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The quality of the natural vibrations of specific bacteria is investigated using a shell model which accounts
for the elastic properties of the membrane and the associated viscosities of the cytoplasma and the surrounding
fluid. The motion of the membrane is approximated in terms of the distribution of internal forces over the shell
thickness, which is assumed to be much less than the size of the cell. Flexural moments and intersecting
stresses are neglected. Using experimentally obtained values for the membrane properties, high-quality reso-
nances are predicted for several types of bacteria which have radii greater than 5 �m. Viscous shear waves are
the main source of energy dissipation as has been previously reported in other studies on the natural oscilla-
tions of red blood cells, drops, and bubbles. Implications for the acoustic mediated destruction of bacteria are
discussed.
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I. INTRODUCTION

Ultrasound has been shown to be an effective means for
killing bacteria �1–4�. To better understand the biophysical
effects of ultrasound on the bacteria it is necessary to analyze
the physical and mechanical phenomena which occur during
the ultrasound scattering �5�. Such an analysis encompasses a
study of the spectrum of the natural mechanical vibrations.
The theoretical analysis of the natural oscillation of biologi-
cal cells follows from an extension of the theory of drop
oscillations, which was studied by Rayleigh and Lamb �6�.
An expression for the frequency of natural oscillations of a
drop in air was obtained by Rayleigh, and for a drop in an
inviscid fluid by Lamb. The general dispersion equation of
the viscous drop oscillations in a viscous fluid was obtained
by Miller and Scriven �7�. Like a drop, if a cell is deformed
slightly by some external force which is subsequently re-
moved, the cell will return to its original shape. Depending
on the viscoelastic properties of the cytoplasm and the elas-
ticity of the cell’s membranes this process may involve either
a series of oscillations about a spherical shape with continu-
ously decreasing amplitude �resonance oscillations� or else
an aperiodic direct return to the spherical shape �an aperiodic
relaxation movement�. In this paper, we examine the possi-
bility of resonance oscillations of bacteria cells.

The question of resonance in mechanical oscillations of
cells was investigated by Ackerman �8�. Based on early
works of Rayleigh and Lamb �6�, Ackerman estimated reso-
nance frequencies and qualities of red blood cells modeling
the cells as spherical, isotropic elastic shells filled with and
surrounded by viscous fluids �9,10�. In order to estimate the
possibility of detecting the resonance of a cell, Ackerman
considered the effect of viscous damping on the quality of
the natural oscillations of the cell �11�. However, his simpli-
fied cell model and the mathematical errors in the derivation
of the quality of the natural cell’s oscillations �11–13� impose
limitations on potential applicability of his work �14–16�
�see also Refs. �17,18��. His experimental results have never,
to our knowledge, been reproduced; nevertheless, they can-
not be completely disregarded. A more rigorous theory of the

natural oscillations of biological cells based on a more com-
plete understanding of the elasticity of cellular materials was
subsequently developed �19�. The dispersion equation ob-
tained in Ref. �19� has a complex form and only simple
approximations were obtained for red blood cells �RBCs�. It
was found that due to small values of the shear elastic modu-
lus of the RBCs and the high viscosity of the internal fluid,
the natural oscillations of the RBCs were always aperiodic
relaxation movements. Meanwhile, estimations of the quality
of natural vibrations of biological cells revealed that natural
oscillations with a relatively high quality factor were pos-
sible for cells with a rigid wall �such as plant cells or bacte-
ria�. Qualitative estimations obtained in Ref. �19� were in
agreement with experimental data. Aperiodic relaxation
movements of the RBCs have been studied experimentally
�20,21�. Resonance oscillations were observed �22� in algae
hydrodiction at 1 MHz by Miller �22�. Also, resonancelike
phenomena has been observed in a suspension of brine
shrimp �23� �see also Refs. �24–26��. The possibility of reso-
nances in viruses has been discussed recently �27–29�. Virus
particles have been modeled as liquid drops, elastic spheres,
and cylinders �27,30�. The error and limitations in an un-
damped elastic sphere formulation has been outlined in Ref.
�31�.

This work seeks to analyze the spectra of the natural os-
cillations of different types of bacteria by numerically solv-
ing the dispersion equation derived in Ref. �19� for recent
data for the mechanical properties of bacteria �32–35�. The
dispersion equation for the mechanical oscillations of the cell
was derived using a shell model of the cell that takes into
account the elasticity of the bacterium shell and viscoelastic
properties of the surrounding and internal fluid of the bacte-
rium. This shell model has been shown to adequately de-
scribe the attenuation of sound in RBC suspensions �5�.

