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We study the dynamics of the Ziff-Gulari-Barshad �ZGB� model on square �sq� and hexagonal-honeycomb
�hex� lattices and when surface restructuring is introduced. We show that the ZGB model exhibits nonequilib-
rium phase transitions on the hex lattice similar to the ones already observed on the sq lattice, but the critical
values of the kinetic parameters depend crucially on the substrate type. If surface reconstruction �sq↔hex� is
assumed for high lattice coverage of one of the reactive species then persistent spatiotemporal oscillations and
clustering of homologous species are observed for kinetic parameter values 0.348�k1�0.393.
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I. INTRODUCTION

One of the most technologically important heterogeneous
catalytic reactions, the oxidation of carbon monoxide on
catalytic substrates, has been identified as proceeding accord-
ing to the Langmuir-Hinshelwood �LH� mechanism, or
monomer-dimer reaction, described by the following steps:

�Ag� + � →
k1

Aads, �1a�

�B2,g� + 2 � →
1−k1

2Bads, �1b�

Aads + Bads→
k2

2 � + �ABg� . �1c�

The index ads refers to species adsorbed on catalytic sites
and g refers to species at the gaseous phase above the cata-
lytic surface. In the particular case of CO oxidation, the spe-
cies A represents CO, B represents O, and � denotes the
empty catalytic sites. Over the past decades numerous ex-
perimental studies on heterogeneously catalyzed reactions,
including CO oxidation, have demonstrated sustained tempo-
ral oscillations at the steady state and pattern formation at the
mesoscale �1–11�. In parallel, many theoretical and numeri-
cal models were developed, in order to clarify the basic
mechanisms responsible for the development of these fea-
tures �11–22�.

In a celebrated paper in 1986, Ziff, Gulari, and Barshad
�ZGB� proposed a model in which the catalytic support is
represented by a square lattice and the reactive dynamics is
represented by a lattice gas type of process. This model is
called the standard ZGB model �14�. The basic assumptions
of the ZGB model are that �a� the lattice or surface is in
contact with a mixture of A �CO� and B2 �O2� in the gaseous
phase, �b� the relative concentrations of the two gases deter-
mine the kinetic rates at which they adsorb on the empty
lattice sites, �c� A �CO� adsorbs on one empty site, �d� B2
�O2� adsorbs dissociatively on two adjacent empty sites, �e�
the adsorbed species are diffusionless, and �f� if A �CO� and
B �O� are placed on nearest neighbor �NN� sites they imme-
diately react. In the parameter space this model predicts two

kinetic phase transitions which define three states in the
phase space, an O poisoned state for 0�k1=yCO�0.389,
k2=1.0, a CO poisoned state for 0.525�k1=yCO�1, k2
=1.0 �where yCO is the mole fraction of CO in the gas phase�,
and a reactive state between these two transition points with
coexistence of CO and O on the catalytic surface.

The ZGB model successfully predicted the poisoning
transitions that take place on single crystal catalysts such as
perfect Pt�100�, but has neglected, for reasons of simplicity,
important phenomena, such as diffusion of the reactive spe-
cies on the lattice, desorption of the reactants, reactant intru-
sion to layers below the surface, surface restructuring, etc.
All or some of these events may take place depending on the
experimental conditions, temperature, gas partial pressures,
and surface coverages. As a result of neglecting these phe-
nomena, some experimentally observed notorious features of
the CO oxidation �and other catalytic reactions� are not pre-
dicted by the standard ZGB model. These unpredicted fea-
tures include sustained kinetic oscillations of the lattice cov-
erages, pattern formation at the mesoscale, cellular
structures, wave front propagation, spirals, stripes, etc. �1–9�.

A number of modifications to the standard ZGB model
have revealed more complex dynamics bringing the model
closer to experiments. If surface diffusion of the reactants is
added to the model the transition points are shifted �15�.
Long range repulsions �the “eight-site rule”� of Oads in addi-
tion to diffusion and superlattice ordering cause bistability
and the order-disorder transition �16�. Further modifications
include the “hybrid model” which assumes mean-field type
behavior for infinitely mobile CO and lattice gas treatment
for immobile O �17�. Introducing the formation of surface
oxide to the ZGB mechanisms complicates the kinetics and
is shown to modify the reaction rates by several orders of
magnitude �18�.

