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Circular polarization memory of light multiply scattered by Mie particles is investigated. The mechanism of
randomization of helicity is found, in general, to dominate light circular depolarization by particles of large
size or a high refractive index while the mechanism of randomization of direction dominates for small particles
of a lower refractive index. The characteristic length for circular polarized light to lose its helicity is deter-
mined for Mie scatterers of arbitrary size and refractive index and is used successfully to analyze circular
depolarization of light transmission through a slab. Circular polarization memory of light is found to be most
pronounced for not only large soft particles but also particles of smaller size and a high refractive index.
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The propagation of polarized light in a highly scattering
turbid medium is characterized by the randomization of its
direction and polarization due to multiple scattering. This
randomization accounts for the remarkable success of scalar
diffusion theory in describing the transport properties of mul-
tiple scattered light �1–6�. Recently, it is becoming increas-
ingly apparent that the vector nature of light plays an impor-
tant role in diverse phenomena such as coherent
backscattering �3,7�, diffusing wave spectroscopy �8,9�, and
the memory effect of circular polarization �8,10�. Polariza-
tion of light is important in many real world applications of
considerable interest such as optical imaging and optical co-
herence tomography, and has been used to discriminate
short-path photons in a highly scattering medium �11,12�, in
speckle spectroscopy �13�, and to characterize and image ob-
jects in turbid media �14–18�. The polarization memory ef-
fect is an unexpected long preservation of the incident circu-
lar polarization of multiple scattered light by large particles
where the wave’s helicity �the right-handed or left-handed
circular polarization state of light� is randomized less rapidly
than is its direction �10�. This effect is in striking contrast to
the isotropization of the electric field of linearly polarized
light whose depolarization occurs simultaneously with the
isotropization of its direction inside a system composed of
uncorrelated and noninteracting scatterers �19�. The direction
of photons in a scattering medium is randomized by the
mean transport free path lt and isotropized by the isotropiza-
tion length lp. The influence of the size parameter and the
refractive index on the memory of circular depolarization
was later analyzed by various authors using Monte Carlo
simulations or the numerical solution of the radiative transfer
equation in a slab geometry �20–23�. Two distinct mecha-
nisms contribute to the depolarization of circularly polarized
light: the randomization of the direction, and the randomiza-
tion of the helicity of the field. MacKintosh et al. �8,10�
analyzed the circular depolarization taking into account the
randomization of the helicity. The interplay of the two
mechanisms, which determines the memory of circular depo-
larization, is unclear and yet to be understood �20�.

In this paper we shall clarify the interplay of the random-
ization of the helicity and the randomization of the direction
on the memory of light circular depolarization. We show that
the loss of the helicity of multiple scattered light is charac-
terized by one parameter �x for Mie scatterers of arbitrary
size and refractive index taking into account of both mecha-
nisms for circular depolarization. The decay of the helicity
asymmetry follows a power law ��x�n with the increase of
the number n of scattering events when n�1. This intro-
duces the uncoiling length lx= ls / ln�1/�x� for light to lose its
helicity and become circular depolarized where ls is the
mean scattering free path. We shall show that strong circular
polarization memory occurs for light scattering by large soft
particles. Moreover, strong memory can also occur for light
scattering by smaller particles of a high refractive index.

For circularly polarized light, the wave’s helicity may pre-
serve or flip at each scattering event depending upon the
scattering angle. Denote the preserving and flipping prob-
abilities of the circular polarization states as p±��� where � is
the scattering angle. The probabilities do not depend on the
azimuthal angle � for circular polarized light. For Mie scat-
terers, the scattered electric field of positive and negative
helicity is given by �E+� ,E−��T=A�E+ ,E−�T where

A =�
S2 + S1

2

S2 − S1

2

S2 − S1

2

S2 + S1

2
� , �1�

in which S2,1 are the diagonal elements of the well-known
amplitude scattering matrix and responsible for the scattering
of the parallel and perpendicular electric field components,
respectively, with respect to the scattering plane �24�. The
superscript “T” means transpose. As the electric field of posi-
tive �negative� helicity light propagating in one direction re-
sides on the same plane and rotates counterclockwise �clock-
wise� in that plane, the interference between such light of
opposite helicity vanishes over time much longer than one
period of light, and therefore only the intensities of light of
positive or negative helicity need to be considered �30�. The
preserving and flipping probabilities of the wave’s helicity*Electronic address: minxu@sci.ccny.cuny.edu
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are proportional to the magnitude square of the diagonal and
off-diagonal elements of A, respectively, and given by

p±��� =
�S2 ± S1�2

2��S2�2 + �S1�2�
. �2�

An analysis of the first mechanism of light circular depo-
larization was given by Mackintosh et al. �8,10�. For an
n-scattered photon which encounters a series of scattering of
angles �1 ,�2 , . . . ,�n where cos � j =s�j−1� ·s�j� and s�j� is the
propagation direction of light after jth scattering, its helicity
is either preserved or flips, determined by the even �or odd�
number of spin flips in this path. The probability of pre-
served or flipped helicity of the n-scattered photon becomes

