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A universal formula is proposed for predicting the site percolation threshold of two-dimensional matching
lattices. The formula is slightly more accurate for these lattices than the formulas of Galam and Mauger, based
on a comparison over a class of 38 lattices, and does not require two universality classes for two-dimensional
lattices. The formula is constructed from the Galam-Mauger square root formula for site thresholds, by a
modification which makes it consistent with the theoretical relationship between percolation thresholds of
matching pairs of lattices. In the framework for evaluation of universal formulas introduced by Wierman and
Naor, the formula is currently the best performing universal formula for site thresholds on this class of lattices.
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I. INTRODUCTION AND HISTORY

A challenge since the introduction of percolation theory
has been to find a universal approximation formula, based on
a small number of features of the underlying lattice, for ac-
curately predicting the values of the percolation threshold for
all lattice graphs. Site percolation universal formulas based
on dimension and average coordination number have been
proposed by Sahimi, Hughes, Scriven, and Davis [1] and
Galam and Mauger [2-5]. Other researchers have developed
universal formulas or prediction procedures for the percola-
tion threshold based on a minimal spanning tree approach
[6-8], lattice Green functions [1], filling factor [9], and pre-
ferred directions for cluster formation [10].

Recent studies have shown that the existing percolation
threshold universal formulas must necessarily have large er-
rors for some lattice graphs [11] and that it is not sufficient to
base a universal formula only on dimension and average de-
gree [12]. Universal formulas were only evaluated on an ad
hoc basis until an evaluation framework was introduced by
Wierman and Naor [13].

This article uses the evaluation framework from [13] as a
tool for improving a site percolation threshold universal for-
mula for two-dimensional lattices. Section II summarizes the
evaluation criteria. Section III describes a method for modi-
fying a universal formula that does not satisfy one of the
criteria, “consistency with the matching property,” to obtain
a formula which does satisfy the property. In Sec. IV, this
modification technique is applied to a universal formula in-
troduced by Galam and Mauger to find a site percolation
universal formula. This formula is shown to outperform the
Galam-Mauger power law universal formula for two-
dimensional lattices. Concluding remarks are provided in
Sec. V.

II. EVALUATION CRITERIA

Wierman and Naor [13] introduced a framework for
evaluation of universal formulas, giving several properties
that should be satisfied by an ideal universal formula. The
ideal site percolation threshold universal formula will (1) be
well defined, (2) be easily computable, (3) provide values
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only between O and 1, (4) depend only on the adjacency
structure of the lattice, (5) be accurate, (6) be consistent with
the matching relationship, and (7) be consistent with the con-
tainment principle.

The first four properties are necessary for any reasonable
formula. Accuracy of predictions is perhaps the single most
important property. The last two properties ask that certain
theoretical properties that have been proved for percolation
thresholds hold for the predictive formulas. The concept of
matching graphs was introduced by Sykes and Essam [14],
and Kesten [15] proved (under rather general conditions) that
the site percolation thresholds of a pair of matching graphs
sum to one. The containment principle states that if one lat-
tice is contained in a second lattice, then its percolation
threshold is greater than or equal to that of the second lattice.
See [13] for further discussion of the properties and the
evaluation framework.

III. THE MODIFICATION TECHNIQUE

We now show a simple technique for modifying a univer-
sal formula, which is not consistent with the matching prop-
erty to create a formula that is consistent with the matching
property. In the following, we denote the matching graph of
a graph G by G". Consider a universal formula f(-), which
applies to any pair of matching lattices. We can then define a
parametrized family of universal formulas g,(-) by

@)
89 = G Gy
for a>0. Since (G")*=G, we have
.G
8= 56 o

SO

8.(G) +8,(G) =1,

Thus, all formulas in this parameterized family are consistent
with the matching property.

When applying the modification technique, if the original
formula f satisfies properties (1), (2), (3), and (4), then each
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modified formula g, will satisfy these properties as well.

Given a collection of lattices that have accurate percola-
tion threshold estimates, one may solve for the value of the
parameter a that minimizes some optimality criterion, such
as the mean absolute error or the mean squared error between
the g, formula values and the percolation threshold estimates
for the lattices.

IV. THE PROPOSED FORMULA

Let ¢ denote the average degree of the lattice G, and ¢
denote the average degree of its matching lattice. The im-
proved universal formula of this article was derived from the
Galam and Mauger [2,3] square root formula

1
fG)=——,
Vg—1
which, with a=1, produces
Vg —1+vg—-1

after simplification.

We carried out the optimization using the collection of 38
lattices and their site threshold estimates given in Table I.
Using either the mean absolute error or the mean squared
error as optimality criteria, the optimizing value of the pa-
rameter a is very near, but slightly greater than one. The
value of the optimality criterion for a=1 is only slightly
higher than for the optimal value. Since additions to the col-
lection of lattices or slight modifications of the site percola-
tion threshold estimates would result in changes in the opti-
mal value of a, and for simplicity, we have chosen to use
a=1 in the modified universal formula.