From experimental studies it is shown that surface recon-
struction takes place under certain experimental conditions
and, as a result, temporal oscillations of the partial surface
coverages emerge. To understand the interplay between sur-
face restructuring and oscillations mean-field models are pro-
posed, which use variables representing the surface structure
�e.g., hexagonal vs square� coupled with variables represent-
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ing the surface concentrations �19�. More recently, numerical
Monte Carlo simulations and lattice gas cellular automata
models, which address the mesoscopic mechanisms produc-
ing these oscillations, have been proposed. Zhdanov and co-
workers �20� have used a two-layer representation of the
Pt�110� surface with surface reconstruction based on differ-
ent energetics �attractive and repulsive depending on the
direction� and have demonstrated oscillation of the surface
partial coverages. A lattice gas cellular automaton model
was also used by Kapral and co-workers �21� to model the
CO oxidation on metallic surfaces. This model is based on
multiple occupancy of the cells �several different species
may reside on the same spatial point�, in which the
�hex�↔ �1�1� local transitions are introduced through a
number of rules depending dynamically on the local environ-
ment while the kinetic constants and other parameters are
different in the hex and �1�1� configurations.

Due to its minimalistic character the original ZGB model
has not taken into account surface reconstruction phenomena
and although the direct presence of a substrate surface gives
rise to steady state, concentration phase transitions, temporal
oscillatory phenomena are not observed. A ZGB variant
mechanism leading to global oscillations is proposed by
Kortlüke et al. �22� where each lattice site is found either in
the hex�� phase or in the unreconstructed �1�1��� phase
of the Pt�100� surface �and similarly for the Pt�110� surface�.
The �↔� transition of a site happens at the borders between
� and � phases depending on the CO local occupation and
this induces transient oscillations. If, in addition, a weak
noise is induced via a spontaneous �↔� transition, indepen-
dently of the local environment, this noise amplifies the syn-
chronization and leads to global oscillations.

In the current study a minimal complexity mechanism
with naturally emerging oscillations due to surface recon-
struction is presented. The proposed model does not simulate
realistic experimental conditions but addresses basic mecha-
nisms coupling sustained oscillations with surface restructur-
ing. The central idea is to perform direct lattice reconstruc-
tion in parallel with reacting events via kinetic Monte Carlo
�KMC� simulations �23�. This direct lattice restructuring
seems to be responsible for the development of sustained
temporal concentration oscillations at the steady state as is
observed in experiments. To achieve this we follow a step-
by-step procedure.

In the next section we first choose to characterize the
kinetics of the LH mechanism via KMC simulations on
purely hexagonal-honeycomb �hex� lattice and compare it
with the kinetics on the purely square �sq� lattice. As we will
see, the results are qualitatively the same, but quantitatively
the parameter values where the kinetic phase transitions take
place are shifted. In Sec. III we perform KMC simulations on
a lattice which changes configuration from sq to hex and
back depending on the instantaneous concentrations �the ki-
netic parameters do not change in the sq↔hex transition;
only the number of bonds changes�. This combined mecha-
nism leads to sustained temporal oscillations of the surface
coverage which occur at certain parameter zones. In Sec. IV
we study the dynamics of clustering when surface recon-
struction takes place and in the concluding section we reca-
pitulate our main results and discuss open problems.

II. THE ZIFF-GULARI-BARSHAD MODEL ON SQ
AND HEX LATTICES

The algorithm variant introduced here for the description
of the LH monomer-dimer mechanism is slightly different
from the standard ZGB algorithm mainly in taking into ac-
count delays in the formation of the AB ��CO2� complex
and subsequent desorption. The algorithm is the same for sq
and hex lattices and is described by the following steps.

�1� Start with an empty lattice containing N sites.
�2� For every elementary time step �ETS� choose one lat-

tice site at random and a random number r, 0�r�1, that
determines which reaction will take place.

�3� If the chosen lattice site is empty and r�k1 then one A
particle is adsorbed on the chosen site.

�4� If the chosen lattice site is empty and r�k1 and a
randomly selected nearest neighbor is also empty then B2 is
adsorbed dissociatively on the chosen site and NN.

�5� If the chosen site contains an A �B� particle, a ran-
domly selected neighbor contains a B �A� particle and r
�k2 then an AB complex is formed and desorbs immedi-
ately.

�6� In all other cases the lattice state remains unchanged.
�7� One ETS is completed and the algorithm returns to

step 2 for a new ETS to start.
�8� One Monte Carlo step �MCS� is completed after a

number of ETSs equal to the total number of lattice sites. In
one MCS each lattice site has reacted once on average.

The difference between the above algorithm and the stan-
dard ZGB is that step �1c� reaction-desorption does not take
place instantly but A and B may spend some time on nearest
neighboring lattice sites before they are selected to form the
AB complex and desorb. This modification only shifts the
boundaries of the reactive zone with respect to the standard
ZGB model and does not induce qualitative changes. In the
remaining of the work the value of k2 fixed to 1.0, for sim-
plicity.