It is demonstrated that the characteristic natural move-
ments of the cell are determined both by the elastic proper-
ties of the shell and the associated viscosities of the system.
Natural oscillations of sufficiently high quality factor seem
possible for several types of bacteria which have a rigid wall.
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II. MODEL

The pioneering measurements of the elastic moduli of the
erythrocyte’s membrane by Evans and his colleagues �36�
fostered the development of realistic mechanical models of
cell. The cell, as a mechanical system, resists change both in
volume and shape. For most cells the intracellular contents
can be represented by an aqueous solution, a solid, or gel of
density � and volumetric elasticity modulus KV, which are
close to the values of the same parameters in the ambient
fluid. Resistance to change in the shape of the cells of dif-
ferent structure may be due to a variety of factors. We shall
consider only those cells in which the shape is maintained by
a thin cortical surface layer. Such surface elasticity is char-
acteristic of plant cells and many bacteria or protozoa but not
erythrocytes and adipose cells. Plant cells and bacteria pos-
sess a rigid cell wall �37�, but in erythrocytes the elastic
properties of the shell are determined by the bilipid mem-
brane and its polymer network �36�. A theoretical study of
the spectrum of the natural vibrations may be based on a
simplified cell model, the “shell model” �19�. Within the
shell model �Fig. 1�, a bacterium is assumed to have a spheri-
cal shape of radius a. Resistance to change in shape of the
bacteria is due to a rigid cell wall �35�. For the shell model
the motion of the cell is composed of the motion of three
components: the internal fluid, the shell, and the surrounding
fluid �5,19�. A spherical shape of the cell is assumed for two
reasons. First, it is possible to obtain an analytical solution
for spherical objects. Second, many bacteria indeed have a
spherical shape �cocci�. Since the thickness of the shell is
small as compared with the cell radius, the shell is regarded
as a simple elastic surface separating two fluids. The fre-
quency of the natural oscillations of bacteria can be obtained
by solving the equations of motion of a viscous fluid, where
the equations of motion of an elastic shell, are incorporated
into the boundary conditions �6�.

In reality, the cell’s shell is not uniform in thickness �36�,
it is a stratified system which is composed of at least three
layers differing in mechanical properties: bilipid membrane,
external shell, and internal polymer network. Each layer
makes a unique contribution to the resistance of the shell

undergoing different forms of deformation. However, for the
cells considered here, the thickness of the shell h is much
less than the characteristic size of the cell a; h�a. For ana-
lyzing the movement of the shell an approximation in which
the equations of motion include the total values of the inter-
nal forces distributed over the thickness of the shell may be
used �38�. Within such an approximation the flexural mo-
ments and the intersecting stresses in the membrane may be
neglected �38�.

A. Wave equations

The fluid within and outside the cell is characterized by a
density �, a velocity of sound c, a compressional or bulk
viscosity �, and a shear viscosity �. The values relating to the
internal fluid will be designated by the subscript i and the
values associated with the external fluid by o. The motion of
the fluids is described by the particle velocity fields Vi and Vo
and the pressure pi and po determined by a standard system
of equations consisting of the equation of continuity, the
Navier-Stokes equation, and the linearized equation of state
�6�. As usual, we assume that perturbation of the fluid den-
sity �� and pressure p� caused by cell vibrations are small in
comparison with static values of the density � and pressure
p: ptotal= p�+ p, �total=��+�; ����; p�� p. In the linear ap-
proach, the equation of continuity can be written as �39�

���

�t
+ � div�V� = 0, �1�

the Navier-Stokes equation as

�
�V

�t
= − grad�p�� + ��V + �� + �/3�grad div�V� = 0,

�2�

where c is the sound velocity in fluid, � is the Laplacian, and
the linear equation of state is

p� = c2��. �3�

The velocity field in the fluid may be represented as a
superposition of two parts: the potential part described by a
scalar field �, and the vortical part described by a vector
field A �6,39�,

V = − grad� + rotA . �4�

Solutions for the potentials �i and �o are sought in the
form of the diverging and standing spherical waves; and for
Ai and Ao in the form of viscous shear waves, which expo-
nentially attenuate on both sides of the shell due to viscous
dissipation. Substituting Eq. �4� into Eq. �3�, the wave equa-
tion can be expressed as follows:

�� + k2�� = 0, �5�

�� + 	2�A = 0, �6�

where k=
 /c, 	=��i
�� /�, 
 is the angular frequency. The
analysis of a shell of arbitrary shape poses considerable
mathematical difficulties; therefore we confine ourselves in

FIG. 1. Stresses on the element of the spherical shell.
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this work to the vibrations of a spherical shell. The Vr and V�

components of the vector velocity V can be written in spheri-
cal coordinate system as

Vr = −
��

�r
+

1

r
��A , �7�

V� = −
1

r

��

��
−

1

r

��rA�
�r

, �8�

where

��A =
1

sin �

�

��
�sin �A� . �9�

B. Motion of shell and the boundary value problem

The shell resists deformation due both to constant tension
To and to the force of surface elasticity. The resistance to
change in the surface area is characterized by the area com-
pression modulus KA, and the resistance to the shear defor-
mation by modulus � �35,36,40�. The radii of curvature
which describe the cell’s shell are much larger than the thick-
ness of the membrane structure �h /a�1�. Due to the small
thickness of the shell, the equation of motion of shell can be
replaced by the equilibrium equations �Fig. 1�. The equation
of mechanical equilibrium for an element for the spherical
thin shell may be expressed in the form �38�

