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Identical objects, regularly assembled, form a helix, which is the principal motif of nucleic acids, proteins,
and viral capsids.

DOI: 10.1103/PhysRevE.72.062901 PACS number�s�: 87.15.By, 87.14.Ee, 87.14.Gg, 82.35.Pq

I. HELICES IN BIOLOGICAL MOLECULES

Double-stranded DNA is a double helix �1�. The principal
secondary structures in proteins are �-helices �2� and
�-sheets �3,4�, which are sheets of helices. The fibrous pro-
tein �-keratin is a double �-helix; collagen is a triple helix.
The cytoskeletal filaments—actin filaments, microtubules,
and intermediate filaments—are helical assemblies of sub-
units. Helices occur in the capsids of viruses.

Helices are important and ubiquitous in biology because
identical objects, regularly assembled, form a helix. This
theorem—that a regular assembly of identical objects is a
helix—has been known in the biological community since
the work of Pauling �2–4� but is less familiar to physicists.
Although it can be derived from the differential geometry of
Lancret and de Saint Venant �5�, I am unaware of a proof of
it in the biological literature, where it often is illustrated
by photographs of stacks of identical blocks, each rotated by
a fixed angle about the vertical axis �6�. Because of its
far-reaching implications for biology, a proof that is simple,
direct, and self-contained should be useful. Such a proof
is given in Sec. II. In Sec. III, some formulas about helices
are derived. In Sec. IV, the theorem and these formulas
are illustrated by and applied to nucleic acids, protein sec-
ondary structures, proteins, protein folding, and viral capsids.
The theorem implies, in particular, that the �-strand �3,4�,
which is the second most common secondary structure in
proteins, is a helix and that icosahedral viral capsids are
made of helices. The paper ends with remarks about helices
and evolution.

II. REGULARITY IMPLIES HELICITY

Suppose we have a collection of identical objects, which
we label with the integers. Suppose each object has both a
socket and a knob. Suppose that every knob can fit snuggly
into every socket and that, once seated, no further rotation of
the knob in the socket is possible. We can set the knob of
object 1 into the socket of object 2. Then we can put the
knob of object 2 into the socket of object 3. Next, we can put
the knob of object 3 into the socket of object 4. If we con-
tinue in this way, then the chain of objects will form a helix
defined by the first 3 objects.

To see why, we fix our attention on a selected point, the
same for all objects. We might choose the top of each socket.

Let us call the selected point on the ith object pi. Let
a=p2−p1, so p2=a+p1. The knob of each object protrudes
from its object in a way that is arbitrary but the same for all
our objects. So the vector b=p3−p2 has the same length as a
and is related to it by a 3�3 rotation matrix R, b=Ra. The
rotation R includes any extra rotation of � radians about
the b axis that may occur in the rigid motion that attaches
object 2 to object 1. So p3=b+p2=Ra+a+p1. What about
c=p4−p3? Well, the lengths of all the vectors pi+1−pi are
the same, and they are all related by rotations. And since
the objects are all identical, the vector c must be related
to b by the rotation R in the rotated frame—that is,
c=RRR−1b=Rb. So c=R2a, and thus the point p4 is given by
p4=c+p3=R2a+Ra+a+p1. The general rule is

pn+2 = �
k=0

n

Rka + p1. �1�

Every rotation matrix R has one real eigenvector n̂ with
an eigenvalue of unity Rn̂= n̂. The eigenvector n̂ is the axis
of the rotation. The caret means that the axis n̂ is normalized,
and we fix its sign by requiring that a · n̂�0. �The other two
eigenvectors e± are complex with unimodular eigenvalues
Re±=e±i�e± in which � is the angle of the rotation R.�

Let us adopt a coordinate system in which the z axis is the
axis of rotation ẑ= n̂ and the vector a lies in the x-z plane
a=axx̂+azẑ. The rotation now is about the z axis, and so

Ra = R�axx̂ + azẑ� = ax�cos �x̂ + sin �ŷ� + azẑ , �2�

in which we choose to have −���	�. If the product �az is
positive, then the helix is right handed; if it is negative, then
the helix is left handed. The kth power of R turns a into