In Fig. 1 we present the steady state concentrations of B
as a function of k1. The lattice substrate contains in total

FIG. 1. The average steady state concentration of B for hex
�stars� and sq �squares� lattice configurations.

A. PROVATA AND V. K. NOUSSIOU PHYSICAL REVIEW E 72, 066108 �2005�

066108-2



25�104 sites, for both the hex and sq configurations. Results
represent averages over ten KMC runs. In both cases we
observe one smooth and one abrupt phase transition as in
�14�. The transition points are for the sq lattice 0.3481 and
0.3930, while for the hex lattice 0.3734 and 0.3821. Uncer-
tainties of these values are of the order of 2�10−4. The inset
in Fig. 1 magnifies the abrupt hex transition region and
shows that the error bars there are of the order of the gap
size. Away from the abrupt transition the errorbars are of the
order of the symbol sizes or smaller and they are visible
within the open symbols �squares�. The reason for the differ-
ent quantitative behavior between the hex and sq configura-

tions in the intermediate k1-value zone is the different num-
ber of NNs �three NNs in the hex configuration and four NNs
in the sq configuration�. The variation in the number of NNs
is important in the occurrence of synergetic steps �1b� and
�1c� which are, thus, more frequently realised in the sq than
in the hex configuration.

When combining the hex and sq cases we expect to ob-
serve spatiotemporal oscillatory dynamics in the parameter
zone 0.3481�k1�0.3930 �called the R zone� where the
square and hex configurations lead to different steady states.

III. SURFACE RECONSTRUCTION

To perform the surface reconstruction we modify our al-
gorithm by adding the following steps inside the algorithm.

�9� After every MCS the global coverage by particles B,
b, is calculated.

�10� If the lattice is in the hex �sq� configuration and b is
less �greater� than a lower �upper� cutoff then some NN links
are added �removed� as shown in Fig. 2. �The cutoffs are
comparable with the steady state b values for the given pa-
rameters�. Now each lattice site has four �three� NN links
and the configuration corresponds to perfect sq �hex� lattice
as indicated in Figs. 2�a� and 2�c�.

Note that the kinetic parameters do not change when go-
ing from sq↔hex configurations, only the number of bonds
change, as can be seen in Fig. 2.

Representative temporal evolution of the system in the
R zone is presented in Fig. 3. Sustained oscillations of the
B occupation and the AB�gas� production are observed for
k1=0.385, and similar behavior is obtained for the occupa-
tion of A particles and vacant sites. The linear lattice size
used is L=100 which corresponds to 104 substrate sites.
Similar sustained oscillations are observed for all parameter
values in the R zone, since within this region we have a
discrepancy between the steady state value in the square and
the hex configuration. Oscillations are more prominent for

FIG. 2. �Color online� Surface reconstruction process: �a� square
lattice, �b� intermediate “brick-wall” lattice, and �c� hexagonal-
honeycomb lattice. The black and gray �red� spheres represent A
and B particles, respectively.

FIG. 3. Temporal oscillations
of B and the persite ABgas produc-
tion rate observed when the sys-
tem undergoes lattice phase transi-
tions between sq and hex
configurations. The lattice size is
L=100 and the kinetic constants
are k1=0.385 and k2=1.0.
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k1�0.3821 since the concentration gaps in the hex and sq
phases are larger as compared to the case k1�0.3821. When
there is an important difference in the steady state concen-
trations, oscillations are not blurred by noise. Note that for
k1=0.3821, both sq and hex configurations lead to similar
results.

The mechanism producing the oscillations is understood
as follows. Initially the system is in the hex configuration. In
this state there are only three links for each site and thus
synergetic steps �1b� and �1c� are not favoured but happen
with low probability. Step �1a� is favored since it takes place
spontaneously and thus the partial lattice concentration of A
grows while the B and � concentrations remain small. When
the concentration of B achieves an upper threshold value �of
the order of 0.65 for Fig. 3� then a phase transition occurs
and the lattice assumes the hex configuration. Maximum A
�minimum B� concentration occurs at the end of the hex
phase. In the sq configuration each site has four nearest
neighbors and steps �1b� and �1c� are facilitated, while the
situation does not change for step �1a�. Due to the large
values of the kinetic constants in steps �1b� and �1c� �0.6 and
1.00, respectively� the concentration of A decreases due to
desorption �1c� while the concentration of B increases due to
adsorption �1b�. The system then achieves a state with high B
and low A concentration and the lattice changes back from sq
to hex configuration and a new cycle starts.

