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Exactly solvable model of the two-dimensional electrical double layer
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We consider equilibrium statistical mechanics of a simplified model for the ideal conductor electrode in an
interface contact with a classical semi-infinite electrolyte, modeled by the two-dimensional Coulomb gas of
pointlike * unit charges in the stability-against-collapse regime of reduced inverse temperatures 0< 8<2. If
there is a potential difference between the bulk interior of the electrolyte and the grounded electrode, the
electrolyte region close to the electrode (known as the electrical double layer) carries some nonzero surface
charge density. The model is mappable onto an integrable semi-infinite sine-Gordon theory with Dirichlet
boundary conditions. The exact form-factor and boundary state information gained from the mapping provide
asymptotic forms of the charge and number density profiles of electrolyte particles at large distances from the
interface. The result for the asymptotic behavior of the induced electric potential, related to the charge density
via the Poisson equation, confirms the validity of the concept of renormalized charge and the corresponding
saturation hypothesis. It is documented on the nonperturbative result for the asymptotic density profile at a

strictly nonzero B that the Debye-Hiickel 8— 0 limit is a delicate issue.
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I. INTRODUCTION

Asymmetric classical Coulomb mixtures, such as highly
charged colloidal or polyelectrolyte suspensions, have at-
tracted much attention in the last years due to the appearance
of various anomalous phenomena; for a nice review, see Ref.
[1]. The contemporary theoretical treatment of equilibrium
statistical mechanics of asymmetric Coulomb mixtures is
based on the concept of renormalized charge. This concept
has been introduced within the Wigner-Seitz cell models to
describe an effective interaction between highly charged
“macro-ions” as a result of their strong positional correla-
tions with the oppositely charged “micro-ions” [2-5]. The
idea of renormalized charge is usually documented in the
infinite dilution limit on a simplified model of a unique
charged colloidal “guest” particle immersed in a symmetric
weakly coupled electrolyte [6—9]. Plausible arguments were
given to conjecture that the induced electric potential far
from the guest colloid exhibits the form predicted by the
Debye-Hiickel (DH) theory [sometimes called the linear
Poisson-Boltzmann (PB) theory], with a renormalized-charge
prefactor. Within the framework of the nonlinear PB theory,
the renormalized charge saturates at some finite value when
the colloidal bare charge goes to infinity [8,9]. A more gen-
eral phenomenon of the saturation of the induced electric
potential at each point of the electrolyte region was studied
in Ref. [10].

The idea of renormalized charge was developed within
the linear and nonlinear versions of the PB theory, which are
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rigorously valid in the limit of the infinite temperature [11].
In order to treat correctly the Coulomb system at a finite
temperature, one has to go beyond these mean-field ap-
proaches by incorporating electrostatic correlations among
electrolyte particles. As concerns the large-distance
asymptotic behavior of the electric potential induced by a
guest charge, this should affect both the renormalized-charge
prefactor (provided that the concept of renormalized charge
remains valid) as well as the correlation length of electrolyte
particles which is expected to govern the exponential decay
of the electric potential. In spite of the existence of many
phenomenological approximations based on heuristic exten-
sions of the mean-field theories [1], there is no chance to
solve exactly a three-dimensional (3D) Coulomb fluid at
some finite temperature.

The situation is more optimistic in the case of 2D Cou-
lomb fluids consisting of charged constituents with logarith-
mic pairwise interactions. These systems maintain many ge-
neric properties, like screening and the related sum rules
[12], of “real” 3D Coulomb fluids. The 2D Coulomb gas of
symmetric + unit pointlike charges is stable against the col-
lapse of positive-negative pairs of charges at high enough
temperatures, namely for 8<<2 where B is the (dimension-
less) inverse temperature or the coupling constant. The col-
lapse starts to occur at S=2: interestingly, although the free
energy and each of the species densities diverge, the trun-
cated Ursell correlation functions are finite at this inverse
temperature. The collapse =2 point is exactly solvable due
to its equivalence with the free-fermion point of the Thirring
fermionic representation of the 2D Coulomb gas [13,14]. The
exact solution involves the bulk thermodynamics for an infi-
nite system and special cases of the surface thermodynamics
for a semi-infinite Coulomb gas in contact with an imperme-
able dielectric wall; for an exhaustive review, see Ref. [15].
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Besides the Thirring fermion representation, the 2D
Coulomb gas is equivalent to the 2D Euclidean, or
(1+1)-dimensional quantum, sine-Gordon field theory with a
conformal normalization of the cos field [16]. Although the
bulk 2D sine-Gordon model has been known to possess the
integrability property from the 1970s [17], the explicit exact
solution of its ground-state characteristics was derived only
quite recently due to a progress in the method of thermody-
namic Bethe ansatz (TBA) [18,19]. Based on the equivalence
with the sine-Gordon theory, the bulk thermodynamic prop-
erties (free energy, internal energy, specific heat, etc.) of the
2D Coulomb gas have been obtained exactly in the whole
stability region of pointlike charges 8<2 [20]. From a
gnoseological point of view, this is the only exactly solvable
case of a continuous (i.e., not on a lattice) fluid in more than
one dimension. Later on, the form-factor approach [21,22]
was applied to calculate the large-distance asymptotic behav-
ior of the charge [23] and number density [24] pair-
correlation functions in the bulk of the infinite 2D plasma.
The integrability of the 2D sine-Gordon theory was shown to
be preserved also in the half space geometry with specific
types of boundary conditions [25]. The surface thermody-
namic properties (surface tension) of the 2D Coulomb gas in
contact with an ideal conductor wall [26] and an ideal dielec-
tric wall [27] were obtained in the whole stability range of
B <2 through the mappings onto the boundary sine-Gordon
model with Dirichlet and Neumann boundary conditions, re-
spectively, with the aid of the known TBA results [28,29] for
these integrable boundary field theories.

