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Uncovering collective listening habits and music genres in bipartite networks
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In this paper, we analyze web-downloaded data on people sharing their music library, that we use as their
individual musical signatures. The system is represented by a bipartite network, nodes being the music groups
and the listeners. Music groups’ audience size behaves like a power law, but the individual music library size
is an exponential with deviations at small values. In order to extract structures from the network, we focus on
correlation matrices, that we filter by removing the least correlated links. This percolation idea-based method
reveals the emergence of social communities and music genres, that are visualized by a branching represen-
tation. Evidence of collective listening habits that do not fit the neat usual genres defined by the music industry
indicates an alternative way of classifying listeners and music groups. The structure of the network is also
studied by a more refined method, based upon a random walk exploration of its properties. Finally, a personal
identification—community imitation model for growing bipartite networks is outlined, following Potts ingredi-
ents. Simulation results do reproduce quite well the empirical data.
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I. INTRODUCTION

Answering a common question such as “What kind of
music do you listen to?” is not an easy task and is full of
hidden information about oneself. Indeed, music is omni-
present in our society and is part of everyday life. Moreover,
it is well known in social sciences [1] that music does not
function merely as entertainment, but is deeply related to
identity building and community building. In that sense, per-
sonal musical choices derive from a subtle interplay between
cultural framework inheritance, social recognition, and per-
sonality identification. These reinforce one’s self-image and
send messages to others [2]. Due to the complexity of taste
formation and the richness of available music, it is tempting
to postulate that someone’s music library is a unique signa-
ture of himself [3]. For instance, it is interesting to point to
the empirical study by D’Arcangelo [4] which shows that
listeners strongly identify with their musical choice, some
even going so far as to equate their music collection with
their personality: My personality goes in my iPod, as an in-
terviewed person claims. Consequently, it is difficult for
people to recognize themselves in usual music divisions,
such as punkers versus metal heads, or jazz versus pop lis-
teners. And, more commonly, they answer to the above ques-
tion “Everything... a little bit of everything.”

Recently attempts have been made to characterize the mu-
sical behavior of individuals and groups using methods from
quantitative sociology and social network analysis. These at-
tempts were made possible because of the huge amount of
music databases available now, associated with the current
transition from materialized music (LP’s, CD’s, etc.) to
computer-based listening habits (iTunes, iPod, etc.). Among
other studies, let us cite the recent empirical work by Voida
et al. [5], which shows that people form judgements about
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colleagues based on the taste—or lack of taste—revealed by
their music collection, and admit to tailoring their own music
library to project a particular person.

The present paper focuses on these musical behaviors
from a statistical physics and statistical point of view, by
analyzing individual musical signatures and extracting col-
lective trends. This issue is part of the intense ongoing physi-
cist research activity on opinion formation [6—10], itself re-
lated to phase transitions and self-organization on networks
[11,12], including clique formation [13]. The characteristics
of such phenomena depend on the type of network, as well
as on the data size, thereby questioning universality, in con-
trast with statistical mechanics.