Representative snapshots of the spatial coverages are
shown in Fig. 4. In Fig. 4�a� the system in the hex configu-
ration accumulates B �red �gray�� particles while A �black�
regions start forming. In Fig. 4�b� the system is toward the
end of the hex phase with extended A �black� regions. In Fig.
4�c� the system is toward the end of the sq phase and has
accumulated many B �red� particles. Fig. 4�d� shows similar
features as Fig. 4�b�. The lattice size in Fig. 4 is L=100 and
the kinetic constants are k1=0.385 and k2=1.0, as in Fig. 3.

IV. CLUSTERING

Due to the cooperative character of steps �1b� and �1c�
cluster formation is expected �and observed� in the system

�24�. To calculate the degree of cluster formation during the
temporal evolution of the system a variable l�i , j� is defined
on every site �i , j� of the lattice, taking the values

l�i, j� = �1 if site �i, j� is covered by particles A ,

− 1 if site �i, j� is covered by particles B ,

0 if site �i, j� is empty.
�

�2�

The degree of clustering is calculated via the temporal cova-
riance function C�t� defined as

C�t� =
1

2L2 �
i,j=1

L

	�l�i, j� − lav�t���l�i + 1, j� − lav�t��

+ �l�i, j� − lav�t���l�i, j + 1� − lav�t��
 �3�

where lav�t� denotes the time dependent average value of the
variable l�i , j� over the entire lattice. The function C�t� takes
the value 0 for a random, noncorrelated distribution of the
variable l, and takes positive values if clustering occurs.

In Fig. 5 the temporal dependence of C�t� is depicted
corresponding to the oscillations shown in Fig. 3. The lattice
size used is L=100 and the kinetic constants are k1=0.385
and k2=1.0, as in Figs. 3 and 4. It is evident that during one
circle of oscillations there are two peaks in C�t�, one which
demonstrates principally clustering of A and occurs during
the hex phase and a second one which represents clustering
of B and occurs during the sq phase. Clustering of A and B
regions occurs due to the cooperative steps �1b� and �1c�. In
particular, step �1c� occurs in border regions between A and
B clusters. As a result of this reaction two sites are liberated.
In these empty sites either two B particles will be deposited
dissociatively and thus the B cluster will grow at the expense
of A, or one A will be deposited and one empty site will
remain. In the remaining single empty site most probably
another A will be deposited in a later ETS and thus the A
cluster will grow at the expense of the B cluster. �There is
also the possibility that the single empty site has a third NN
empty and thus two B particles can be deposited, but this is a
secondary low probability step which requires synergy of
three sites.�

V. CONCLUSIONS

In conclusion, we have shown that when a system under-
goes a lattice phase transition as a result of high or low level
occupation of one �or more� species, spontaneous spatiotem-
poral oscillations of the species concentrations and clustering
of homologous species are induced for specific parameter
zones. This has been demonstrated in the case of the Ziff-
Gulari-Barshad model of the monomer-dimer process for the
R parameter zone 0.3481�k1�0.3930. The method used is
kinetic Monte Carlo simulations with direct surface recon-
struction from hex↔sq lattices. During the reconstruction
only the number of nearest neighbors changes while the ki-
netic parameters remain the same in the two phases �are
phase independent�.

When the system size is small enough and the transitions
take place simultaneously over the entire lattice, the oscilla-

FIG. 4. �Color online� Detailed lattice snapshots taken at times
�a�2500, �b� 5000, �c� 7500, and �d� 10 000 MCSs. The lattice size
is L=100 and the kinetic constants are k1=0.385 and k2=1.0.
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tions have rather regular shapes with fluctuations as in Figs.
3 and 5. Further KMC simulations have shown that for larger
systems with phase transitions taking place locally, the oscil-
lations are irregular and/or chaotic with their synchronization
depending on the ratio of the average local reconstructed
area to the total lattice size �24�. This type of irregular oscil-
lation is more appropriate for describing experimental situa-
tions where the substrates have macroscopic sizes as in the
case of heterogeneously catalyzed reactions.

Concerning diffusion, which is important in particular for
CO �A� particles at high temperatures, preliminary KMC
studies have demonstrated quantitative shifts in the transition
points �for example, the abrupt transition in hex configura-
tion shifts from k1=0.382 to 0.384� and thus oscillatory be-

havior is supported but the width and position of the R region
are modified accordingly. Further studies in this direction,
using local surface reconstruction, surface diffusion, CO and
O desorption rates, surface metal oxide formation, and other
microscopic known processes are expected to give a better
understanding of the complex spatiotemporal structures ob-
served experimentally in heterogeneous catalytic reactions.
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