Recall that properties (1)—(4) are not affected by the ap-
plication of the modification technique. Since the original
formula satisfies properties (1), (2), (3), and (4), the modified
formula will satisfy these properties still, but also property
(6), as intended.

In addition to the properties proved above, this formula
has another advantage. It does not require two different uni-
versality classes to handle the two-dimensional lattices. The
Galam-Mauger power law formula used two universality
classes for two-dimensional lattices, with the classes deter-
mined empirically rather than defined as a function of prop-
erties of the lattice. The proposed formula apparently ex-
plains the behavior of the site percolation threshold of two-
dimensional lattices as accurately without the need for
universality classes.

A. Accuracy

We now evaluate the accuracy of this universal formula
using the 38 lattices considered in Table I, which were also
used to determine the optimal value of a. These are essen-
tially all percolation threshold exact values, nearly-exact
bounds, or estimates that have appeared explicitly or implic-
itly in the literature. Most of these lattice graphs are
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Archimedean lattices [16] or related lattices. The others are
related to the bowtie lattice [17], denoted B.

Archimedean lattices are vertex-transitive graphs with a
planar representation that is a tiling of the plane by regular
polygons. (A vertex-transitive graph is one in which all ver-
tices are equivalent, i.e., for any pair of vertices, there is a
graph isomorphism that maps one into the other.) There are
exactly 11 Archimedean lattices [16]. We denote each
Archimedean lattice by a sequence of integers (n,,n,,...,n;)
for some k, where the n; denote the number of sides of suc-
cessive faces as one moves around a single vertex. (For con-
ciseness, an exponent is used to indicate a number of succes-
sive faces of the same size.) Several authors—d’Iribarne,
Rasigni, and Rasigni [8], van der Marck [18], Suding and
Ziff [19], Ruskin and Cadilhe [20], and Wierman [21,22]—
have considered various percolation models on Archimedean
lattices. The exact site percolation thresholds are known for
three of the Archimdean lattices: the triangular, Kagomé, and
(3,12?). (See [15,23,24].) Suding and Ziff [19] estimated site
percolation thresholds of all the Archimedean lattices.

The 38 lattices are listed in Table I. Galam and Mauger
[4,5] and van der Marck [18] provided tables of values con-
taining bond percolation thresholds of most Archimedean lat-
tices and site and bond percolation thresholds of a few addi-
tional lattices. Exact bond percolation thresholds are known
for the square, triangular, and hexagonal lattices, and for the
bowtie lattice and its dual lattice [17,23,25]. The bowtie lat-
tice is denoted by B. D(G) denotes the dual graph of lattice
graph G. The bond percolation thresholds of a dual pair of
lattices sum to one. L(G) denotes the line graph (or covering
graph) of the lattice graph G. By the bond-to-site transfor-
mation, the bond percolation threshold of a lattice G is equal
to the site percolation threshold of L(G). M(G) denotes the
matching graph of the lattice graph G. The site percolation
thresholds of a matching pair of lattices sum to one.

All values in Table I are rounded to four decimal places.
In the column of actual values, values with no superscript are
simulation estimates from Suding and Ziff [19]. Superscript
e denotes an exact value, b denotes the average of nearly-
exact upper and lower bounds, m is obtained by the matching
property, v denotes a simulation estimate from van der
Marcke [18], p denotes a simulation estimate from Parvi-
ainen ([26], part IV, p. 5), and d denotes a value obtained by
duality of bond models and then the bond-to-site transforma-
tion.

The column labelled GM-pl provides values of the
Galam-Mauger power law universal formula, which uses dif-
ferent formulas for two universality classes of two-
dimensional lattices. In the GM-pl column, the superscript
indicates the class formula which provides the closest esti-
mate to the actual value.

B. Accuracy comparison with Galam and Mauger power law
formula

We evaluate the accuracy of the formulas using three
measures. The maximum error of our formula is 0.0495,
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TABLE I. Comparison of values predicted by the proposed formula and the Galam and Mauger power
law formula. See Sec. IV A, paragraphs 2 and 3, for an explanation of the notation for lattice names.

£l

Lattice q q Actual New Error GM-pl Error
(3,129 3 21 0.8079¢ 0.7597 0.0482 0.83962 0.0317
(4, 6, 12) 3 16 0.7478 0.7325 0.0153 0.6926' 0.0552
(4,8%) 3 14 0.7297 0.7183 0.0114 0.6926! 0.0371
(63) 3 12 0.6970 0.7011 0.0041 0.6926' 0.0044
D(3%,4%) = 10 0.6471¢ 0.6626 0.0155 0.6552! 0.0081
D(B) = 2 0.6653Y 0.6706 0.0053 0.6552! 0.0101
L(3,12%) 4 16 0.7405° 0.6910 0.0495 0.6540? 0.0865
L(4,8%) 4 2 0.67687 0.6499 0.0269 0.65402 0.0228
(3,4,6,4) 4 9 0.6218 0.6202 0.0016 0.5985" 0.0233
(3,6,3,6) 4 10 0.6527¢ 0.6340 0.0187 0.65402 0.0013
D(3,6,3,6) 4 8 0.5848Y 0.6044 0.0196 0.5985" 0.0137
) 4 8 0.5927 0.6044 0.0117 0.5985" 0.0058
L[D(B)] = 2 0.5955 0.5825 0.0130 0.5847" 0.0108
(3%,6) 5 8 0.5795 0.5695 0.0100 0.54782 0.0317
(32,4,3,4) 5 7 0.5508 0.5505 0.0003 0.54782 0.0030
(3%,4%) 5 7 0.5502 0.5505 0.0003 0.54782 0.0024