In Sec. II, we extract empirical data from collaborative
filtering websites, e.g., audioscrobbler.com and musicmobs
.com. These sites possess huge databases, that characterize
the listening habits of their users, and allow these users to
discover new music. Our analysis consists in applying meth-
ods from complex network theory [14] in order to character-
ize the musical signatures of a large number of individuals.
In Sec. III, we present original percolation idea-based (PIB)
methods in order to visualize the collective behaviors. They
consist in projecting the bipartite network, where listeners
and music groups are linked, onto a unipartite network, i.e., a
network where listeners are connected depending on the cor-
relations between their music tastes. Let us stress that the
usual projection method ([15], see details below), used in
co-authorship networks, for instance, does not apply in the
networks hereby considered, as it leads to almost fully con-
nected networks. In this work, we also project the bipartite
network on a network of music groups, and probe the reality
of the usual music divisions, e.g., rock, alternative and punk,
classical. We propose a quantitative way to define more re-
fined musical sub-divisions. These subdivisions, that are not
based upon usual standards but rather upon the intrinsic
structure of the audience, may lead to the usual music genres
in some particular case, but also reveal unexpected collective
listening habits. Let us note that other techniques may also
lead to an objective classification of music, e.g., by charac-
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terizing their time correlation properties [16]. In general, the
identification of a priori unknown collective behaviors is a
difficult task [17], and of primordial importance in the struc-
tural and functional properties of various networked systems,
e.g., proteins [18], industrial sectors [19], groups of people
[20], etc. Consequently, we also use another method in Sec.
IV in order to uncover these structures, i.e., the percolated
island structure is explored by randomly walking (RW) the
network, and by studying the properties of the RW with stan-
dard statistical tools. Finally, in Sec. V, we present a growing
network model, whose ingredients are very general, i.e., per-
sonal identification and community imitation (PICI). The
model reproduces the observed degree (number of links per
node) distributions of the networks as well as its internal
correlations.

II. METHODOLOGY

Recently new kinds of websites have been dedicated to
the sharing of musical habits. These sites allow first members
to upload their music libraries, previously stocked on their
computers, towards a central server, and next to create a web
page containing this list of music groups. Additionally, the
website proposes the users to discover new music by com-
paring their taste with that of other users. These methods of
making automatic predictions for the interests of a user by
collecting information from many (collaborating) users is
usually called collaborative filtering [21]. The data that we
analyze here have been downloaded from audioscrobbler
.com in January 2005. It consists of a listing of users (each
represented by a number), together with the list of music
groups the users own in their library. This structure directly
leads to a bipartite network for the whole system. Namely, it
is a network composed by two kinds of nodes, i.e., the per-
sons, called users or listeners in the following, and the music
groups. The network can be represented by a graph with
edges running between a group i and a user u, if u owns i.

In the original data set, there are 617 900 different music
groups, although this value is skewed due to multiple (even
erroneous) ways for a user to characterize an artist (e.g.,
Mozart, Wolfgang Amadeus Mozart, and Wolfgang Amedeus
Mozart count as three music groups) and 35 916 users. There
are 5028 580 links in the bipartite graph, meaning that, on
average, each user owns 140 music groups in his/her library,
while each group is owned by eight persons. For complete-
ness, let us note that the listener with the most groups pos-
sesses 4072 groups (0.6% of the total music library) while
the group with the largest audience, Radiohead, has 10 194
users (28% of the user community). This asymmetry in the
bipartite network is expected as users have in general spe-
cific tastes that prevent them from listening to any kind of
music, while there exist mainstream groups that are listened
to by a very large audience. This asymmetry is also observ-
able in the degree distributions for the people and for the
groups. The former distribution (see Fig. 1) is fitted respec-
tively with an exponential e™/1%° for large n and the latter is
a power law n~18 where n is the number of links per node,
i.e., ng or ny for groups and listeners, respectively. Let us
stress that such distributions are common in complex net-
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FIG. 1. (a) Histogram of the number of music groups per user.
The tail is fitted with the exponential ¢™"¢/!%% (dashed line), where n
is the number of links per node. A specific interval examined in the
text is indicated by vertical lines: average (ng)=140, width 50; (b)
Histogram for the audience size (number of listeners) per music
group. This distribution behaves like the power law ~nzl‘8.
works [14]. For instance, co-authorship networks also exhibit
a bipartite asymmetry, and power law distribution n~¢, with
a~2[22].

Finally, let us mention the top ten groups in hierarchical
order: Radiohead, Nirvana, ColdPlay, Metallica, The Beat-
les, Red Hot Chili Peppers, Pink Floyd, Green Day, Weezer,
and Linkin Park. Obviously, the examined sample is oriented
toward recent rock music. This fact has to be kept in mind, as
it determines the mainstream music trend in the present
sample, and could be a constraint on expected universality.
This is left for further studies.