�rr
o − �rr

i − �T�

R�

+
T

R
� = 0, �10�

��r
o − ��r

i +
1

a
� �T�

��
+ cot ��T� − T�� = 0, �11�

where T�, T are the normal tension in the shell, R�, R are
the local radii of curvature. The components of the tensor of
viscous stress acting on the shell on part of the fluid �rr

o , �rr
i ,

��r
o , ��r

i , have the form �39�

�rr = �− p� + 2�
�Vr

�r
+ �� −

2

3
��div V	

r=a
, �12�

��r = ��1

a

�Vr

��
+

�V�

�r
−

V�

a
	

r=a
. �13�

Equations �10� and �11� must be supplemented by relation-
ships between the deformations and the internal forces in the
shell. The equations of motion are written in an instant local
system of coordinates associated with the perturbed surface;
its radii of curvature R depends on the relative movement of
the shell W �V=�W /�t�. Therefore, for the magnitudes R one
may use their values for the unperturbed surface taking into
account the linear corrections �38�. In the linear approxima-
tion, this dependence is fundamental only when the tension
the T�, T contain a constant component determined by the
isotropic tension of the shell To. The relations between the
tensions T� and T and the strains e�� and e for a thin
spherical shell have the following form �36,41�:

T� = KA�e�� + e� + ��e�� − e� + To, �14�

T = KA�e�� + e� − ��e�� − e� + To. �15�

Here �e��+e�=eS is the relative change in the area of the
element of the surface, KA is the area compression modulus
which represents the resistance of the shell to change in its
surface area; � is the surface shear modulus. For bacteria,
the moduli � and KA are comparable in magnitude �35�. For
cells without walls, the surface shear modulus is smaller by
many orders than KA: ��KA �36�. In Eq. �15� the contribu-
tion of the viscous stresses in the shell can be accounted for
by allowing the moduli KA and � complex values:

K̃A = KA − i
�K, �16�

�̃ = � − i
��. �17�

The strains are expressed in terms of the displacement Wr
and W� of surface points:

e�� =
1

a
�Wr +

�W�

��
� , �18�

e =
1

a
�Wr + W� cot �� . �19�

The radii of curvature of a perturbed spherical shell are ex-
pressed as

1

R�

=
1

a
�1 −

Wr

a
−

1

a

�2Wr

��2 � ,

1

R

=
1

a
�1 −

Wr

a
−

1

a
cot �

�2Wr

��
� . �20�

Using Eqs. �15�, �19�, and �20�, we can write the equations of
motion of the shell in the following form:

�rr
o − �rr

i +
To

a2�2Wr + ��

�Wr

��
� −

2KA

a2 �2Wr + ��W�� = 0,

��r
o − ��r

i +
KA

a2

�

��
�2Wr + ��W�� +

�

a2�2W� +
�

��
��W�� = 0,

�21�

where

��W =
1

sin �

�

��
�sin �W� .

The above equations determine the dynamic conditions be-
tween the motion of the shell and that of interior and sur-
rounding fluid. It is assumed that both surfaces of the shell
move at the same velocity which is also the velocity of the
shell itself:
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Vi
r=a = 
Vo
r=a =
�W

�t
�22�

or Vr
o=Vr

i , V�
o=V�

i . Therefore four undetermined coefficients
An, Bn, Cn, Dn can be determined from the four boundary
condition equations �21� and �22�.

III. SOLUTION

We introduce a system of spherical coordinates r, �, and
�; with the origin at the center of the shell �Fig. 1�, and
consider only oscillations possessing axial symmetry. For the
case of axial symmetry Eqs. �5� and �6� are solved in terms
of series expansions of spherical Bessel functions with four
undetermined coefficients An, Bn, Cn, Dn. We may write
these for the surrounding fluid as follows:

�o = �
n=0

�

Anhn�kor�Pn�cos ��e−i
t,

Ao = �
n=0

�

Cnhn�	or�
�Pn�cos ��

��
e−i
t

and for internal phase

�i = �
n=0

�

Bnjn�kir�Pn�cos ��e−i
t,

Ai = �
n=0

�

Dnjn�	ir�
�Pn�cos ��

��
e−i
t, �23�

where Pn�cos �� are the Legendre polynomials �42�, hn�kr� is
the spherical Hankel function of the first kind, jn�kr� are the
spherical Bessel functions �42�, and A is the � component of
vector potential A :A=Ai. The response of the cell to the
external force is determined by the set of An, Bn, Cn, Dn. For
each value of n these amplitudes are linked by four linear
algebraic equations arising from Eqs. �21� and �22�,