Rka = Rk�axx̂ + azẑ� = ax�cos k�x̂ + sin k�ŷ� + azẑ . �3�

So formula �1� for the point pn+2 gives

pn+2 = �n + 1�azẑ + p1 + ax�
k=0

n

�cos k�x̂ + sin k�ŷ� . �4�

Now by expressing sin k� and cos k� in terms of exp�i�� and
by using the relation �z−1��k=0

n zk=zn+1−1, one may derive
the trigonometric identities

�
k=0

n

cos k� =
1

2
�cos n� + cot

1

2
� sin n� + 1� �5�
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�
k=0

n

sin k� =
1

2
�sin n� − cot

1

2
��cos n� − 1�	 . �6�

By substituting these identities into Eq. �4�, we find

pn+2 = �n + 1�azẑ + p1 + 1
2ax�cos n� + cot 1

2� sin n� + 1�x̂

+ 1
2ax�sin n� − cot 1

2��cos n� − 1��ŷ . �7�

If we call v the vector

v =
ax

2 
 1

− cot 1
2�

0
� , �8�

then we may write the general point pn+2 as

pn+2 = Rnv + nazẑ + p1 + a − v , �9�

which clearly is a helix.
A rotation R about a point p0 takes a point p into the point

p� given by
p� − p0 = R�p − p0� . �10�

By comparing this rule with our formula �9� for pn+2, we
may infer that v=axx̂−r0 in which r0 is the point where the
axis ẑ crosses the x-y plane; equivalently,

r0 = axx̂ − v = 1
2ax�x̂ + cot��/2�ŷ� . �11�

Equation �9� for the point pn+2 now takes the form

pn+2 − r0 = Rn�axx̂ − r0� + �n + 1�azẑ + p1 �12�

or more simply
pn+2 − r0 = Rn�a − r0� + nazẑ + p1 �13�

since Rnẑ= ẑ.
This helix rises by 
z=az with each object and turns

by the angle � with each object, so its pitch is
p= �2� /��
z=2�az /�. Its axis is r0+zẑ for all z.

The rotation matrix R is the product of a rotation R�b ,a�
that rotates the vector a into the vector b and a rotation

R��b̂� about the vector b by a dihedral angle �:

R = R��b̂�R�b,a� . �14�

The first matrix R�b ,a� is

R�b,a� = �a � b
ˆ �a � b
ˆ � + �b̂�â�

+ ���a � b� � bˆ ��a � b� � aˆ � �15�

in Dirac notation with the carets meaning that all vectors are

unit vectors. The second matrix R��b̂� is �7�

R��b̂� = e�b̂·L� = cos �I + b̂ · L� sin � + �1 − cos ��b̂�b̂�T, �16�

in which the generators �Lk�ij =�ikj satisfy �Li ,Lj�=�ijkLk and
T means transpose. In terms of indices, this formula for

R��b̂�=e�b̂·L� is

R��b̂�ij = �ij cos � − sin ��ijkb̂k + �1 − cos ��b̂ib̂ j . �17�

In these formulas, �ijk is totally antisymmetric with �123=1,
and sums over k from 1 to 3 are understood.

III. PARAMETRIZING A HELIX

Suppose you are given a set of points that lie on a
helix. How do you find the spacing 
z, the angle � per step,
the axis n̂, and a point n0 on the helix? A helix is defined
by four points p1 ,p2 ,p3 ,p4. Let a=p2−p1, b=p3−p2, and
c=p4−p3. If the axis of the helix points in the direction n̂
and n0 is any point on the axis, then the axis contains the
points n0+zn̂, where z is any real number.

The points pi of the helix are evenly spaced by 
z in the
n̂ direction. The spacing 
z is given by


z = n̂ · �p2 − p1� = n̂ · a . �18�

Because it is constant, the spacing 
z is also given by

z= n̂ · �p3−p2�= n̂ ·b and by 
z= n̂ · �p4−p3�= n̂ ·c. Thus the
axis n̂ is orthogonal to b−a and to c−b. So it must be par-
allel �or antiparallel� to the cross product n of these vectors,

n = �b − a� � �c − b� . �19�

In terms of the length �= �b−a�= �c−b� and the angle � be-
tween the vectors b−a and c−b, the vector n is of length
�2 sin �. The general direction of the helix is defined by the
difference p4−p1=a+b+c; so if  is the sign of the dot
product �a+b+c� ·n, then the axis of the helix is the unit
vector

n̂ = 
�b − a� � �c − b�

�2 sin �
. �20�

The three other parameters of the helix are its radius �, its
angle �, and a point n0 on its axis. To find these, we note that
for each of the four points pi,

�n̂ � �pi − n0��2 = �2. �21�

Subtracting this relation for i=1 from this relation for i=2
and recalling that a= p2− p1, we get an equation that is linear
in n0:

2�n̂ � a� · �n̂ � n0� = �n̂ � p2�2 − �n̂ � p1�2. �22�

Similarly, subtracting Eq. �21� for i=2 from Eq. �21� for
i=3 and recalling that b=p3−p2, we find