A common way to represent and to study bipartite net-
works consists in projecting them onto links of one kind
[15]. The standard projection method simplifies the system to
a unipartite network, where nodes are, e.g., the listeners and
where two listeners are connected if they have at least one
music group in common. This scheme, that leads to a helpful
representation in the case of collaboration networks [23,24],
is unfortunately meaningless in the case under study. Indeed,
due to the existence of mainstream music groups, the unipar-
tite network is almost fully connected, i.e., most of the lis-
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FIG. 2. Probability distribution of the matrix elements. The
dashed line is the fitted exponential ye™*C, with y=31.

teners are linked in the unipartite representation. For in-
stance, Radiohead fully connects 28% of the user community
whatever the rest of their music library contents. This pro-
jection method definitely leads to an oversimplified and use-
less representation. We refine it by focusing on correlations
between the users libraries. To do so, we define for each
listener u the ng vector a#:

o*=(..,1,...,0,...,1,...), (1)

where n;=617 900 is the total number of groups in the sys-
tem, u € [1,35916] and where of=1 if u owns group i and
o#=0 otherwise. This vector is used as the individual musi-
cal signature (IMS), as mentioned in the introduction.

In the following, we make a selection in the total number
of users for computational reasons. To do so, we have ana-
lyzed a subset of np=3806 persons having a number of
groups between [115, 165], see Fig. 3, i.e., around the aver-
age value 140. In order to quantify the correlations between
two persons w and A\, we introduce the symmetric correlation
measure

o gk . g
||

where G#- 3 denotes the scalar product between the two n
vectors, and |l is its associated norm. This correlation mea-
sure, that corresponds to the cosine of the two vectors in the
ng-dimensional space, vanishes when the persons have no
common music groups, and is equal to 1 when their music
libraries are strictly identical.

At this level, the search for social communities requires
therefore the analysis of the np X np correlation matrix C#*,
A first relevant quantity is the distribution of the matrix ele-
ments C#* that statistically characterizes the correlations be-
tween listeners. Empirical results show a rapid exponential
decrease of the correlation distribution (Fig. 2), that we fit
with 31¢731€, so that people in the sample are clearly dis-
criminated by their music taste, i.e., they are characterized by
nonparrallel vectors. This justifies the use of his or her music
library as a unique IMS of the listener.

= cos 0, (2)
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III. PERCOLATION IDEA-BASED FILTERING

A. Listeners network

In order to extract communities from the correlation ma-
trix C*\, we use the following method. We define the filter
coefficient ¢ € [0, 1], and filter the matrix elements so that
C}"‘:l if C*¥ > ¢, and let C}“=O otherwise. In Fig. 3, we
show the graph representation of the filtered matrix for in-
creasing values of ¢. For the sake of clarity, we have only
depicted the individuals that are related to at least one per-
son, i.e., lonely persons are self-excluded from the network
structure, whence from any community. One observes that,
starting from a fully connected network, increasing values of
the filtering coefficient remove less correlated links and lead
to the formation of communities. These communities first
occur through the development of strongly connected com-
ponents [25], that are peninsulas, i.e., portions of the network
that are almost disconnected from the main cluster, them-
selves connected by intercommunity individuals. Further in-
creasing the filtering coefficient value leads to a removal of
these intercommunity individuals, and to the shaping of well-
defined islands, completely disconnected from the main is-
land. Let us stress that this systematic removal of links is
directly related to percolation theory. It is therefore interest-
ing to focus on the influence of the network structuring along
percolation transition ideas. To do so, we compare the bifur-
cation diagram of the empirical data with that obtained for a
randomized matrix, i.e., a matrix constructed by a random
re-disposition of the elements C**. As shown in Fig. 4(a), the
correlated structure of the network broadens the interval of
the transition as compared to the uncorrelated case. More-
over, the correlations also seem to displace the location of
the bifurcation, by requiring more links in order to observe
the percolation transition. This feature may originate from
community structuring that restrains network exploration as
compared to random structures [27].

