
Effect of spatially correlated noise on coherence resonance in a network of excitable cells

Okyu Kwon,* Hang-Hyun Jo, and Hie-Tae Moon
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea

�Received 10 June 2005; published 22 December 2005�

We study the effect of spatially correlated noise on coherence resonance �CR� in a Watts-Strogatz small-
world network of Fitz Hugh–Nagumo neurons, where the noise correlation decays exponentially with distance
between neurons. It is found that CR is considerably improved just by a small fraction of long-range connec-
tions for an intermediate coupling strength. For other coupling strengths, an abrupt change in CR occurs
following the drastic fracture of the clustered structures in the network. Our study shows that spatially corre-
lated noise plays a significant role in the phenomenon of CR reinforcing the role of the clustered structure of
the system.
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The response of nonlinear systems to noise has attracted a
large amount of attention. Especially stochastic resonance
�SR� has been studied very extensively during the last two
decades due to a number of applications in many fields, from
physical to biological systems �1–6�. The main result of SR,
which is somewhat counterintuitive, shows that noise at a
proper strength optimizes the response of a nonlinear system
to a subthreshold periodic signal. An optimal strength of
noise can induce the most coherent motion in the system.
SR-like behavior of the coherent motion can be induced
purely by noise even in the absence of an external periodic
signal for systems with limit cycles or self-sustained oscilla-
tions at close to the bifurcation point �7�. This phenomenon
has been called coherence resonance �CR� or autonomous
SR. In general, various excitable systems such as the Fitz
Hugh–Nagumo model �8�, the Plant model, the
Hindermarsh-Rose model �9�, and the Hodgkin-Huxley
model �10� exhibit such noise-induced coherent motion.

Recently, SR and CR in coupled or extended systems
have become an interesting issue, and some new features
have been demonstrated, namely the noise-enhanced phase
synchronization �11�, the noise-induced spatiotemporal pat-
tern formation �12�, and the noise-enhanced wave propaga-
tion �13,14�. Also, the phenomena called array enhanced sto-
chastic resonance �AESR� and array enhanced coherence
resonance �AECR� �15–19� have drawn interests among re-
searchers in recent years. It is now understood that in spa-
tially extended systems �i� the topology of connecting struc-
ture and �ii� noise correlation among the elements are the
significant ingredients on the collective behavior of the sys-
tems. Actually, the connecting topology of a variety of ex-
tended systems can be described by complex networks �20�.
Especially many biological neural networks present clear
clustered structure and sparsely long-range random connec-
tivity �21�. On the other hand, spatially correlated noise has
been considered relevant for biological systems �22�. How-
ever, most previous studies have not dealt with these factors
together �17–19,23�. In this study, we plan to add the spa-
tially correlated noise in the system of excitable cells and to
study the corresponding dynamics of CR.

As a model, we consider a system of coupled excitable
cells on “small-world” network, introduced by Watts and
Strogatz �24� in the presence of a spatially correlated noise.
Each cell is a Fitz Hugh–Nagumo �FHN� neuron which is a
simple but representative model of excitable neuron �25�. N
neurons in a ring lattice are diffusively coupled as follows:
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where xi is the fast voltage variable and yi is the slow recov-
ery variable of ith neuron. � and a are a time scale and a
bifurcation parameter, respectively. We fix �=0.01 and a
=1.03 for all N=101 neurons. For �a��1, a single FHN neu-
ron has only a stable fixed point. While for �a��1, a limit
cycle occurs. gij is a coupling strength between two neurons
i and j. If connected, they have the coupling strength gij =g,
otherwise gij =0. The connectivity pattern can vary with pa-
rameter p, which measures the network randomness. �i is
spatially correlated noise with intensity D.

The spatially correlated noise � is generated by summing
N Gaussian white noises � with correlation function C
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where �i is a Gaussian white noise with zero mean and cor-
relation given by 
�i�t�� j�t���=D
ij
�t− t��; D denoting the
noise intensity. And the correlation function is defined by
Ck=exp�−2k2 /	2�. According to the above method, we can
get the spatially correlated noise which obeys the correlation
function with decay constant 	 as follows:


�i�t�� j�t��� = D exp�−
�i − j�2

	2 

�t − t�� , �5�

where i and j denote the spatial positions of neurons in the
ring lattice. Consequently �i− j� represents a distance along*Electronic address: okyou@kaist.ac.kr
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the ring lattice not the connecting topology. The systems are
numerically integrated by the method of Fox et al. �26� with
the time step �t=0.002 t.u. �time units�.

As a quantitative observable of a neuron showing CR, a
temporal coherence is calculated by

Si =

�i�t

�var��i�
, i = 1,2, . . . ,N , �6�

where �i is the ensemble of time interval of interspike and Si
denotes temporal coherence factor of ith neuron. Here 
·�t

denotes average over time. The coherence factor S of the
system is computed by averaging Si over all N neurons. A
larger S implies that the interspike intervals of neurons are
more uniform.