Gm * Xn = 0, �24�

where Gn is a 4�4 matrix, the components are given in the
Appendix A, and Xn is the following vector:

Xn = �
An

Bn

Cn

Dn

 . �25�

Every partial term, describing the nth mode of oscilla-
tions, is determined by the corresponding Legendre polyno-
mials. The linear system given by Eq. �24� has a unique
solution if the determinant of the matrix Gn equals zero. The
corresponding equation is

det�Gn� = 0. �26�

As it was pointed out by Ackerman �11�, the wavelength
of the longitudinal waves at the frequency of mechanical

resonances of the cell are much longer than the radius of the
cell: the long-wave approximation, a /��1; where � is the
length of the acoustic wave. In the long-wave approximation
the solution of the dispersion equation �26� can be simplified
as shown in Appendix A. The solutions of the dispersion
equation �26� give the frequencies of the natural oscillations
of cells 
n. Equation �26� can be written in a more compact,
closed analytical form as outlined in Ref. �19�,

dn�
� = dD
n �
� +


Kn
2


2 dC
n �
� , �27�

where

dD
n �
� = �1 −


Tn
2


2 ���o

�*
Hn��o� +

�i

�*
Jn��i� − ��� �28�

− ��2n + 1�
�i

�*
Jn��i� − ��n�n + 2����2n + 1�

�o

�*
Hn��o�

+ ���n2 − 1�� �29�

dC
n �
� =

�
2 − 
Tn
2 ��1 + �� − 4
�n

2


2

−
�i

�*
Jn��i���n − 1�2 + ��n + 1�2� �30�

−
�o

�*
Hn��o���n + 2�2 + �n�n + 1��

− 2����n − 1��n + 2� − �n�n + 1�� , �31�

where �i=	ia, �o=	oa. The mechanical oscillations of the
cell are determined by characteristic frequencies of the cell

�, 
T, 
R, 
K,


Kn
2 =

n�n + 1�KA

�*a3 ,


�n
2 =

�n − 1��n + 2��
�*a3 ,


Tn
2 =

�n − 1�n�n + 1��n + 2�To

�*a3 , �32�

which represent the frequency characterizing the restoring
forces in the shell, �=
�n

2 /
Kn
2 , and �*= �n+1�*�i+n�o. For

convenience, we also introduce the relaxation frequency 
R,


R =
�

�a2 .

At this frequency, the depth of viscous wave penetration in
fluids coincides with the radius of the particle.

The parameter
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�� =
2��i − �o�

i
�*a2 = 2� �i

�*�i
2 −

�o

�*�o
2� �33�

expresses the process of mechanical relaxation due to the
viscous forces in the fluid where the following notation has
been introduced:

Jn��i� =
jn��o�

jn+1��i��i
, �34�

Hn��o� =
hn��o�

hn−1��o��o
. �35�

These functions can be calculated using the iterative rela-
tions

Jn+1��i� =
1

�2n + 3 − Jn��i��
, �36�

Hn+1��o� =
1

�o
2�2n + 1 −

1

Hn��o�� , �37�

where

H0��o� = −
i

�o
,

J0��i� =
1

1 − �i cot �i
. �38�

It is noted that the dispersion equation in a matrix �26� or its
analytical forms �27� are equivalent. The form of Eq. �27�
can be simplified for two limiting cases. If KA=0, Eq. �27�,
the dispersion equation of the natural oscillations of drops in
immiscible fluids �7,43�, dD

n �
�=0 is obtained. For cells with
a shell such as RBCs or vesicles surrounded by bilipid mem-
branes where 
K�
T�
� �KA�1 N/m, ��10−5 N/m
�35,36��, the dispersion equation has a form dC

n �
�=0. Here
the constant tension To appears due to turgor pressure inside
bacteria. Its maximum value To=eKKA can be evaluated from
the maximally permitted value of change in the area of the
membrane, eK�5%, obtained from experiments on osmotic
shock of erythrocytes �36�.

A dispersion equation similar to Eq. �27� was obtained in
the form of a determinant by Miller and Scriven �7� in the
analysis of the free vibrations of a fluid drop where the sur-
face possessed rigidity from a film of surfactants ��=0�.
Solutions of the dispersion equation of drops �dD

n �
�=0� do
not have analytical forms. Prosperetti �43–45� performed a
numerical analysis of the solution for drop without the sur-
factant film. For a more general case of viscous drop in elas-
tic thin shell, the associated dispersion equation was obtained
by Zinin et al. �19� and later by Lu and Apfel �46,47�. For an
accuracy to terms of first order in the parameter 1 / 
�
, the
solution of Eq. �27� was obtained by Miller and Scriven �7�,
and to terms of second order by Marston �48�.