As a first approximation, we restrict the scope to the for-
mation of islands in the matrix analysis, i.e., to the simplest
organized structures. From now on, we therefore associate
the breaking of an island into subislands to the emergence of
a new subcommunity, and, pursuing the analogy, we call the
largest connected structure the mainstream community. Be-
fore going further, let us stress that the projection method
described above is exactly equivalent to that of Ref. [15]
when ¢=0.

In the following, we use a branching representation of the
community structuring (see Fig. 5 for the sketch of three first
steps of an arbitrary example). To do so, we start the proce-
dure with the lowest value of ¢, here ¢=0.2, and we repre-
sent each isolated island by a square whose surface is pro-
portional to its number of listeners. Then, we increase
slightly the value of ¢, e.g., by 0.01, and we repeat the
procedure. From one step to the next step, we draw a bond
between emerging subislands and their parent island. The
filter is increased until all bonds between nodes are eroded
(that is, there is only one node left in each island). Applied to
the above correlation matrix C** (Fig. 6), this representation
leads to a compact description of the series of graphs as
those found in Fig. 3. Moreover, the snake structure gives
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FIG. 3. Graph representation of the listener filtered correlation
matrix for three values of the filter parameter ¢=0.275, ¢=0.325,
and ¢=0.35, displayed from top to bottom. The graphs were plotted
thanks to the VISONE graphical tools [26].

some insight into the diversification process by following
branches from their source toward their extremity. The
longer a given branch is followed, the more likely it is form-
ing a well-defined community.
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FIG. 4. (a) Proportion of nodes in the percolated island as a
function of the filtering coefficient ¢, for the original listeners cor-
relation matrix C* and the corresponding randomized matrix; (b)
Dependence of the clustering coefficient C on the filtering coeffi-
cient ¢. The dashed line, at C=0.5, is a guide for the eye.

In order to focus on collective effects, we have studied in
detail the behavior of the clustering coefficient [15], that is a
measure of the density of triangles in a network, a triangle
being formed every time two of one node’s neighbors are
related between them. This quantity is a common way to
measure social effects in complex networks, and measures,
roughly speaking, whether the friend of a friend is a friend.
In Fig. 4(b), we plot the dependence of this quantity C vs the
filtering coefficient ¢. Moreover, in order to highlight the
effects of correlations, we compare the results with those
obtained for the above randomized matrix. Our analysis
shows a very high value of C, almost ¢ independent for the
original matrix. This suggests that the way people acquire
their music taste is a highly social mechanism, likely related
to its identification role as described in the introduction.

B. A typical individual music signature
Before focusing on the genre fication of music groups, we

give here, as an empirical example, the music library of one
person. This list is intended to indicate the diversity of
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FIG. 5. (Color online) Branching representation of a correlation matrix. At each increasing step (#=0, 1, 2) of the filter ¢, links are
removed, so that the network decomposes into isolated islands. These islands are represented by squares, whose size depends on the number
of nodes in the island. Starting from the largest island, branches indicate a parent relation between the islands. The increasing filter method

is applied until all links are removed.

groups that characterize a listener, as well as his or her com-
munity. We write in bold the music groups that are common
to his or her subcommunity, found by the PIB technique, and
in normal characters those that are owned only by the indi-
vidual. There are 117 different music groups.

