂj)
(K2 — (k) 1,(BJy) ]
X[ AT ASATTAk
(29)
1%</sf>{<k2>—<k> 2(BJy) }
-SG: 1= 2(k
Y BHL - & ’ <>13(ﬁ10)—1%(/3jo)
(30)

where we have used the following measure for D(U)

D(U):jdwKa(w)5[U—<co,sw Sin"’)}, 31)
—SInw COS w

with

Ku—,(w)zéé[w—(ﬁ]+%6[w+ @] (32)

for some @ € [0,27].

B. Parameter-dependent equations, population dynamics and
simulations

To obtain the behavior of the order parameters with re-
spect to the control parameters (such as temperature, average
connectivity and so on) we must solve the self-consistency
equations numerically. In order to do so, we switch to the
parameter-dependent representation for self-consistency
equations (25) and apply population dynamics.

To do the integrals in (23) it is convenient to parametrize
the spin vector o=(cos(¢),sin(¢)) with ¢ e[0,27). Then
for the cavity and physical distribution we have that P(o)
— P(¢) and since P(¢) is a periodic function of ¢ we
choose a representation in Fourier modes

P(dlp) ~ exp(E a,cos(sd) + > bxsin(S¢)), (33)

s=1 s=1

with u=(a,,a,,...;b;,b,,...), which implies that we have
chosen, rather than polynomials ¢,(o), plane-waves ¢,(o)
— [sin(ng),cos(ne)] with weight w(o)=1/7. After all this
has been introduced into (23) we use population dynamics to
solve them. Needless to say that to solve the equations for an
infinite number of cavity fields is unfeasible: we must trun-
cate the Fourier series in the parameter representation (33).
Also, we describe the macroscopic state of the system in
terms of just two order parameters m:VM§+M§ and ¢
=(1/2)(Qy+Qy,). Numerical solutions of Egs. (23) using
population dynamics considering only two parameters
=(a,,0,...;b,,0,...) are shown in Fig. 1. To see the crude-
ness of the truncation we have compared the numerical re-
sults with Monte Carlo simulations. These have been done
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FIG. 1. Comparison between population dynamics and Monte
Carlo simulations for the XY small-world systems with Poisson
degree distribution and angular disorder Kgz(w) with a_)=-7'r We
plot the magnetization m= \M2+M2 (solid lines) and overlap q

2(Qm+ 0,,) (dashed lines) against the inverse connectivity ¢~
Top lines refer to 7=0.3 while lower ones refer to 7=0.5. Markers
correspond to simulation results of system size N=40000. The
critical parameter values are in good agreement with those obtained
from our bifurcation analysis.

for system sizes of N=40X 10* spins and thermalizing with
the Fast Linear algorithm [33]. In Fig. 1 the comparison
between population dynamics and Monte Carlo simulations
is fairly good (Jy=1/2 and J=1), supporting the truncation
scheme.

C. Equations for a given instance and proliferation of pure
states

So far we have been tacitly assuming that there is only
one pure state, or equivalently one set of cavity fields
ul@’)Vi=1,...,N and Vj e di, solving the message passing
equations (20). Thus iteration of these equations does not
depend on initial conditions. The proliferation of solutions to
the equations (20) signals ergodicity breaking.

To examine ergodicity breaking we follow a method simi-
lar to the one presented in [34]. For a given graph realization
we take two different populations of cavity fields [L(]) and
uf’ and let them evolve according to the message passing
equations (20). If there were a single pure state then the
system would be ergodic, and so after some transient, the
state of the system would be independent of initial condi-
tions. On the other hand, dependence on initial conditions for
long times suggests that there are long range correlations
contradicting the assumption of a single pure state (i.e., the
clustering property is contravened) [35]. The difference be-
tween the two populations of fields is measured by introduc-
ing the following parameter

N
1
A= (- m (4)
i=1

where ml(.l’z) is the local magnetization for the two copies of

the system. Thus, if X #0, the solution of the iterative mes-
sage passing equations (20) is nonergodic. Notice that \ is
invariant under global rotations between the two copies and
therefore does not take into account the rotational degen-
eracy of the Hamiltonian.

PHYSICAL REVIEW E 72, 066127 (2005)

FIG. 2. Phase diagrams for XY small world networks with bi-
modal dlstrlbutlon K:(w)=% s0lw— @]+ sl w+ o) on Poisson graphs
for Wthh pi=cfe™/k! and ®=0 (top), w— 7 (middle), and
(JJ—EW (bottom). In all diagrams J=1. Solid hnes represent the
P —F transition whereas dashed ones represent P— SG ones (lower
lines: Jy=0; upper lines: Jy=0.5). In the middle panel, where for
Jop=0 all three phases meet, dotted lines represent the F— SG tran-
sition and dot-dashed lines represent the boundary above which
A>0 (34) and nontrivial ergodicity breaking takes place.