A general feature of SR and CR is that there exists an
optimal noise intensity at which the coherence factor is
maximized. In the cases of AESR and AECR there exists an
optimal coupling strength additionally �15,16,18�. Our nu-
merical simulations verify the above results �see Fig. 1�, that
is, both the optimal noise intensity and the optimal coupling
strength exist, moreover, regardless to the network random-
ness p and the correlation length 	 of the noise. As coupling
strength increases, noise-induced individual and coupling-
induced mutual excitation enhances a coherent motion in the
coupled system. However, since excitable elements spend
most of their time in the rest state, a too strong coupling
prevents excitation by noise. For this reason, a stronger noise
is needed to overcoming stronger coupling to excite the neu-
rons. In this case a global synchronization emerges due to
strong coupling while the temporal coherence of the system
is somewhat reduced due to strong noise. As seen in Fig. 1,

the resonance curve shifts to the right side gradually and its
peak rises up first and then drops down according to the
coupling strength.

How do the connecting topology and the spatial correla-
tion of noise influence the coupled excitable neurons? To
focus on the question the effect of structural changes of con-
nectivity on the spatial correlation of noise must be ex-
plained in advance. For a regular network �p=0�, if 	 is large
enough, each neuron interacts only with the ones exposed to
the correlated noise. As p increases each neuron is able to
interact with a distant one which is exposed to an uncorre-
lated noise. Consequently for a proper length of 	, increasing
p reduces the correlation of the noise and simultaneously
increases the small-world effect between coupled neurons.
However, when 	=0 every neuron is already exposed to a
totally uncorrelated noise, i.e., local noise, so varying p does
not alter the correlation of noise. In this case the variation of
p influences the small-world effect only.

Now let us figure out the peculiar result according to p
and 	. In Fig. 1 the maximum value of each curve is called a
maximal coherence factor Sm and the noise intensity at Sm is
called an optimal noise Dopt. If the coupling strength is not
very strong, Sm takes a larger value for completely random
network �p=1� than for regular network �p=0�. On the other
hand, Sm shows decline for the more random network as the
coupling strength increases further. For large p, long-range
connections amplify the effect of coupling for the entire
range of g. Therefore, when the coupling is not very strong
the long-range connections enhance further the coherent mo-
tion of the system. However, for the very strong coupling
strength, long-range connections more reinforce the synchro-
nization. This strong synchronization more prevents excita-
tion by noise. Therefore, the coherent motion is decreased
much more for large p. The result of Figs. 1�a� and 1�b�
corresponds to the study of Ref. �18�. Figures 1�c� and 1�d�
show the results for the cases of non-zero 	. The overall
tendency does not change except that the coherent motion is
depressed when compared to the case with 	=0. Generally
the correlation of noise makes the firing events of neurons
correlated so the effect of mutual excitation is diminished. As
a result a coherent motion is depressed �17,23�. Interestingly,
we found that when p=0 and 	=2, Dopt has a relatively low
value even for a large coupling strength. When a neuron is
excited by a noise, its neighboring neurons are excited by the
coherent noise most probably. Consequently, spatially corre-
lated noise enables neurons to generate firing events in the
smaller noise intensity even for a relatively strong coupling.
Therefore the coherent motion of the system is not drasti-
cally depressed with the correlated noise in spite of strong
coupling. However, because the correlation of noise disap-
pears mostly again for p near 1, Dopts return to those values
of the case for p=1 and 	=0.

We then systematically examined the maximal coherence
factor Sm as a function of network randomness p for different
values of 	 �see Fig. 2�. We fix coupling strengths at five
values; very weak �g�10−2.5�, rather weak �g�10−2.25�, op-
timal �g�10−1.75�, rather strong �g�10−1.25�, and very
strong �g�10−0.75�.

Some interesting features are found in a certain region of

FIG. 1. The coherence factor S versus noise intensity D for
several values of coupling strength on �a� regular network �p=0�
and �b� completely random network �p=1� with spatial correlation
length of noise 	=0. �c�, �d� are the same curves for p=0 and p
=1 with 	=2, respectively. Average number of neighbors k=6.
Number of elements N=101. Coupling strength g varies from g
=10−2.5 to g=10−0.5 with 0.25 step of exponent. Base curves repre-
sent g=10−2.5. As coupling strength increases, the peak of S shifts to
a stronger noise.
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parameter space. If the coupling strength is very weak and
also if 	 is zero, each element behaves independently. There-
fore changing network topology does not influence the co-
herence of the systems. As 	 increases from zero, Sm curves
are elevated as increasing 	, although the elevation is very
slight �see Fig. 2�a��. The spatially correlated noise assists
partially synchronized excitation among the neighboring
neurons even for a very weak coupling. This synchronization
is induced by coherent noise not by coupling. Hence, con-
trary to an expectation from the existing studies �17,23�, the
spatial correlation of noise enhances a coherent motion.
However, as p increases, the effect of the correlated noise
disappears and the partial synchronization vanishes too.
Therefore, for each value of 	, Sm decreases with increasing
p and finally reaches the value at 	=0. For other values of
coupling strength, however, coherence deteriorates in general
by the spatial correlation of noise.