2�n̂ � b� · �n̂ � n0� = �n̂ � p3�2 − �n̂ � p2�2. �23�

An orthonormal basis is provided by the three vectors

ê1 =
b − a

�b − a�
, ê2 = n̂ � ê1, ê3 = n̂ . �24�

Subtracting Eq. �22� from Eq. �23�, we get

2�n̂ � �b − a�� · �n̂ � n0� = �n̂ � p3�2 − 2�n̂ � p2�2

+ �n̂ � p1�2 �25�

or, using Eqs. �24�,

2�b − a��n̂ � ê1� · �n̂ � n0� = �n̂ � p3�2 − 2�n̂ � p2�2

+ �n̂ � p1�2. �26�

So in terms of the definition
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C321 =
�n̂ � p3�2 − 2�n̂ � p2�2 + �n̂ � p1�2

2�b − a�
, �27�

we may use Eqs. �24� again to write Eq. �26� as

ê2 · �n̂ � n0� = C321. �28�

Since the unit vectors êi are complete and orthonormal,
we may expand the axis point n0 as

n0 = �
i=1

3

�êi · n0�êi. �29�

Using Eqs. �24� and the relations n̂� ê2=−ê1 and n̂� ê3=0,
we have

n̂ � n0 = �ê1 · n0�ê2 − �ê2 · n0�ê1. �30�

So Eq. �28� now implies

ê1 · n0 = C321. �31�

Expanding the vector a in terms of the basis �êi�,

a = �
i=1

3

�êi · a�êi, �32�

and using Eqs. �24�, we find

n̂ � a = �ê1 · a�ê2 − �ê2 · a�ê1. �33�

This relation and Eq. �30� imply

�n̂ � a� · �n̂ � n0� = �ê1 · a��ê1 · n0� + �ê2 · a��ê2 · n0� . �34�

Using this expression and the notation

C21 = 1
2 ��n̂ � p2�2 − �n̂ � p1�2� , �35�

we extract from Eq. �22� the result

�ê1 · a��ê1 · n0� + �ê2 · a��ê2 · n0� = C21 �36�

or, using Eq. �31�,

ê2 · n0 =
C21 − �ê1 · a�C321

ê2 · a
. �37�

The inner product ê3 · n̂0 is arbitrary. So by substituting our
formulas �31� for ê1 ·n0 and �37� for ê2 ·n0 into the expansion
�29�, we have a set of points n0 on the axis of the helix in
terms of the free parameter ê3 · n̂0.

To find the radius � from Eq. �21�, we use Eq. �30� for the
cross product n̂�n0:

� = ��n̂ � p1 + �ê2 · n0�ê1 − �ê1 · n0�ê2�2, �38�

where the axis n̂ and the inner products ê2 ·n0 and ê1 ·n0 are
given, respectively, by Eqs. �20�, �31�, and �37�.

The cosine of the angle � is

cos � = �−2�n̂ � �p1 − n0�� · �n̂ � �p2 − n0�� , �39�

and its sine is

sin � = �−2n̂ · �n̂ � �p1 − n0�� � �n̂ � �p2 − n0�� . �40�

So the angle � is the argument of the complex number
�cos � , sin �� in the interval −���	�, which is given

by the second FORTRAN arctangent function atan2 as �
=atan2�sin � , cos ��.

IV. EXAMPLES OF BIOHELICES

A. DNA

Although DNA is made out of nucleotides, its building
block is the object dR-B-B�-dR in which dR is a deoxyribose
sugar and B-B� is a Crick-Watson base pair of adenine and
thymine �A=T or T=A� or of cytosine and guanine �C�G
or G�C�. The four base pairs have nearly the same size,
and so the four units dR-B-B�-dR are nearly identical.
Phosphate groups glue these units into a regular chain. Each
dR is linked by one phosphate group to the unit behind it
and by another phosphate group to the unit ahead of it.
This pattern of covalent bonds is nearly the same in all
dR-B-B�-dR units. The result is a helix or a double helix �1�
if one counts both chains of sugar-phosphate groups. For
instance, the ideal B-DNA dodecamer d�CGCGAAT-
TCGCG� at 1.4 Å resolution is a right-handed double helix
with az=
z=3.3 Å, �=35.5°, a diameter of 20 Å, and a
pitch of 33.3 Å �8�. But other sequences of base pairs have �
as low as 26° or as high as 43°. When the relative humidity
is below 75%, B-DNA turns into the A form, which is a
right-handed helix with a pitch of 34 Å, but with �=26°. The
Z form, which can occur when the salt concentration is high,
is a left-handed helix with �=18° and a pitch of 44 Å. The
dodecamer d(�AT�6) forms coiled coils �9�.

B. Secondary structures of proteins

Proteins are chains of amino acids. Except for proline, the
20 amino acids differ only in their side chains. The amino
acids all have the same main chain N–C–C and are linked
together N–C–C

�
N–C–C

�
N–C–C by peptide bonds,

which resist rotations—the angle � about the C
�

N bond
usually is close to 180°. The dihedral angles � and � de-
scribe rotations about the axes of the single bonds N–C and
C–C. These angles are the principal degrees of freedom in
proteins, but they are far from free. Ramachandran steric
constraints force them to lie in three regions, more �proline�
or less �glycine�.