Pn
± = �

	�j


even
odd

�
j=1

n

p�j
�� j� , �3�

where the � j is “�” or “�,” and the symbols �even and �odd

refer to sums with an even and odd number of “�” in 	� j
.
By an examination of the binomial expansions for Pn

+± Pn
−

using Eq. �3�, the probabilities Pn
± were found to be

Pn
±= 1

2 �1±an� where the helicity asymmetry an is given by

an = �
j=1

n

�p+�� j� − p−�� j�� = �
j=1

n
Re�S2�� j�S1

*�� j��
1

2
�S2�� j��2 +

1

2
�S1�� j��2

�4�

for a path with the sequence of n specified scattering angles
� j �j=1,2 , . . . ,n� and Re denotes the real part. Equation �4�
represents the dependence of the helicity asymmetry on the
randomization of the helicity.

The second mechanism for light to circular depolarize is
the randomization of its propagation direction. A proper en-
semble average must be taken for the probability of pre-
served or flipped helicity of the n-scattered photon over all
the possible intermediate scattering angles, i.e.,
�Pn

±= 1
2 �1± �an�. The ensemble averaged helicity asymmetry

�an over all possible series of n scattering events with the
propagation direction of light varying from s�0� ,s�1� , . . ., to
s�n� can be written as

�an =
1

pn�s�n��s�0�� � anp�s�n��s�n−1���
j=1

n−1

p�s�j��s�j−1��ds�j�, �5�

where p�s�j� �s�j−1��=Csca
−1 � 1

2 �S2�� j��2+ 1
2 �S1�� j��2� is the phase

function describing the probability of light being scattered
from s�j−1� to s�j�, and Csca��d�� 1

2 �S2����2+ 1
2 �S1����2� is the

scattering cross section. The n-step transition probability
pn�s�n� �s�0�� is given by

pn�s�n��s�0�� =� p�s�n��s�n−1���
j=1

n−1

p�s�j��s�j−1��ds�j� �6�

and approaches 1/4	 when the propagation direction is
isotropized after multiple scattering �n�1�.

Plugging Eq. �4� into Eq. �5� and expanding

Re�S2�� j�S1
*�� j�� into spherical harmonics, Eq. �5� can be in-

tegrated to obtain

�an =
1

4	pn�s�n��s�0���l=0




�2l + 1��l
nPl�s�0� · s�n�� , �7�

where Pl is the Legendre polynomial and �l is given by

�l =
� d� Re�S2���S1

*����Pl�cos ��

� d��1

2
�S2����2 +

1

2
�S1����2� . �8�

Two special cases deserve attention. For very large par-
ticles for which S2�S1, the flipping probability p−=0 and
hence an= �an=1. For Rayleigh scatterers, S2�cos � and
S1�1, and hence �l=

1
2l1 and �an= � 1

2
�n3s�0� ·s�n�. In general,

only the leading two terms of �0 and �1 for l=0 and 1
dominate Eq. �7� when n�1 �25�. The helicity asymmetry
for any Mie particle after multiple scattering �n�1� can now
be written as

�an � �0
n + 3�1

ns�0� · s�n�, �9�

where we have approximated pn�s�n� �s�0�� by 1/4	.
Equations �7� and �9� give the helicity asymmetry of light

emerging in the direction s�n� after n scattering events taking
into account of both mechanisms for light circular depolar-
ization. The contribution due to randomization of helicity
only is independent for each scattering event and can be
computed by integrating Eq. �4� over the scattering angles
weighted by the phase function to yield �anhelicity=�0

n. The
difference �an− �anhelicity�3�1

ns�0� ·s�n� can be regarded as
the contribution from randomization of direction. Either
mechanism may dominate light circular depolarization de-
pendent on the size and refractive index of the particle and
the helicity asymmetry can simply be written as

�an � ��x
n, �10�

where ��x
n is the leading term in Eq. �9� when n�1. The

probability of preserved or flipped helicity of a photon trav-
eling a path of length s, taking into both mechanisms of light
circular depolarization, is then

P±�s� =
1

2
�1 ± ��x

n� =
1

2
�1 ± �e−s/lx� , �11�

where

lx � ls/ln
1

�x
�12�

is the uncoiling length, which is the characteristic length for
light to lose its memory of circular polarization; ls is the
mean scattering free path, and s / ls is the mean number of
scattering events experienced by the photon.

The leading �l �l=0,1 ,2� are plotted in Fig. 1 for the
spherical particles of moderate refractive index m=1.1 and
1.2. �1 starts from 0.5. �0 starts from 0 and increases much
faster than �1 and becomes the dominating one when the
size parameter x�x*�1.5 where the size parameter x
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�2	a /�, a is the radius of the particle, and � is the wave-
length of light in the medium.