Music library: Air+ New Order+ Jane'’s Addiction+
DJ Krush+ Massive Attack+ DJ Shadow+ Beastie
Boys+ Orbital+ Blur + Pixies+ Lefifield+ Sonic Youth +
David Bowie + Primus+ Jeff Buckley + The Smiths + Daft
Punk + Joy Division+ Smashing Pumpkins + Chemical
Brothers+ Korn+ Eminem+ Nirvana+ Radiohead+
Grandaddy + Travis+ Oasis+ PJ Harvey+ Manic Street
Preachers + Roots Manuva+ Unkle + Linkin Park + Atari
Teenage Riot+ Kula Shaker+ The Police+ James Iha+
Semisonic + Weezer + Anastacia+ Rob Dougan-+ Eels+
Fatboy Slim+ Green Day+ Lostprophets+ System of a
Down+ U.N.K.L.E.+ EI-P+ Bee Gees+ Duran Duran -+
Therapy? + The Prodigy + Foo Fighters+ JJ72+ Alkaline
Trio + The Beatles + Incubus + Prodigy + Muse + And You
Will Know Us By The Trai+ Jimmy Eat World + Ash+

Rival Schools+ Cher+ At The Drive-In+ Johnny Cash+
Mansun+ Queens of the Stone Age+ Basement Jaxx+
Dave Matthews Band+ Dj Tiesto+ Cast+ The Strokes -+
Anthrax+ lan Brown+ Saves The Day-+ Morrissey+
Police+ Modest Mouse+ Interpol+ St Germain+ The
Beach Boys+ Bonnie Tyler+ Theme+ Fenix ' TX+ Snow
Patrol + The Cooper Temple Clause + Buddy Holly+ Nada
Surf+ onelinedrawing+ Michael Kamen+ Remy Zero+
Ernie Cline+ Quicksand + Olivia Newton John+ Polar +
lkara Colt+ Keiichi Suzuki+ Rivers Cuomo+ Paddy
Casey+ Billy Talent+ Mireille Mathieu+ Jack Dee+ To-
moyasu Hotei+ Daniel O’Donnell+ Hope Of The States+
Franz Ferdinand+ The Shadows+ THE STILLS+ The
RZA + The Mamas and the Papas+ Melissa Auf Der
Maur+ Barron Knights+ The Killers+ R.E.M.+ Jay-Z
DJ Danger Mouse+ Pras Michel Feat ODB and Maya+
The Monks Of Roscrea.

Obviously, this person belongs to a music community
characterized by a mixture of the usual music genres, includ-
ing Pop/Rock, 80’s Pop, Electro, Alternative, etc. This eclec-
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FIG. 6. In the upper figure, branching representation of the lis-
tener C** correlation matrix. The filtering, with parameter ranging
from 0.2 to 0.5 (from bottom to top) induces a snake of squares at
each filtering level. The shape of the snake as well as its direction
are irrelevant. In the lower figure, branching representation of the
music groups correlation matrix, the filtering parameter ranging
from 0.3 to 0.6 (from top to bottom).

ticism indicates the inadequacy of such music subdivisions
to characterize individual and collective listening habits.

C. Music groups network

In view of the above, it is interesting to introduce a new
way to build music subdivisions, i.e., based upon the listen-
ing habits of their audience. To do so, we have applied the
PIB approach to a sample composed of the top 5000 most-
owned groups. This limited choice was motivated by the
possibility to identify these groups at first sight. Each music
group is characterized by its signature, that is, a vector,

PHYSICAL REVIEW E 72, 066107 (2005)

Y=(.,1,...,0,...,1,...), (3)

of n; components, where n; =35 916 is the total number of
users in the system, and where ';/l'L:l if the listener w owns
group i and V,L:O otherwise. By doing so, we consider that
the audience of a music group, i.e., the list of persons listen-
ing to it, identifies its signature, as we assume that the music
library characterizes that of an individual.