The � region lies near �=−57°, �=−47°, and �=180°
�10�. A chain of amino acids with these dihedral angles is
an �-helix �2�. By using Eqs. �18�–�40�, one may show
that the ideal �-helix is right handed and that it has 3.62
residues per turn, �=99.4°, az=
z=1.56 Å, and a pitch of
5.64 Å. This geometry allows the carboxyl oxygen of the ith
amino acid to flirt with the hydrogen of the main-chain ni-
trogen of the i+4th amino acid; the energy of the resulting
Ni+4-H¯O=Ci hydrogen bond is of the order of 0.3 eV.

The other two sterically allowed regions are side by side.
The more important one, near �=−139°, �=135°, and
�=−178° �11�, generates helices that form hydrogen bonds
between their main-chain amino and carboxyl groups when
the helices are adjacent and antiparallel, forming an antipar-
allel �-sheet. Formulas �18�–�40� imply that the ideal anti-
parallel �-helix has 2.004 residues per turn, az=
z=3.47 Å,
and a pitch of 6.95 Å. Although slightly left handed with
�=−179.7°, it is nearly planar. Changes of �, �, and � by 1°
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flip the angle � across the cut at �=�; so antiparallel
�-helices do not have definite helicity.

The other region, near �=−119°, �=113°, and �=180°
�12�, generates helices that form hydrogen bonds between
their main-chain amino and carboxyl groups when the heli-
ces are adjacent and parallel—a parallel �-sheet. The ideal
parallel �-helix has 2.024 residues per turn, az=
z=3.27 Å,
and a pitch of 6.62 Å. Although somewhat right handed with
�=177.8°, it is nearly planar. Changes of �, �, and � by 3 or
4° can flip the angle � across the cut at �=�, and so parallel
�-helices do not have definite helicity. In a parallel �-sheet,
the distance along its main chain between an amino group
and the carboxyl group to which it hydrogen-bonds is greater
than in an antiparallel �-sheet �or an �-helix�, and so pro-
teins with parallel �-sheets fold slowly.

Students would get a more unified view of secondary
structure in proteins and nucleic acids if authors of biochem-
istry textbooks called �-strands “�-helices.”

C. Proteins

The main fibrous protein in hair, horn, and nails,
�-keratin, is two �-helices wrapped around each other in a
left-handed double helix. The key protein of the extracellular
matrix holding cells in animal tissue, collagen, is three
�-helices in a right-handed triple helix. Actin and tubulin
form helical cytoskeletal filaments.

Globular and transmembrane proteins are �- and
�-helices linked by loops and turns. They can be as dense as
crystals; �-helices pack closely �13�.

D. Remark about protein folding

Proline aside, any string of amino acids can fold into an
�- or a �-helix. How does it decide? The solvent helps it
decide. Proteins fold in salty water, a polar solvent. A protein
in a polar solvent has a lower energy if the hydrophilic
�charged or polar� side chains are on the outside and the
hydrophobic ones are inside. Suppose two hydrophilic side
chains are separated on the main chain by n hydrophobic
ones. They will form a helix that cuts through the protein

on a chord of length n
z with the two hydrophilic ones
outside at its ends. But 
z�=3.4 Å for a �-helix is twice

z�=1.6 Å for an �-helix. So the choice between the two
kinds of helices is decided in part by whether n
z� or n
z�

is closer to the thickness of the protein.

E. Viral capsids

The coats �or capsids� of filamentary viruses often are
made of a single helix. For instance, the helical capsid of the
tobacco mosaic virus consists of 2130 copies of a single
protein �14�.

The coats of icosahedral viruses �15� are made of nested
helices in which T=h2+hk+k2=1 ,3 ,4 ,7 , . . . protein mol-
ecules form an “asymmetric unit.” Three of these asymmet-
ric units form a triangular, primary helix of zero pitch. In
turn, ten of these primary, triangular helices form two pen-
tagonal, zero-pitch, secondary helices, and another ten of
them form a secondary, beltlike, zero-pitch deca-helix. An
icosahedron results when the two secondary pentagonal he-
lices attach to opposite sides of the secondary belt of ten
triangular helices. The capsid is made of 60T protein mol-
ecules.

F. Why all the helices?

Evolution, size, and geometry require them. Evolution
forces economy. Cells use mass production to achieve
economy, making many copies of identical or closely related
objects. Cells are too small to have workers, so they use
macromolecules. DNA polymerase makes DNA; RNA poly-
merase makes RNA; ribosomes make proteins; proteins fold
automatically or via chaperones; protein complexes self-
assemble. These processes assemble nearly identical objects
in regular ways. Helices are ubiquitous because identical ob-
jects, regularly assembled, form helices.
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