B 5 7 0.5475Y 0.5505 0.0030 0.5478! 0.0003

(39 6 6 0.5000¢ 0.5000 0.0000 0.4979! 0.0021
D(4,6,12) 6 6 0.5000¢ 0.5000 0.0000 0.4979! 0.0021
D(4,8%) 6 6 0.5000¢ 0.5000 0.0000 0.4979! 0.0021
D(3,12%) 6 6 0.5000¢ 0.5000 0.0000 0.4979! 0.0021
M(B) 7 5 0.4525™ 0.4495 0.0030 0.4663! 0.0138
M(33,42) 7 5 0.4498™ 0.4495 0.0003 0.4663! 0.0165
M(32,4,3,4) 7 5 0.4492m 0.4495 0.0003 0.4663! 0.0171
M(4%) 8 4 0.4073™ 0.3956 0.0117 0.38812 0.0192
L(B) 2 2 0.4045 0.4175 0.0130 0.4324! 0.0295
M[D(B)] 3 2 0.3347™ 0.3294 0.0053 0.36692 0.0322
M[D(3,6,3,6)] 8 4 0.4152m 0.3956 0.0196 0.4204! 0.0052
M(3%,6) 8 5 0.4205™ 0.4305 0.0100 0.4029! 0.0176
M(3,6,3,6) 10 4 0.3473¢ 0.3660 0.0187 0.33242 0.0149
M[D(33,4%)] 10 2 0.3529™ 0.3374 0.0155 0.33242 0.0205
M(3,4,6,4) 9 4 0.3782™ 0.3798 0.0016 0.3879! 0.0097
L[D(4,8%)] 3 4 0.3232m 0.3501 0.0269 0.30532 0.0179
M(63) 12 3 0.3030™ 0.2989 0.0041 0.29382 0.0092
M(4,8%) 14 3 0.2703™ 0.2817 0.0114 0.26502 0.0053
L[D(3,12%)] 16 4 0.25954 0.3090 0.0495 0.2427% 0.0168
M(4,6,12) 16 3 0.2522m 0.2675 0.0153 0.2427% 0.0095
M(3,12%) 21 3 0.1921™ 0.2403 0.0482 0.20332 0.0112

which is considerably smaller than the 0.0865 maximum of
the GM-pl formula. The mean error of our formula is some-
what smaller than that of the GM-pl formula: 0.0134 and
0.0164, respectively. The values for the median have a simi-
lar relationship: 0.0114 for our formula and 0.0124 for the
GM-pl formula. Using the rating scale of Wierman and Naor
[13], all these accuracy measures are in the Good range,
except for the maximum error of the GM-pl formula which is
rated Fair.

V. SUMMARY AND CONCLUSIONS

This paper provides an example of the use of evaluation
criteria for percolation threshold universal formulas to de-
velop an improved formula. The Galam-Mauger square root
formula is modified to create a family of possible universal
formulas that continue to satisfy the criteria it previously did,
but are also consistent with the matching property. An opti-
mization procedure can then be applied to select a formula
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TABLE II. Summary of evaluations of site threshold universal
formulas according to the Wierman-Naor criteria.

Property New GM-pl
Well-defined Yes No
Computable Yes Partly

Values in [0,1] Yes No
Adjacency Yes Partly
Accuracy (maximum) Good Fair
Accuracy (mean) Good Good
Accuracy (median) Good Good

Matching Yes Fair
Containment No No

from the family to achieve the best fit to percolation thresh-
old estimates. Although this modification was not designed
to improve the accuracy of the formula, in this case the ac-
curacy became significantly better. This formula satisfies all
the desirable properties in the Wierman and Naor [13] evalu-
ation framework except consistency with containment, and
arguably has slightly better accuracy than the Galam-Mauger
power law universal formula, without the need for universal-
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ity classes. (See Table II for a comparison of the two formu-
las.) A disadvantage of the formula is that it is valid only for
a class of two-dimensional lattices—there is no concept of
matching lattice in higher dimensions.

In future research on universal formulas, we hope to use
the evaluation framework to systematically improve bond
percolation threshold formulas. A similar approach to this
paper can be applied to existing formulas that do not satisfy
the duality property. A more difficult task is to develop an
approach for developing formulas that satisfy the contain-
ment property. We also hope to incorporate information on
the variability of degrees in the graph, as there is some evi-
dence that degree variability explains some of the percola-
tion threshold variability for lattices that have equal average
degrees.
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