D. Phase diagrams

On the top panel of Fig. 2 we find the simplest possible
scenario of our model (19) with p,=eck/k! and @=0. We
plot the P (paramagnetic) —F (ferromagnetic) line (29) for
Jp=0, 0.5 (with Jy=0 returning the results of [28]). In this
simple case, we clearly see the small-world effect: even for
connectivity values ¢ <<1 synchronization is possible and the
F region in parameter space becomes significantly enlarged.
The impact of rewiring is such that any long range connec-
tivity value, however small (but finite), can lead to coherence
at a finite temperature. A similar result based on Monte Carlo
simulations has been obtained in [36,37]. Indicatively, even
for ¢=0.01 one can find a P—F transition temperature from
(29) at a finite value (around 7/J=0.02).
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For CT)=%’7T, because of the anti-aligning forces imposed
by the angular disorder, the P— SG (spin-glass) transition
always occurs first (i.e., for higher temperatures than the P
—F) and synchronization is impossible. The only possible
phases are paramagnetic with m=¢=0 and spin glass with
m=0 and g # 0. For intermediate values, e.g., (T)Ziﬂ we see
that one can have all three regions in the phase diagram,
although the location of the F— SG line cannot be obtained
from our bifurcation analysis. We have assumed that this is
given by the line segment parallel to the 7/J axis connecting
the triple point where all phases meet and 7/J=0 [38]. This
assumption is based on physical grounds (absence of re-
entrance phenomena). For &= i’JT we also see that increasing
the short-range bond J, leads very quickly to an effective
elimination of the SG area (for this example no SG phase
appears for at least ¢<0.01). Stability within the ordered
phase, for parameter regions where all three phases can ap-
pear, can be found using our methodology of Sec. III C. In
the middle panel of Fig. 2 we show the boundary (dotted-
dashed line) separating regions of A=0 from A>0. Above
the dotted-dashed of Fig. 2 we have A >0 and therefore ini-
tial conditions in the solution obtained via iteration of (20)
are important, signaling the presence of ergodicity breaking.

In Fig. 3 we plot phase diagrams for scale-free architec-
tures where p;, ~ k™Y with m <k <. We have plotted them in
the (7, T/J)-plane for different values of J;,, @. As it has been
noted in [39] for the case of Ising spins, we find that for
exponent values y<3 the system is always in a non-
paramagnetic state and this is due to the divergence of the
second moment (k%) at y=3. For spin systems with J,=0 one
finds that a lower cutoff m=1 leads to a critical vy, at zero
temperature which ceases to exist for m>1. However, for
systems on small worlds (J,#0) we see that m=1 can no
longer lead to such a transition as even an infinitesimally
small number of long range short-cuts is sufficient to guar-
antee a ferromagnetic state at zero temperature. Again, the
small world effect is striking. In Fig. 3 we compare the phase
diagrams for Jy=0 and J,=0.5. We see that even a relatively
small coupling strength J, guarantees coherence at finite
temperatures and also for small values of y. As in the case of
Poisson random graphs, without angular disorder (@=0)
there can only be a P— F transition, whereas for w= %77 only
a P—SG. Notice also that by increasing the lower cutoff
value m the area where coherence occurs is further enlarged,
as expected, since the mean connectivity on the graph also
grows. The dotted-line separating the SG and ferromagnetic
phase is based on the Parisi-Toulouse hypothesis [38]. Due to
numerical difficulties with population dynamics at low y we
were unable to calculate the ergodicity breaking line with
sufficient accuracy in this case.

IV. CONCLUSIONS

Complex networks constitute an important area of re-
search by virtue of the architecture through which micro-
scopic elements interact with one another. Typically, only a
vanishingly small fraction of the system, containing a finite
number of other nodes, can communicate directly with any
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T |

TH |

FIG. 3. Phase diagrams for XY small-world networks with bi-
modal distribution Kb;(a))zéé[a)—a_)]+%5[w+ @] on scale-free
graphs for which p;~k~Y with k=m, ..., and @=0 (top), E)=i77
(middle), and a‘):%’rr (bottom). We have taken the value of the
lower cutoff of p; to be m=1. In all diagrams J=1. Solid lines
represent P—F transition whereas dashed ones represent P— SG
ones (lower lines: Jy=0; upper lines: J5=0.5) and the dotted line
represents F— SG. Small world effects play a significant role on the
phase diagram as even for small J, values the ferromagnetic area
increases substantially.

given node. Cooperativity on such networks can vary signifi-
cantly depending upon parameters such as the degree distri-
bution or a superimposed small-world structure. As such in-
teraction structures are commonly found in a wide range of
real networks in recent years they have attracted the attention
of both experimentalists and theorists alike. From a theoret-
ical standpoint the notion of “‘local neighborhoods’ opens up
new directions towards theories of finite dimensional sys-
tems.

In this paper we have adapted the techniques developed in
[28] for the cavity method to study small-world effects in
spin systems with real-valued variables defined on the unit
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circle. Such systems are not only significant from a physical
point of view, but are also of special relevance in the context
of, e.g., Josephson junctions [23-25] and coupled oscillator
systems [26]. In special cases where the degree distribution
is given exactly (e.g., Poisson or scale-free) we have per-
formed a bifurcation analysis and derived phase diagrams.
From our results we see that superimposing a small-world
structure significantly enlarges the region in parameter space
where synchronization is possible; even for very small short-
range coupling strengths and in the presence of disorder the
system is able to synchronize. For scale-free architectures
similar small-world effects are visible again for very small
connectivity values. Interestingly, for a lower cutoff of the

PHYSICAL REVIEW E 72, 066127 (2005)

scale free distribution m=1 the system always finds itself in
a synchronized state along the zero temperature axis. This
effect is solely due to the small world architecture.
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