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Discontinuities in self-affine functions lead to multiaffinity
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Many systems of both theoretical and applied interest display multiaffine scaling at small length or time
scales. We demonstrate analytically and numerically that when vertical discontinuities are introduced into a
self-affine function, the function becomes multiaffine. The discontinuities may correspond to surface overhangs
or some source of discontinuous noise. Two functions are numerically examined with different distributions of
discontinuities. The multiaffinity is shown to arise simply from the function of discontinuities, and the analytic
scaling form at small scales for the function of discontinuities is derived and compared to numerical results.
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Self-affine and multiaffine functions are used to model a
wide range of natural and artificial phenomena, including the
structure of rough surfaces of hard [1-3] and soft [4] mate-
rials, clouds [5], and such diverse phenomena as financial
and stock-market returns [6,7], and geological topography
[8]. Recently, an extensive scaling analysis of surfactant tem-
plated hydrogel surfaces as measured by atomic force mi-
croscopy (AFM) was performed [4]. This analysis indicated
that the hydrogel surfaces were self-affine; however, a later
numerical study of a frustrated spring-network model of
cross-linked hydrogels [9] indicated multiaffine scaling. Rec-
onciliation of these two observed behaviors led to an inter-
esting and universal conclusion: introduction of vertical dis-
continuities into a self-affine surface leads to multiaffine
scaling, or, more generally, discontinuities in an otherwise
self-affine function lead to multiaffine scaling. To our knowl-
edge, this has not previously been reported in the literature,
most likely because correlations are usually calculated only
for the second power of the increments, in which case the
function constructed only of discontinuities resembles a ran-
dom walk on all scales (aqzzzé). Here, we provide a discus-
sion which explains this source of multiaffine behavior, and
we present both numerical and analytic results.

Consider a one-dimensional, real, single-valued function,
z(x), where x is a real number on the interval, x € [0,1]. The
generalized correlation function [1-3,8—11] for this surface
is

Cylr) =(zlx+ 1) = z(0)[7), (1)

where (- --) denotes an average over all x values, |r| < %, and
q is a positive, nonzero real number. Without loss of gener-
ality, we may assume that r is positive, since C,(r)=C,(-r)
for any real function z(x).

Often, C,(r) will display power-law behavior for r<r,
and will display a constant value for r>r,, where r, is some
crossover scale between the two behaviors. Functions dis-
playing power-law correlations, C,(r)=A,r7%, fall into one
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of two categories: g-independent scaling, a,=«, called self-
affine scaling, and g-dependent scaling, called multiaffine
scaling [1-3,8,10,11].

By introducing discontinuities into a self-affine function,
we can cause the function to become multiaffine. Consider
the function z(x), which is self-affine for all r. For the nu-
merical results, self-affine functions were generated using the
method of Ref. [12]. We introduce a finite number N of dis-
continuities into the function z(x) such that the new function
is

N
()= 2 80 -x) [ +z(x), (2)
i=1

where 7 indexes the discontinuities, ¢; is the magnitude of the
discontinuity at x=x;, and ©(y) is a step function which is
zero for y<<0 and 1 for y=0. Without loss of generality, we
can assume an order to the set {x;} such that x,_;<x; and
)CO=O.

Physically, z'(x) can be thought of as describing a system
with jumps between regions with self-affine scaling, such as
for the spring-network model of Ref. [9], the deposition of a
very thin self-affine film onto a stepped surface, a surface
with overhangs, or any spatial or temporal series containing
discontinuities. A typical stochastic realization of z'(x) with
equally spaced x; is shown in Fig. 1(a), and the correspond-
ing generalized correlation function, Cq(r), is shown in Fig.
1(b). Figure 2 shows a similar plot, but the discontinuity
positions x; are chosen randomly and uniformly on the inter-
val (0,1). The number of discontinuities, N, is the same for
both Figs. 1 and 2. For length scales r>1/N, the stepped
function, zg =z'(x)—z(x), is expected to be simply a random
walk with a,=0.5, but this is not obvious in the numerical
data because of the relatively small number of discontinuities
in the x interval.

From examination of the numerical results in Figs. 1 and
2 it is obvious that the multiaffinity is caused by the stepped
function, zg(x), and the generalized correlation function of
Ze(x) can be analytically calculated for r<<1/N,
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FIG. 1. Multiaffine function generated from Eq. (2) with discon-
tinuities evenly spaced in x. The magnitudes of the discontinuities,
0;, are drawn independently from a Gaussian distribution with stan-
dard deviation 1.0 and mean 0, and N=41. The self-affine function
z(x) has @=0.75. (a) The function, z’(x), and related functions. (b)
C,(r) for each function shown in (a) as labeled in the plot. The
correlation functions for zg(x) and z(x) have been displaced up by
three and down by two units, respectively, for graphical clarity. No
graphical distinction is made between curves with different ¢, but
q €[0.5,4.0] in steps of 0.5, and for the curves shown here,
C,(r)>C,(r) when g>p. At r=1/N, there is a crossover between
the self-affine and multiaffine behaviors.

q
C,(r)= f 25{®(x+r x)—Ox-x)} dx. (3)

