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We study the roughness of postmortem cracks in concrete plates of different size. We find that the set of
admissible crack paths exhibits an intrinsically anomalous roughness; nevertheless, any individual crack trace
in concrete is essentially self-affine. We also find that both the local and the global amplitudes of crack traces
are distributed according to a log-logistic distribution characterized by the same scaling exponent, whereas the
mean-square width distribution is best fitted by the Pearson distribution, while the log-normal distribution also
provides quite good adjustments and cannot be clearly rejected.
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One of the most challenging puzzles in statistical physics
and materials science is the fracture phenomena �1,2�. Frac-
ture processes are characterized by the high extent of spa-
tiotemporal nonuniformity which results in the complex mor-
phology of fracture surfaces and crack shapes �2,3�. Since
the work of Mandelbrot et al. �4�, many works have been
dedicated to the characterization of the scaling properties of
fracture patterns �5–13�. Furthermore, it was shown that
crack roughness essentially affects the fracture mechanics
�2,5,12,14,15�.

Numerous experiments have shown that cracks exhibit
self-affine scale invariance within a considerable range of
length scales �5–8� up to five decades �6�. Namely, the tra-
jectory of a crack, z�x�, is invariant under an anisotropic
scale transformation in the sense that the rescaled trace
�−�z��x� has the same statistical properties as z�x�, where
��0 is the scale factor and � is the �local� roughness expo-
nent �16�. This implies that the local crack width, w�l�
= ���z�x�− �z�l�2�L�R

1/2, scales with the apparent crack length,
�, as

w � l� for l0 � l � �x, �1�

where �¯�l denotes the average over x in window of size
�x= l, �¯�R denotes the average over different realizations,
l0 is a microscopic cutoff, and �x is the horizontal correlation
length, defined as w�l��x���x

�. Furthermore, the structure
factor of self-affine trace also exhibits scaling behavior, i.e.,
S�k�= �Z�k�Z�−k��K�k−	, where 	=2�+1. Here Z�k� is the
Fourier transform of z�x� and �¯�K denotes the average over
the interval k� �2
 /�x ,2
 / l0�. It should be noted that for
truly self-affine fractals, l0=0 and �x=L, where L is the sys-
tem size, and so, W�L�=w�l=L��L� �16�. Other important
characteristics of crack roughness are the statistical distribu-
tions of local width �17� and amplitudes �Zm�l ,L�
=max�0�x�l��Lz�x�−min�0�x�l��Lz�x� �18�. It has been ar-
gued that the shape of distribution of the mean-square width
can be used to distinguish between different universality
classes of kinetic roughening �17,19,20�. Additionally, crack
roughness can be characterized by the moments of q-order
height-height correlation function �q�l�= ��z�x+ l�−z�x��q�L

1/q

� l�q �16�. For self-affine cracks �q=� for all q. However, in

some cases the crack roughness is characterized by a non-
trivial spectrum of scaling exponents �q= f�q�, such that �2

=� �21�.
Self-affine roughness is commonly associated with the ki-

netic roughening obeying the Family–Vicsek dynamic scal-
ing ansatz

W�L,t� = L
f�t1/z/L� , �2�

where the scaling function f�y� behaves as f �y
 with 
=�,
when y�1 and f�y� is a constant for y�1. Accordingly, at
the early times, t�Lz, the horizontal correlation length and
global width of growing interface increase with time as �x
� t1/z and W� t
/z, respectively, where z is the dynamic expo-
nent and �=
 /z is the so-called growth exponent �16�. The
roughness exponent 
=� and the dynamic exponent z char-
acterize the universality class of the model under study �16�.

However, in many cases the interface roughening displays
an anomalous scaling behavior, characterized by different
roughness exponents in the local and global scales; namely

�� �10–13,22�. Accordingly, the local fluctuations of the
growing interface behave as

w�l � �x,t � Lz� � l�t�
−��/z and w�t � Lz,lx� � L
−�lx
�;

�3�

nevertheless the global width, W�L , t�, exhibits the Family–
Vicsek scaling �2�. Moreover, in the case of so-called super-
roughening, the structure factor also satisfies the Family–
Vicsek ansatz with scaling exponent 	=2
+1, nevertheless,
generally,

S � L�
−
s�k−�2
s+1�, �4�

where 
s is the spectral exponent �22�. Specifically, the in-
trinsically anomalous kinetic roughening is characterized by

s=��
 �22,23�. It is pertinent to note that in this case the
saturated interface exhibits self-affine invariance, so its
“anomalous nature” can be detected only through the study
of roughening dynamics �3� or by using test specimens of
different sizes �24�.