IV. RESULTS AND DISCUSSION

First, it is interesting to qualitatively analyze the overall
characteristics of the natural vibrations of different types of

cells. In the inviscid limit ��i ,�i→0,1 /�→0�, when the
depth of viscous wave penetration tends to zero, the frequen-
cies of the natural cell oscillations are determined by the
equation

�
2 − 
Tn
2 ��
Kn

2 + 
�n
2 � − 4
Kn

2 
�n
2 = 0. �39�

This follows from the substitution of the asymptotic rep-
resentation of functions Jn��i� and Hn��o� for the large com-
plex argument �,

Hn��o� � −
i

�o
+

n

�o
2 , �40�

Jn��i� � −
i

�i
+

�n + 1�
�i

2 . �41�

For negligible viscosity, �→�, Hn��o� and Jn��i�→0,
and the natural frequencies depend on the elastic frequencies

Kn

2 , 
�n
2 , 
Tn

2 ,


n
2�� = 0� = 
Tn

2 +
4
Kn

2 
�n
2


Kn
2 + 
�n

2 . �42�

For a cell in which the shell is deformed mainly due to the
shear deformation �KS���, the natural frequency will be
close to the frequencies 
Tn

2 and 
�n
2 :


n
2 � 
Tn

2 + 4
�n
2 .

For cells with a rigid wall such as bacteria, the natural
frequencies are close to the values 
Kn. The character of the
natural oscillations is determined by the relationship between
the cell size and the depth of penetration � of a viscous wave,

� =�2�


�
�43�

such that � = �1 + i�
a

�
. �44�

At the resonance frequency, the depth of penetration � is
small as compared with the cell size such that ��a , 
�

�1, so the region the viscous shear wave occupies is a small
part of the cell volume and the cell behaves as an elastic
system with low damping. If the viscous wave fills the bulk
of the volume such as ��a , 
�
�1, the cell behaves as an
aperiodic system and its response is relaxational. The region
of the vibratory behavior corresponds to the frequencies 
n
�
R and the region of relaxational to the frequencies 
n
�
R. Table II shows the characteristic frequencies 
K, 
�

�for the quadrupole mode n=2�, the frequencies of relaxation
for different cell types of bacteria, and Bakery yeast cells. In
these calculations, it was assumed that the density of the
fluid is equal to 103 kg/m3 and its shear viscosity is that of
water, �=10−3 Pl. The elastic moduli of the bacteria and B.
yeast cells are evaluated from a known value of Young’s
modulus �see Table I� and using the following expressions:

KA =
Eh

2�1 − ��
, �45�
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� =
Eh

2�1 + ��
, �46�

where � is Poisson’s ratio. The derivation of Eqs. �45� and
�46� is given in Appendix B. For most plant cells the thick-
ness h amounts to approximately one percent of the size of
the cell, h /a�10−2. In its natural surroundings, the wall of
the bacteria cell experiences a constant tension To through
the intracellular pressure �turgor�. The known magnitude of
the turgor pressure �Table I� allows the evaluation of To from
Laplace’s law for the equilibrium of a curved surface:

To = PTa/2. �47�

The corresponding characteristic frequency is of the same
order as 
K; 
T /
K��1+�� / �1−��. A change in the ionic
composition of the external medium of the turgor pressure
and tension may decrease the magnitude of 
T such that it is
substantially smaller than 
K. From current understanding of
the microstructure of the wall, measured properties of its
component, data on the shear elasticity, and internal friction
of the wood at low frequency �49�, in the resonance region it
is assumed that the elasticity of the wall exceeds its viscosity,
and the viscous dissipation inside the cell wall can be ne-
glected. The wood values offer an estimate of the acoustic
attenuation.

The existence of natural vibrations for cells with soft shell
even with a low quality factor is an exceptional phenomenon
�19�. For most cells �intact erythrocytes; adipose cells, etc.�
free motion is of an aperiodic character since the depth of
penetration of the viscous shear wave at frequency close to


n is either comparable with the size of cell �
�
�1� or is
much larger than it �
�
�1� �Table II�. However, the situation
may be different for bacteria. Recent studies have shown that
certain bacteria have a stiff elastic shell, meaning that high
quality resonances are possible �see Table I�. For the high
frequency natural oscillations, the depth of penetration � is
small as compared with the cell size ��a, 
	a
= 
�
�1, the
region of the viscous shear wave occupies a small part of the
cell volume and the cell behaves as an elastic system with
low damping. Simulations of the a /� ratio at the resonance
frequency �Table II� for these types of cells indicate that
resonances are impossible for an intact RBC, however, they
should be pronounced in Carota bacteria, and exist in B.
yeast cells. From Table II, we also conclude that a strong
resonance can be expected in cells which are relatively large
and rigid.

For resonance natural oscillations Eq. �27� has only one
�
n� complex solution �43�, which can be written in a form


n = �n − i�n, �48�

where �n and �n are positive real numbers: �n determines
the frequency of oscillations and �n the rate of their decay.
The decaying oscillations may be characterized by another
variable, called the quality of oscillation given by the equa-
tion �Ref. �50�, Chap. 3�:

Qn =
�n

2�n
. �49�

Hence a solution is sought in the following form:

TABLE I. Elastic shell properties of specific bacteria.