The helicity asymmetry for particles of moderate refrac-
tive index is dominated by the mechanisms of randomization
of helicity and randomization of direction for large and small
particles, respectively, and can be written as

�an � � �0
n, x � x*

3s�0� · s�n��1
n, x � x*,

� �13�

except that �an=�0
n whatever the size of the particle when

s�0� ·s�n�=0. Equations �11� and �13� tell that circular polar-
ized light is depolarized uniformly ��x=�0� across all obser-
vation directions �independent on the observation direction
s�n�� for large particles �x�x*�. For smaller scatterers
�x�x*�, circular polarized light is depolarized faster in the
exact 90° direction �s�0� ·s�n�=0� with �x=�0 than in the
other observation directions with �x=�1��0.

The ratio of the uncoiling length lx over the transport
mean free path lt= ls / �1−g� where g is the average cosine of
scattering angles vs the size parameter and the refractive in-
dex of the particle is displayed in Fig. 2. For Rayleigh scat-
terers, lx= ls / ln 2=1.44ls and lt= ls, agrees with the previous
analysis �8,20�. Figure 2 clearly demonstrates that lx / lt oscil-
lates with the size and refractive index of the particle and a
larger particle may not necessarily lead to a stronger preser-
vation of circular polarization. The fine structure in lx / lt
comes from Mie resonance scattering and lx / lt can be much
larger than unity, indicating a strong circular polarization
memory. For large soft particles, the ratio can be found to
grow roughly as 2 ln x based on the approximate amplitude
scattering matrix for soft particles �26�, reducing to the result
of Gorodnichev et al. in the large soft particle limit �27� �see
Fig. 2�a��. Surprisingly, however, a much stronger memory
of circular polarization is observed for particles of smaller
size and high refractive index; the ratio lx / lt�34 for x=1.5
and m=1.83 �see Fig. 2�b��. It should be noted that the value
of lx / lt can be much higher for smaller x and with suitably
larger m.

An important quantity of interest is the circular depolar-
ization of light transmission through a slab of scattering me-
dium. A circular depolarization length �C is commonly used
to quantify the depolarization of circular polarized light
�20,21�. The length �C, unlike the uncoiling length lx, is only
appropriate for light transmission through a slab. �C relates
to lx through the expression

�C = � lxlt

3
�1/2

�14�

for diffusive light transmission through a slab �20�. The de-
gree of circular polarization of light transmitted in the for-
ward direction is given by

XDOCP = �
L + 2ze

ls
e−L/�C, �15�

assuming diffusion of light through the slab where L is the
thickness of the slab, ze is the extrapolation length �28� on

FIG. 1. The leading �0 and �1 for spherical particles of refrac-
tive index m=1.1,1.2. �3 is also plotted for comparison.

FIG. 2. The ratio of the uncoiling length lx over the transport
mean free path lt vs �a� size parameter and �b� refractive index of
the particle. This ratio can be much larger than unity, i.e., a strong
circular polarization memory, for large soft particles and smaller
particles of high refractive index.
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the left and right boundaries in the diffusion approximation,
and � is a scaling parameter. The difference between Eq.
�15� and Eq. �3� given in �20� is that a more realistic extrapo-
lation boundary condition is used here. Equation �15� can be
used to extract �C from experimental measurements or
Monte Carlo simulations of forward light transmission
through slabs of increasing thickness.

Figure 3 displays �C as predicted by Eq. �14� using the

uncoiling length Eq. �12� �solid curve� and also from fitting
Eq. �15� to the degree of circular polarization of light trans-
mission through slabs of increasing thickness and matched
refractive index using Monte Carlo simulations �29� �with
symbols “�”�. We also plot here data reproduced from Fig. 2
of �20� �with symbols “�”�. In fitting via Eq. �15�, ze is fixed
at 2

3 lt �28�. Good agreement is found between the first two
sets of data. However, the values of �C given in �20� within
the region of size parameter 5�x�10 do not agree with our
results. This may originate from the fact that a different
boundary condition �ze=0� was used in �20�.

In conclusion, we have shown that the loss of the helicity
of multiple scattered light is characterized by one parameter
�x for Mie scatterers of arbitrary size and a refractive index
and clarified the interplay of the randomization of the direc-
tion and the randomization of the helicity on the memory of
light circular depolarization. The mechanisms of randomiza-
tion of helicity and randomization of direction in general
dominate circular depolarization by particles of large size or
a high refractive index and small particles of a lower refrac-
tive index, respectively. A characteristic length scale, the un-
coiling length lx, for light to lose its helicity and become
circular depolarized has been introduced and used success-
fully to analyze circular depolarization of light transmission
through a slab. Strong memory of circular polarization is
found to occur for light scattering by not only large soft
particles but also smaller particles of a high refractive index.
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