The next step consists in projecting the bipartite network
onto a unipartite network of music groups. To do so, we
build the correlation matrix for the music groups as before,
and filter it with increasing values of the filtering coefficient.
As previously, the action of filtering erodes the nodes,
thereby revealing a structured percolated island (Fig. 7) that
breaks into small islands. The resulting tree representation of
the correlation matrix (Fig. 6) shows clearly long persisting
branches, thereby suggesting a high degree of common lis-
tenership. Poring over the branches of the top 5000 tree [28],
we find many standard, homogeneous style groupings.
Amongst these homogeneous cliques, there are [George
Strait, Faith Hill, Garth Brooks, Clint Black, Kenny Chesney,
Shania Twain, Alan Jackson, Martina McBride, Alabama,
Tim McGraw, Reba McEntire, Diamond Rio, John Michael
Montgomery, SheDaisy, Brooks and Dunn, Clay Walker, Ras-
cal Flatts, Lonestar, Brad Paisley, Keith Urban], [Kylie Mi-
nogue, Dannii Minogue, Sophie Ellis Bextor], [Serge Gains-
bourg, Noir Désir], [Billie Holiday, Glenn Miller, Benny
Goodman], [Morrissey, Faith No More, Machine Head, The
Smiths, Rammstein, Smashing Pumpkins, Slipknot, Toma-
hawk, Mr. Bungle], that are country, dance pop, geographi-
cally localized, i.e., France, swing jazz, and rock groupings,
respectively.

In contrast, many of the islands are harder to explain from
a standard genre-fication point of view. In some cases, the
island may be homogeneous in one music style, but show
some unexpected elements, like [Spain In My Heart (Vari-
ous), The Pogues, Dave Brubeck Quartet, Crosby, Stills,
Nash and Young, Phil Ochs, Billy Bragg, Clem Snide, Sarah
Harmer, Mason Jennings, Kirsty MacColl, tullycraft, Ibra-
him Ferrer, Sarah Slean, Penguin Cafe Orchestra, Pretend-
ers, Joe Strummer and The Mescaleros, Freezepop] that is a
folk-folk cluster, with odd members like the Brubeck Jazz
Band, for example. But other groupings defy monolithic
style categorization, like [The Jon Spencer Blues Explosion,
Yello, Galaxie 500, Prince and the Revolution, Ultra Bra,
Uriah Heep, Laurent Garnier], [Crosby, Stills, Nash and
Young, Orb, Zero 7, Royksopp, Stan Getz]. The latter include
unexpected mixtures of Indie Rock/Funk/Hard Rock/Dance,
and Folk/Electro/Jazz, respectively.

Consequently, the PIB approach reveals evidence of un-
expected collective listening habits, thereby uncovering
trends in music. As a matter of fact, these anomalous entities
have been shared by multiple listeners. This seems to con-
firm the role of collective listening habits in the individual
building of music taste. It is important to note that the PIB
method neglects the relevance of the main island structuring
by identifying “music genres” and “listener communities”
with isolated islands. It is obviously a drastic simplification
that may lead to the neglect of pertinent structures, and there-
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(a
FIG. 7. In the upper figure, typical percolated island of music groups for ¢=0.45. It is composed of 247 nodes and 4406 links. In the

lower figure, zoom on a small structure of the percolated island, that is obviously composed of guitar heroes, e.g., B.B. King, S.R. Vaughan,
A.D. Meola, etc. Let us also note that S.R. Vaughan appears through two different ways that are linked by our analysis.

fore requests a more detailed exploration of the network  based on a random walking exploration of the percolated

structure. island. The random walk (RW) starts at some node, i.e., the
initial node. At each time step, we choose randomly one of

IV. RANDOM WALK EXPLORATION its links, and move the walker to the connected node. More-

over, we keep track of the distance from the occupied node

In this section, we consider an alternative method for re- to the original node dyy; as a function of time i. By definition,

vealing the internal structures of the network. The method is the distance between two nodes is the length of the smallest
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FIG. 7. (Continued).

path between them. The initial node is chosen to be the cen-
tral node of the percolated island, namely the node ¢ that
minimizes the average distance with other nodes in the is-
land:

1 &
E dci’ (4)

(n;— 1)1‘#

(d)=

where n; is the number of nodes in the island.