Unfortunately, in most experimental works devoted to the
scaling analysis of fractures, only the local roughness of
cracks was measured using the “postmortem” fractures in
test specimens of standard dimensions �4–7�. So the experi-
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mental data reported in these works do not permit to distin-
guish between the self-affine and the intrinsically anomalous
nature of crack roughening. More recently, the intrinsically
anomalous roughening of cracks in quasibrittle materials was
observed in experiments with woods, some kinds of paper,
and mortar �10–13�. Intrinsically anomalous roughening was
also observed in some numerical simulations of crack growth
�25�. It was found that the global crack roughness exponent
is material dependent �11–13�. With respect to the local
roughness, in a number of works the local roughness expo-
nent was conjectured to be universal, i.e., independent of the
material, mechanism of fracture, and of the fracture mode
�5�. Namely, it is suggested that one-dimensional �1D� cracks
are characterized by ��0.6, whereas two-dimensional �2D�
cracks are characterized by ��0.8 �5,6�. The universality of
�, however, is still controversial �see Refs. �7–9,26�, and ref-
erences therein�. There are strong experimental evidence and
theoretical reasons that, at least in materials with long-range
correlations in microstructure, the value of � is determined
by the scaling properties of the material structure �8,27�.
Moreover, the authors of �9� have detected a dependence of �
on the mechanism of fracture. The dependence of � on the
crack orientation in anisotropic materials was observed in
�26�. In this respect, the authors of �28� noted that � depends
on the strength of disorder in fractured media and the uni-
versal exponent emerges as disorder is increased �28�.

In this work we studied the statistical properties of the
postmortem cracks in fractured concrete slabs covering pe-
destrian paths in our university. The pavement was installed
about three years ago. A sampling analysis of concrete has
shown that the aggregate/cement ratio �by weight� is within
the range of 2÷4; the grain size of gravel and sands varies
from 2 to 16 mm, the density of concrete is 2300±500
kg/m3, and the compressive strength is 45±15 MPa.

Concrete is a quasibrittle material, and the nature of its
fracture behavior continues to be the subject of intensive
research �13,29,30�. A common feature of fracture in con-
crete is the presence of damage or process zone, which
grows near the crack tip. The size of fracture process zone
�its width and length� depends on both the concrete structure
and the stress field, and commonly it is much larger than the
typical grain size �31�. It was found that crack trajectories in
concrete possess a self-affine invariance over a wide range of
length scales �29,30�. Furthermore, recently it was found that
the front of slowly growing crack in notched mortar beam
subjected to four points bending displays intrinsically
anomalous dynamic scaling �13�.

To detect an anomalous roughness, in this work we ana-
lyzed the statistical properties of rupture lines in slabs of
different sizes L�L �see Fig. 1� from different pedestrian
paths. Specifically, we studied the slabs with linear sizes L
=10, 25, 50, 100, 200, and 300 cm. The ratio of thickness �d�
to width �L� for all slabs is in the range of 0.02�d /L�0.1.
Furthermore, we note that in all cases the size of damage
zone is larger than d. So, we assumed that the cracks may be
treated as 1D traces. At least NL=50 specimens of each size
were analyzed. We are not able to define specific fracture
modes and loads associated with each crack. The postmor-
tem analysis shows that cracks mainly propagate at the grain-
matrix interface. The photoimage of each crack trace was

digitized with the resolution of 1 mm/pixel �see Fig. 1�a��.
Figures 2 and 3 show the scaling behavior of the crack

width, amplitude, and structure factor for specimens of dif-
ferent size, from which follows that the ensemble of post-
mortem cracks in concrete exhibit an intrinsically anomalous
roughness characterized by

�q = � = 
S = 0.75 ± 0.02 � 
 = 1.35 ± 0.02 �5�

for 1�q�5; e.g., multiscaling was not detected. The micro-
scopic cutoff of observed scaling is of the order of the typical
grain size, l0�1 cm and �x�L �see Figs. 2 and 3�.

It should be pointed out that the values of local roughness
exponents obtained for 320 crack traces are normally distrib-
uted with the standard deviation of 0.03; nevertheless, the
large variations in loads and environmental conditions asso-
ciated with studied cracks �32�. Furthermore, we note that
the values of both roughness exponents coincide with those
obtained for crack fronts in three-dimensional �3D� mortar
beams �13�, nevertheless the differences in the material
structure and the fracture mode. At first glance, this result
may be interpreted as support for the hypothesis of scaling
universality, e.g., �=0.8±0.05 for 2D cracks �5,13�, although
the coincidence may be accidental �33�. With respect to this
point, we note that experimental value �=0.75±0.02 agrees
with the result of simulations of the two-dimensional fuse
model �34�, as well as with the predictions of the correlated
percolation theory for 1D cracks �35�; whereas in three di-
mensions the fuse �36�, as well as the beam lattice �37� mod-
els and the correlated percolation theory �35�, predict �
�0.6.