For r<1/N, O(x+r-x)-0(x-x;, 1is either 1
(x;—r<x<x;) or 0 (otherwise), and thus, in the integration
range x=x;,—r to x=x;, only one of the N discontinuities has
a nonzero contribution to the integral, provided that r is suf-
ficiently small. Equation (3) thus reduces to

N
C,(n=r> 8. (4)
i=1

For comparison with Figs. 1 and 2,
! N
loglo{c (”)}— 10g10{r}+ logio) 21817 (. (5
i=1
and thus, a,=¢~" and logm{Aq}:loglo{N<|5i|‘7>} in the small r
limit. See Fig. 3. Note that the general form is independent
of the x; distribution and depends on the &; distribution only
through (| 5%).
Having derived the small-r scaling behavior for the
stepped function, zg(x), it remains to be shown how this
multiaffine stepped function influences the multiaffinity of
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FIG. 2. Multiaffine function generated from Eq. (2) with discon-
tinuities randomly spaced in x. All parameters are the same as in
Fig. 1. (a) The function, z’(x), and related functions. (b) C,(r) for
each function shown in (a) as labeled in the plot. The crossover

between self-affine and multiaffine behaviors is the same as in Fig.
1, but the crossover region is much broader than in Fig. 1.

the complete or mixed function, z’(x). Consider the general-
ized correlation function for the sum of the two functions,
C (r |A (x) + Al(x) |9y, (6)

where Ag(x)=z¢(x+7)—z¢(x) and Al(x)=z(x+r)—z(x). The

should behave as multiaffine and self-affine functions, re-
spectively, but for intermediate mixed functions, the behav-
ior is more complex. For the numerical results shown in Fig.
4, two asymptotic scaling regimes are seen. For large ¢, the
mixed function tends towards multiaffine behavior with
a,= 1/g, and for small ¢, the mixed function tends towards
self-affine behavior with a,=a.

We can derive the two asymptotic scaling behaviors for

the mixed function by first considering that for r<<1/N,

850+ AT
JiNuV Zel)

+
Al(x)
N
=2
i=1

C,(r)=

q
1| dx

|AL(x)|%dx

q
1| dx, (7)
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by noticing that Ag(x)=0 or & in the interval x e (x;_;,x;].
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FIG. 3. Small r scaling behavior for stepped functions, zg(x),
shown in Fig. 1(b) and Fig. 2(b). (a) The multiaffine scaling expo-
nent. The solid line indicates the analytic solution from Eq. (5). (b)
The multiaffine scaling prefactor. The solid line indicates the ana-
lytic solution from Eq. (5).

As ¢—0, [[§/A(x)]+1]|?=1, and as ¢g>1, |[6/AL(x)]+1]¢
~|[6,/AL(x)]|?. Note that this approximation is valid, be-
cause [6;/AZ(x)]>1 when r is small. This gives the follow-

ing approximations for the two asymptotic regimes, when
r<l/N:

<|A;(x)|q) =A1 g<1

a (8)
A rf +rN(|&7) g>1,

C,(r) =
where the additional approximation [i™"--dx= [\ ---dx is
made, which is valid when r<<1.

For large ¢, the scaling may resemble either self-affine
scaling or multiaffine scaling, depending on the exact behav-
ior of A, for z(x) and the behavior of {|§]7); however, for
small ¢, the behavior will always resemble self-affine scal-
ing, provided, of course, that the signal strength of z(x) is
sufficiently large compared to the stepped function signal
strength to be numerically noticeable. For the mixed func-
tions examined in Fig. 4, self-affine scaling is seen for small
g and multiaffine scaling with a,=1/g is seen for large g,
but this is not a universal outcome as indicated in Eq. (8).

The scaling behavior of a self-affine function with vertical
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FIG. 4. Dependence of a, on g and the relative magnitude of the
stepped function. The distribution of the discontinuities, &;, is
Gaussian with mean zero and standard deviation o, and all param-
eters are the same as in Figs. 1 and 2 unless otherwise indicated.
The lines indicate the two asymptotic behaviors, a,=1/g when
z(x)=0 and a,=0.75 when zg(x)=0. The data indicated by the sym-
bols are each taken from a single realization of the function, and
one can see that the distribution of the discontinuities, x;, has no

effect on a.

discontinuities was investigated numerically and analytically,
and it was shown that the function of discontinuities (the
stepped function) was the source of the multiaffine behavior.
It was further shown numerically and analytically, that the
general form for the scaling of the stepped function at small
length scales depends on the distribution of discontinuities
only through (|8]). Two asymptotic scaling behaviors were
derived for the self-affine function with discontinuities, and
for the numerical results shown here, self-affine scaling is
seen for small ¢ and multiaffine scaling with a,=1/g is seen
for large g. The large-g asymptotic behavior is not universal
and depends on the detailed g dependence of the mixed func-
tion.

These results suggest the need to further study scaling and
universality for a variety of systems where vertical disconti-
nuities are known or are expected to exist. Such systems
include many thin film deposition models and deposition
processes onto stepped surfaces. For these processes, the
deposition time should have a large effect on the multiaffine
scaling behavior.
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