In the following, we focus on the percolated island of Fig.
7, that is composed of n;=247 nodes, and 4406 links. The
percolated island clearly exhibits peninsulae, that link alike
music groups. For instance, the cluster in the center of the
figure is “hard rock” oriented, with music groups like The
killing tree, Unearth, Murder by Death, etc. This is also il-
lustrated in the lower graph of Fig. 7, where we zoom in on
a small structure that encompasses guitar heroes, e.g., B.B.
King, S.R. Vaughan, A.D. Meola, G. Benson, etc. In the case
under study, the central node is the music group Murder by
Death, that is located in the hard rock cluster.

The resulting time series [Fig. 8(a)], that is directly re-
lated to the subjacent path geometry, seems to indicate the
existence of different time scales, associated with the large-
scale structures in the network. In order to analyze the time
series, we have focused on the probability of return toward
the initial node. To do so, we have measured the time inter-
vals 7 between two passages of the walker on the initial
node, and calculated the distribution f(7) of these time inter-

vals. Moreover, in order to study the rare events associated to
the tail of the distribution, we focus on the risk function
R(1)=[7f(7)dr. By construction R(0)=1 and R(%)=0. The
results, that are plotted in Fig. 8(b), clearly reveal two time
scales: a rapid time scale (80 time steps) that determines the
internal dynamics in one cluster; a slow time scale (2200
time steps) that characterizes the passage from one cluster to
another one. Let us stress that detrended fluctuation analysis
of the random walk [29] leads to the same conclusion.

V. PERSONAL IDENTIFICATION-COMMUNITY
IMITATION MODEL

The empirical results of the previous section suggest that
a person’s musical taste derives from an interplay between
personal identification, i.e., his/her individual choice, and
community imitation, i.e., the collective trend. In order to
test this assumption, we introduce the PICI model where
personal music libraries build through two processes. On one
hand, collective effects, originating from social interactions
between individuals, are mimicked by an exchange of music
groups between similar individuals. In order to define this
similitude between two persons, we compare their music li-
braries, and favor the pair interactions between people hav-
ing alike music taste, as in a Potts model [30]. On the other
hand, there are individual mechanisms that push people to
distinguish themselves from their community. We model
such a dynamics by individual random choices. We neglect
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FIG. 8. (a) Time evolution of the distance to the initial node
during the RW on the network of Fig. 7. The network exploration
exhibits clearly the passage from one cluster to another, followed by
long stopovers in the latter cluster. (b) Risk function R(7) of the
signal. The dashed lines are guides for the eye, and represent the
exponential relaxations e~30 and ¢~#2200,

the effect of an external field, like advertising, on an indi-
vidual behavior. Moreover, in order to reproduce the ob-
served degree distributions of the bipartite graph [22], we
assume that the networks are growing in time. This is done in
a way that music groups are chosen with preferential attach-
ment [14], i.e., with a probability simply proportional to their
audience.

These requirements are put into form as follows. The sys-
tem is composed by L(z) users and M(r) music groups, that
are initially randomly linked. At each (Monte Carlo) time
step, three processes may occur:

(i) A new user may enter the system, with probability p;.
His or her library contains one music group, chosen ran-
domly in the set of previous groups with preferential attach-
ment.

(ii) A randomly picked user adds a new music group to
the library, with probability py. This new group appends to
the collection of available music in the system.

(iii) Two randomly chosen users exchange their music
knowledge, with probability pp.

The pair is selected with a probability proportional to
e(©s =D where 6, is the angle between the vectors of
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FIG. 9. Simulation results of PICIM for parameters given and
explained in the text: (a) distribution of the number of music groups
per user; (b) distribution of the audience per group. The dashed line
is the power law ~n~!"7.

their music libraries [Eq. (1)], defined by their cosine [Eq.
(2)]; the temperature T is a parameter that represents the
ability of qualitatively different communities to mix together.
If the pair is selected, we compare the two music libraries,
and give to each user a fraction of the unknown groups of his
or her partner. Let us stress that this rule ensures preferential
attachment for the music groups.