The scale-free nature of the crack roughness implies that
crack growth is essentially probabilistic in nature �15�. This
means that in the test specimen, under given conditions, ex-

FIG. 1. �a� Photographs of cracks in the concrete slabs of dif-
ferent size L=2 �1�, 1 �2�, 0.5 �3�, and 0.25 m �4�; and �b� digitized
graph of crack trace in the plate of size L=3 m.
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ists a set of admissible crack paths characterized by the same
local roughness exponent �see �15,38��. The statistical prop-
erties of this set can be determined from the analysis of crack
traces in macroscopically identical specimens �15,18�. The
ensemble of postmortem crack traces can be characterized by
statistical distributions of the mean-square width W�L� �17�
and the global amplitudes �ZM�L�=�Zm�l=L� �18�.

Accordingly, we found that the distribution of the mean-
square crack width is best fitted �39� by the Pearson distri-
bution �see Fig. 4�a��,

f�wL
2� =

exp�− k/y�
k��k + 1��wL

2�
	 y

k

k+2

, where y =
wL

2

�wL
2�

�6�

and ��¯� is the � function. However, the log-normal distri-
bution also provides quite good adjustments �p value
=0.3946� and cannot be clearly rejected in terms of �2 and
Kolmogorov-Smirnov statistics. Notice that both distribu-
tions have a tail heavier than exponential, but lighter than
power-law distributions, as expected for self-affine traces
�17,19�.

At the same time, the local and the global amplitudes of

cracks are more likely �39� to follow a log-logistic distribu-
tion �see Figs. 4�b� and 4�c��,

f�y� = mym−1/Z*�1 + ym�2, where y = ��Z − z*�/Z*; �7�

�Z is �Zm�l� or �ZM�L� and Z*=median��Z�−z*, z*

=min��Z�, and m is the distribution tail exponent, which in
the case of self-affine cracks depends on �

 �15,18�. For
intrinsically anomalous cracks in concrete we find that both
normalized amplitudes �zl=�Zm /L
−�l� and �zg=�ZM /L


exhibit a log-logistic distribution �p value 0.6838 �40�� char-
acterized by the same tail exponent m=4±0.1 �see Fig. 4�d�
and Ref. �41��.

Intrinsically anomalous crack roughness implies that the

FIG. 3. Data collapse for �a� crack width, w=w�l ,L� /L0.6, and
�b� power spectrum, s�k�=S�k ,L� /L0.6, for crack traces in concrete
plates of different size. Straight line slopes �=0.75 �1� and −	
=−2
s−1=−2.5 �2�.

FIG. 4. �a�–�c� Conditional probability distributions of �a� the
mean-square crack width and �b� the global and �c� the local am-
plitudes of crack traces. Bins—experimental data, lines—data fit-
ting by �a� Pearson distribution with k=0.76 �p value=0.4846� and
�c–d� log-logistic distribution �p value=0.6838� with �c� m=4.053,
�=z* /Z*=0.0139 and �d� m=3.963, �=0.0048. �d� Log-log plot of
�=F�y� / �1−F�y�� vs y, where F�y� is the cumulative distribution
of the normalized global, y=�ZM�L� /L
 �full circles�, and local,
y=�Zm�l ,L� / l�L
−� �circles�, crack width �straight line corresponds
to the log-logistic distribution with m=4�.

FIG. 2. �a� Log-log plots of the global �1� and the local �2–6�
crack width vs l�cm� in concrete plates of size L=10 �2�, 25 �3�, 50
�4�, 100 �5�, and 300 cm �6�; solid line slope 
=1.35, dotted lines
slope �=0.75. �b� Log-log plots of �L�l�= ���Zm�l ,L��L�N vs l�cm�
in plates of size L=300 cm �1� and ��L�= ��ZM�L��N vs specimen
size �2�; solid line slope 
=1.35, dotted line slope �=0.76.
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statistical properties of the set of admissible crack paths in
concrete are dependent on the system size; nevertheless, any
individual crack possesses a self-affine invariance. This
means that a crack has information about the specimen size
before it fails. Surprisingly, the local and the global ampli-
tudes of cracks exhibit the same fat-tailed statistical distribu-
tion. These observations provide a unique insight into the

physics of fracture and the nature of intrinsically anomalous
roughening.
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