Cell
E

�MPa�
Poisson’s

ratio
Radius
��m�

Thickness
�nm� T �N/m�

Turgor pres.
�MPa�

E. colia 25 0.16 0.50 6 7.5�10−3 0.3

M. hungateib 2–4�104 0.22 3.5–5 30–40

C. eugametosc 8 60 38 9.5

B. emersoniic 10 450 32 6.5

D. Carotac 30 100 45 3

Yeastd 0.6 0.5 1.5–8

Yeaste KS=12.9 �N/m� 0.5 90

aReference �34�. Method: AFM.
bReference �33�. Method: AFM.
cReference �32�. Method: gas decompression.
dReference �53�. Method: AFM.
eReference �54�. Method: micromanipulation.

TABLE II. Frequencies 
K, 
�, 
Ri computed for different cells �n=2�.

Cell type
Radius
��m�


K /2�
�MHz�


� /2�
�MHz�


Ri /2�
�KHz� 
K /
Ri 
� /
Ri Ratio

RBC 5 0.331 0.00127 0.0318 10.4 0.04 a /��=0.14

B. yeast 4.5 0.142 0.0667 0.0078 18.0 8.48 a /�K=3.0

Carota 30 0.318 0.152 1.768�10−4 1800 859.8 a /�K=30.0
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n = �n�1 −
i

2Qn
� . �50�

To find the solution of the form �50�, a MATLAB code was
written to determine the zeroes of the function: 
dD

n �
�
2 �Fig.
2� on the complex plane. Figure 2 shows contours of the

dD

n �
�
2 surface near the minimum. For clarity we have in-
troduced the nondimensional frequency �n /
n ��=0� �see
Eq. �42��. Results of the computations are shown in the Table
III. All computations were done for the mode n=2 �Fig. 3�,
which is thought to be the most important in drop breakup
�51�. Figure 3 illustrates the quadrupole and octupole modes.

Table III shows the resonance frequencies and the quali-
ties of natural oscillation for different types of bacteria. For
the calculations, it was assumed that the density of the fluid
is equal to 103 kg/m3 ��o=�i=103 kg/m3� and its shear vis-
cosity is equal to the viscosity of water; �i=�o=10−3 Pl. For
E. coli and M. hungatei cells, KA and � moduli were calcu-
lated using Eq. �45� and �46�, and Poisson’s ratio for M.
hungatei shell was assumed to be 0.16. For bacteria, C. euga-
metos, B. emersonii, and D. carota, the breaking �turgor�
pressure, radius, and thickness of the cell shell have been

measured �32�. For these bacteria, we estimated the surface
tension using Laplace’s law �47�, and KA was estimated as-
suming that T=0.5KA �Ref. �35� p. 236�, and the modulus �
was computed using expressions �45� and �46� assuming a
Poisson’s ratio equal to 0.49 �35�. As indicated in Table III,
high quality resonances can be expected for the spherical cell
C. eugametos, B. emersonii, and D. carota, and for M. hun-
gatei. Though the viscosity of the internal fluid inside bacte-
ria is unknown, some variations in its value should not
change the quality sufficiently. Our simulations demonstrate
that by increasing the internal viscosity inside B. emersonii
by 10 �m in the radius by a factor of 5 ��i=5�10−3 Pl�
decreases the quality of the resonance by 26% �from Q
=15.8, f =2.24 MHz to Q=12.5, f =2.23 MHz�. Therefore
even a high viscosity value of the cytoplasm will not com-
pletely eliminate mechanical resonances of the bacteria
shown in Table I. Our simulations also show that the surface
tension To does not have strong effect on the quality of the
mechanical vibration of a cell with a rigid shell. Likewise, an
increase of the To from 0 to 38 N/m increases the corre-
sponding quality Q from 15.8 to 10.5.

Recently, the mechanical behavior of Bakery yeast cells
has received attention because resonance vibrations of the
yeast cell membrane at 1 KHz have been detected by atomic
force microscope �AFM� �52�. Using this theory we can in-
vestigate whether observed resonance is related to the shape
resonance oscillations of the cells. Bakery yeast cells are
3–15 �m in diameter with a cell wall thickness of
100–1000 nm. Elastic properties of Bakery yeast cells are
given in Table I. We consider oscillations of the cell with the
following elastic parameters: a=8 �m, �o=103 kg/m3, �i
=103 kg/m3, E=0.6 MPa, h=0.1 �m, �=0.5. Moduli KA
and � were calculated using expressions �45� and �46�. Natu-
ral frequencies of the Bakery yeast cells can be calculated
�Table III�. From Table III, it is noted that resonances of Q
=1.2 are possible at 160 KHz. The frequency of the reso-
nance oscillations of the B. yeast cells is much higher than
that detected by Pelling et al. �52�. It is believed that the
resonances detected by AFM are not related to the mechani-
cal resonances of cell vibration.