In the case of rather weak coupling the effect of long-
range connections is clearly observed. When 	 is large for
this case, we can define the transition point of p around pc
=0.1 above which Sm grows significantly. In Fig. 3 the clus-
tering coefficient C remains practically unchanged �clustered
structure mostly remains� for p� pc while the characteristic
path length L drops sufficiently. As p passes over pc, C drops
rapidly while L rarely changes. It indicates that introducing a
few long-range connections is enough to decrease L suffi-
ciently and additional long-range connections for p� pc af-
fect only to fracture the clustered structure. The correlated

noise effectively reduces the strength of coupling term, be-
cause the difference of fluctuation of system variable be-
tween coupled neurons is small. Therefore, it is more diffi-
cult to enhance coherence of the system by a few long-range
connections at larger 	. As p is increased beyond pc, the
cluster begins to be fractured and then the effect of noise
correlation vanishes considerably. Hence, the effect of cou-
pling term is recovered at large p. This makes Sm, which is
definitely dropped due to the correlated noise at small p,
grow rapidly as increasing long-range connections at p� pc.
For a larger coupling strength, the change of connecting to-
pology becomes more crucial. By every rewiring to the long-
range connections the coherent motion is steadily enhanced
as p increases for entire 	 �see Fig. 2�c��. This ascending
behavior of Sm due to a few long-range connections is main-
tained to a rather strong coupling �see Fig. 2�d��.

We observe another peculiar behavior of Sm. It has an
obvious maximum value at an intermediate p around pc for a
rather strong coupling when 	�0 �see Fig. 2�d��. For this to
make sense, we need to follow the behavior of Dopt for each
situation. When 	=0 the optimal noise intensity Dopt corre-
sponding to Sm rarely changes for the entire range of p �see
Fig. 4�a��. In case of 	�0, Dopt remains constant at lower
level than in case of 	=0 until p� pc and after that point
gradually chases the value of 	=0. The variation of Dopt
according to increasing p for 	�0 clearly appears for only
strong coupling. With these results, we can make sure that
the correlated noise enables resonance curve to occur in
smaller noise level especially for strong coupling. The effect

FIG. 2. The maximal coherence factor Sm as a function of net-
work randomness p for different values of 	, when coupling
strength is �a� very weak g=10−2.5, �b� rather weak g=10−2.25, �c�
optimal g=10−1.75, �d� rather strong g=10−1.25, and �e� very strong
g=10−0.75. 	 is varied from 	=0 �local noise� to 	=6 with a step 2.
Sm curve goes down with increasing 	 except in �a�.

FIG. 3. Clustering coefficient C �open circle� and characteristic
path length L �solid circle� as a function of p for Watts-Strogatz
small-world networks with N=101 and k=6. They are normalized
by each value at p=0.

FIG. 4. Optimal noise intensity Dpot as a function of p for vari-
ous 	 including 0 �diamond�, 2 �circle�, 4 �triangle�, and 6 �rect-
angle�. �a� g=10−1.25 and �b� g=10−0.75.
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of correlation of noise between inter-neurons drastically van-
ishes as clustered structure is fractured. As p increases fur-
ther from pc for 	�0, resonance curve rapidly shifts to
higher noises. This is why the value of Sm does not increase
and even decreases after p� pc.

Finally for the very strong coupling �see Fig. 2�e��, Sm
changes a little until p= pc then decreases substantially for
p� pc. This depression is more distinct as 	 increases. The
behavior of Dopt as a function of p for various 	 is very
similar to the case of rather strong coupling as seen in Fig.
4�b�. Sm should decrease much as 	 increases when p is near
zero. However, the decrease is not big owing to the effect of
the reduced Dopt. As a whole, for p� pc, the movement of
Dopt toward larger value and a number of long-range connec-
tions with very strong coupling drastically reduce the tempo-
ral coherence of the system.

In summary, we have investigated the effect of spatially
correlated noise �correlation length 	� in the presence of
various connecting topology �network randomness parameter
0
 p
1� of FHN neural network. This study reproduces
most of the general feature of AESR and AECR in the entire
range of 	 and p. In addition, we could get some novel

features for 	�0. When the coupling is rather strong, an
optimum value p� pc clearly emerges where a maximal co-
herence resonance appears. For p increasing from 0 to pc, the
maximal coherence factor rarely changes but, beyond p
� pc, it grows dramatically either up for a weak coupling or
down for a strong coupling. For p beyond pc, it is observed
that the clustered structures of the neurons are mostly frac-
tured out due to many long-range connections and, as a re-
sult, the noise correlation of interneurons simultaneously is
diminished quickly. It is believed to be the reason for such an
abrupt change of Sm near p� pc. These results show that the
spatially correlated noise enhances the role of the clustered
structure to the system. Therefore, the effect of a few long-
range connections is ignored by the enhanced clusters of the
neurons for a weak as well as for a strong coupling. Never-
theless, for an optimal and for a rather strong coupling, co-
herence resonance is still considerably enhanced by a small
portion of long-range connections.
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