Some representative results of the simulations obtained
from the model are selectively shown in Fig. 9, for a typical
simulation set, with p;=0.02, py=0.03, py=0.03, and T
=0.13. A complete analysis of the PICI model phase space
variables and the dynamics will be presented elsewhere. The
simulations were stopped after 200 time steps/node, in a sys-
tem composed by 22 800 users, 15 126 music groups, and
442 666 links.

The degree distributions of the bipartite graph are de-
picted in Fig. 9. The results reproduce quite well the expo-
nential and the power-law features experimentally found
(Fig. 1). For the group distribution, the exponent is close to
the empirical value 1.8. Moreover, different simulations
show that this value remains in the vicinity of 2 for a large
set of parameter values.
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For the user distribution, simulations also reproduce the
deviations from the exponential for small number of groups
ng, as observed in Fig. 1. We have noticed (unshown) that
these deviations diminish for increasing values of 7. This
uncovers that the self-organizing mechanisms associated to
community structuring are responsible for the extreme devia-
tions.

The dependence of the clustering coefficient C on the fil-
tering coefficient has also been considered. It is found that
the the simulations reproduce qualitatively well the almost
constant high value of C found in Fig. 4. However, this be-
havior ceases to be observed for large values of the tempera-
ture, i.e., in systems where collective effects do not develop
by construction of the model. This seems to confirm the cru-
cial competing roles played by individual choices and com-
munity influence in order to reproduce the observed data.

VI. CONCLUSION

In this paper, we study empirically the musical behaviors
of a large sample of persons. Our analysis is based on com-
plex network techniques, and leads to the uncovering of in-
dividual and collective trends from the data. To do so, we use
two methods. On one hand, we use percolation idea-based
techniques that consist in filtering correlation matrices, i.e.,
correlations between the listeners and music groups. More-
over, the communities and music genres are visualized by a
branching representation. On the other hand, we explore the
structure of the main percolated island by randomly walking
the network. The goal is to map its internal structure and
correlations onto a time series, that we analyze with standard
statistical tools.

The method allows us to reveal nontrivial connections
between the listeners and music groups. It is shown that if
some empirical subdivisions respect the standard genre clas-
sification, many subdivisions are harder to explain from a
standard genre-fication point of view. These collective listen-
ing habits, that do not fit the neat usual genres defined by the
music industry, represent the nonconventional taste of listen-
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ers. They could therefore be an alternative objective way to
classify music groups. These collective genre-hopping habits
also suggest a growing eclecticism of music listeners [28],
that is driven by curiosity and self-identification, in opposi-
tion to the uniform trends promoted by commercial radios
and Major record labels [31].

We would like to point that the above methods should
help finding and visualizing structures in a large variety of
networks, e.g., the detection and classification of trends in
marketing, show business, and financial markets. Applica-
tions should also be considered in taxonomy [32], in scien-
tometrics, i.e., how to classify scientific papers depending on
their authors, journal, year, keywords, etc. and in linguistics
[33]. From a more theoretical point of view, this work is
closely related to the theory of hidden variables [34-36], i.e.,
the hidden variables being here some intrinsic property of the
music groups [37], and should provide an empirical test for
this theory.

We introduce a simple grow model, that reproduces quite
well the results obtained from the empirical data, i.e., the
observed degree distributions of the networks. It is important
to point out that the ingredients of the model are very gen-
eral, i.e., imply competition between personal identification
and community imitation (PICI). Consequently, PICI should
apply to a larger variety of systems than the music networks
hereby investigated, but also to other networks such as col-
laboration networks in science [22]. In a statistical physics
sense, the model contains Potts model-like ingredients for
opinion and taste formation.
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