We mention that despite the fact that the quality factor for
specific types of bacteria can be high these resonances have
not been readily observed in numerous biological cell experi-
ments. To our knowledge, there is only one experimental
observation of the resonances in algae hydrodiction at
1 MHz by Miller �22�. Resonancelike phenomena have been
reported in suspensions of brine shrimp �23� �see also Refs.
�24–26��. A physical explanation for these has been sug-

TABLE III. Natural frequencies �n and qualities of the quadru-
pole vibrations for different types of cells �n=2�.

Cell type a ��m� �n /2� �MHz� Q2

E. coli 0.5 4.58 0.8

M. hungatei 0.22 646.8 6.1

C. eugametos 8 3.41 15.7

B. emersonii 10 2.24 15.8

Carota 30 0.517 23.2

B. yeast �AFM� 4.5 0.16 1.2

B. yeast �micromanipulation� 4.5 2.06 6.6

FIG. 2. �Color online� Projection of the minimum of the surface

dD

n �
�
2. Upper plot: two-dimensional image of the surface 
dD
n �
�
2

near minimum as a function of quality factor �Q� and nondimen-
sional frequency �n /
n��=0�; lower image: the behavior of the
minimum of the 
dD

n �
�
2 as a function of Qn �n=2�.

FIG. 3. �Color online� Shape of the quadrupole �n=2� and oc-
tupole �n=3� oscillations.
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gested in the original Ackerman paper �13� and also in the
publication by Marston and Apfel �51�. They suggested that
the sound scattering cross section of the cells at the fre-
quency of the cell’s shape resonance was fairly small. In-
deed, the wavelength of the sound wave in water at the reso-
nance frequency for a 30-�m Carota bacterium cell is
1.67 mm. This is 55 times higher than the radius of the bac-
terium. Since the cross section of the sound scattering by a
small particle like a bacterium is proportional to the fourth
power of the ratio �a /��4, the effect of the sound wave on the
bacteria at the frequency of the shape resonance is negligible.
Marston and Apfel suggested the excitation of the quadru-
pole resonance of drops using modulated acoustic radiation
pressure, where the wavelength of the carrier wave was close
to the radius of the drop and the frequency of modulation
was close to the frequency of the quadrupole surface reso-
nance �51�. This method applied to bacteria may facilitate
their destruction by ultrasound, though further experimental
and theoretical investigations are needed.

A critical issue in the study of the natural oscillations of
the bacteria and other biological cells is obtaining appropri-
ate and realistic values for the viscoelastic properties of the
cells. In experiments, it is difficult to obtain proper values of
the elastic properties of the cell’s shell which are approxi-
mately 10 nm thick. This is particularly the case with certain
bacteria since these cells have a stiff shell and the established
method used for measuring elastic properties of RBCs and
vesicles �35,36� cannot be applied. Thus discrepancies exist
in the literature on the associated values. For instance, the
Young modulus of the B. yeast cells measured by AFM �53�
�E=0.6 MPa� is two orders of magnitude lower than that
measured by micromanipulation techniques �54� �E
=110 MPa�. The corresponding qualities determined from
these experiments are different �Table III�. The more precise
measurements of the elastic properties of bacteria will assist
in future investigations on the possibility of natural reso-
nances of these cells.

V. CONCLUSIONS

We applied a shell model for a biological cell to estimate
the quality of the natural vibrations of the specific types of
bacteria. The shell model of a cell takes into account elastic
properties of bacteria shells and the viscosities of the cyto-
plasm and the surrounding fluid. Previously, the successful
application of the model to the sound attenuation in RBC
suspensions was reported �5�. In this paper, the natural fre-
quencies and corresponding qualities were computed for spe-
cific types of bacteria whose elastic properties of shell have
been measured experimentally. As in the case of sound at-
tenuation in RBC suspensions, and natural vibrations of
drops and bubbles, the main source of the energy dissipation
was found to be due to the generation of shear viscous
waves. High quality resonances are possible for several types
of bacteria, which have radii greater than 5 �m. It is more
likely that Gram positive bacteria would have resonances
than Gram negative bacteria because the cell wall �shell� of
the Gram-positive bacteria is much stiffer than that of Gram
negative bacteria �35�. It may be possible to achieve opti-

mized ultrasound destruction of specific bacteria with the
modulated acoustic radiation pressure technique developed
for exciting shape resonances in drops by Marston and Apfel
�51�. This topic along with the interaction of bacteria with
acoustic cavitation bubbles are subjects for further studies.

APPENDIX A

With the notations zo=koa, zi=kia, �o=	oa, �i=	ia, the
coefficients gij

n are the elements of matrix Gn given as fol-
lows:

g11
n = − zohn��zo� , �A1�

g12
n = − zijn��zi� ,

g13
n = n�n + 1�hn��o� ,

g14
n = − n�n + 1�jn��i� ,

g21
n = − hn�zo� ,

g22
n = jn�zi� ,

g23
n = �ohn���o� + hn��o� ,

g24
n = − ��i jn���i� + jn��i�� ,

g31
n =

�o

�*
hn�zo� ,

g32
n = − �� �i

�*
+

2
Kn
2


2 − n�n + 1���� jn�zi�

− �4
Kn
2 + 
Tn

2

n�n + 1�
2 − 2���zijn��zi�	 ,

g33
n = 0, �A2�

g34
n = ��2
Kn

2


2 − n�n + 1�����i jn���i�

− �2
Kn
2 + 
Tn

2


2 − n�n + 1���� jn��i�	 ,

g41
n = 0, �A3�

g42
n = ��
Kn

2 + 
�n
2


2 − ��� jn�zi�

− � 2
Kn
2

n�n + 1�
2 − ���zijn��zi�	 ,

g43
n = −

�o

�*
hn��o� ,
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g44
n = ��
Kn

2 − 
�n
2


2 +
�i

�*
− �n2 + n − 1���� jn��i�

− �
Kn
2 + 
�n

2


2 − ����i jn���i�	 .

In the long-wave approximation, the elements of the ma-
trix can be simplified taking into account the following rela-
tionships �n�1� �42�:

zijn��zi� � njn�zi� , �A4�

zohn��zo� � − �n + 1�hn�zo� . �A5�

The matrix Gn can be further simplified if the third col-
umn of the third column of the matrix Gn is divided by the
function hn��o�, and the forth column by the function jn��i�.
The new matrix Gn will contain functions such as �i jn���i� and
�ohn���o�. These function terms can be easily expressed in
terms of Jn��i� and Hn��o�. Indeed, using interactive expres-
sion for derivatives of the spherical functions �42� we obtain

�i jn���i�
jn��i�

= −
�i jn+1��i�

jn��i�
+ n = n −

1

Jn��i�
, �A6�

�ohn���o�
hn��o�

=
�ohn−1��o�

hn��o�
− �n + 1� =

1

Hn��i�
− �n + 1� .

�A7�

If the third column of the matrix Gn is divided by function
hn�zo�, and the second column by the function hn��o�, and
taking into account Eqs. �A4�–�A7�, the matrix Gn will have
the simple form

g11
n = n + 1, �A8�

g12
n = n ,

g13
n = n�n + 1� ,

g14
n = − n�n + 1� ,

g21
n = − 1,

g22
n = 1,

g23
n =

1

Hn��i�
− n ,

g24
n =

1

Jn��i�
− �n − 1� ,

g31
n =

�i

�*
,

g32
n = − � �i

�*
+

2�n − 1�
Kn
2 − 
Tn

2

�n + 1�
2 − n�n − 1���� ,

g33
n = 0, �A9�

g34
n = �2
Kn

2


2 − n�n + 1������n − 1� −
1

Jn��i�
� −


Tn
2


2 ,

g41
n = 0, �A10�

g42
n =

�n − 1�
Kn
2

�n + 1�
2 +

�n

2


2 + �n − 1��� ,

g43
n = −

�o

�*
,

g44
n =

�i

�*
+


Kn
2


2 �1 − n +
1

Jn��i�
� −


�n
2


2 �n + 1 −
1

Jn��i�
�

− �n2 − 1 +
1

Jn��i�
��� .

APPENDIX B

Hooke’s law written in Eq. �15� for a plane configuration,

Tx = K�exx + eyy� + ��exx − eyy� , �B1�

Ty = K�exx + eyy� + ��eyy − exx� , �B2�

can be expressed for isotropic materials in terms of the stress
�55�,

exx =
1

E
��xx − ���yy + �zz�� , �B3�

eyy =
1

E
��yy − ���xx − �zz�� . �B4�

If the shell is thin and the tension distribution is homoge-
neous over the membrane thickness, we can assume

Tx = h�xx,

Tx = h�xx.

Considering the case where �xx=�xx=�; �zz=0, combin-
ing Eqs. �B1� and �B2� we obtain

h� = K�exx + eyy� . �B5�

Adding Eq. �B3� to Eq. �B4� results in

�exx + eyy� =
2�

E
�1 − �� �B6�

and by combining Eqs. �B5� and �B6�, we obtain Eq. �45�.
Let us consider a case when �xx=�; �xx=�zz=0. Sub-

stracting Eq. �B2� from Eq. �B1�,
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h� = 2��exx − eyy� . �B7�

Likewise from Eqs. �B1� and �B2�, we obtain

�exx − eyy� =
�

E
�1 + �� . �B8�

By combining Eqs. �B7� and �B8�, Eq. �46� is recovered.
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