The exact treatment of the 2D Coulomb gas was recently
extended also to inhomogeneous situations of the present
interest when one guest arbitrarily charged particle is im-
mersed in the bulk of an electrolyte modeled by the 2D Cou-
lomb gas. At the free-fermion (collapse) point 8=2, the con-
sidered problem is solvable in the Thirring format [30] even
for the guest Q-charged particle being of colloidal type, i.e.,
possessing a hard core of radius a which is impenetrable to
the electrolyte + unit charges. Based on an explicit formula
for the electric potential induced by the charged colloid in
the electrolyte region, the concept of the renormalized charge
[6-9] was shown to fail in this strong-coupling regime. On
the other hand, in the limit Q — o, the anticipated phenom-
enon of the electric potential saturation [10] was confirmed
at this free-fermion point. The special case of the pointlike
(a=0) guest Q charge is solvable, within the framework of
the sine-Gordon format, inside the whole stability interval of
the electrolyte B<<2 [31]. The explicit results for the
asymptotic behavior of the induced electric potential confirm
the adequacy of the concept of renormalized charge in this
weak-coupling regime. The exact results are rigorously valid
provided that B|Q| <2, i.e., when the guest Q charge does
not collapse with an opposite unit charge (counterion) from
the electrolyte. The possibility of an analytic continuation of
the results beyond the stability border B|Q|=2 was conjec-
tured [31], however, the validity of this “regularization hy-
pothesis” is questionable [32]. The restricted rigorous valid-
ity of the exact results to the region B|Q|<2 prevents one
from studying the saturation phenomena in the limit Q — .

In order to avoid the collapse of pointlike guest charges
with electrolyte counterions, one has to search for another
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integrable 2D model with the guest charges uniformly
smeared over a line manifold. The simplest system of this
kind is the 2D half space Coulomb gas in contact with a
plain hard wall carrying a uniform “line” charge density. Al-
though this model is exactly solvable at the free-fermion 3
=2 point [14], it can be easily shown that its sine-Gordon
formulation does not belong to the family of the boundary
sine-Gordon theories integrable at arbitrary <2 [25]. An-
other way of introducing an interface charge density is to
consider a simplified model for an electrode in contact with a
classical electrolyte: the half space Coulomb gas bounded by
an ideal conductor wall, with a potential difference ¢ be-
tween the bulk interior of the electrolyte and the grounded
interface [33,34]. As soon as ¢ # 0, the region of the Cou-
lomb fluid close to the interface (known as the electrical
double layer) carries some nonzero surface charge density.
The 2D version of the model was mapped in Ref. [26] onto
the integrable half-space sine-Gordon model with a specific
¢-dependent Dirichlet boundary condition.

The present paper concentrates just on this integrable
model of the 2D electrical double layer and has two main
aims. The first aim is rather technical: we present a method
for obtaining the charge and number density profiles of elec-
trolyte particles at asymptotically large distances from mod-
el’s interface. This task is equivalent to the calculation of
one-point functions of bulk fields in the boundary sine-
Gordon model with Dirichlet boundary conditions. Although
the one-point functions of certain specific boundary field
theories have already been analyzed using the truncated con-
formal space approach and the form-factor expansion
[36,37], some additional generalizations and technicalities
have to be developed for the present model. Among others
we document on the exact nonperturbative asymptotic form
of the number density profile at large distances from the in-
terface that the DH S— 0 limit is a delicate point which has
to be taken with cautiousness. The second aim consists in
pointing out physical consequences of the obtained exact re-
sults. The knowledge of the asymptotic behavior of the
charge density at large distances from the interface enables
us to derive the asymptotic large-distance tendency of the
induced electric potential toward its bulk value ¢. In the
whole stability range of the electrolyte coupling S<<2, the
asymptotic form of the electric potential coincides, up to a
renormalized-charge prefactor and the plasma correlation
length, with the one obtained in the DH limit. This result
supports the general validity of the concept of renormalized
charge in the weak-coupling regime of the electrolyte. The
saturation hypothesis of the induced electric potential is also
confirmed.

The paper is organized as follows. In Sec. II, we introduce
the notation and briefly summarize important aspects of the
mapping of the infinite 2D Coulomb gas onto the bulk
(1+1)-dimensional sine-Gordon theory. Sec. III deals with
the 2D electrical double layer of interest and its mapping
onto the semi-infinite sine-Gordon theory with Dirichlet
boundary conditions. We would like to emphasize that Secs.
II and III summarize previous results in the literature, so
their presentation is sketchy; for a detailed study of some
specific points, we quote relevant references. Our results are
outlined in the rest of the paper. Section IV presents the
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mean-field theories for the 2D electrical double layer: the
DH B—0 limit with the leading S correction, and the non-
linear PB theory. The crucial Sec. V is devoted to the deri-
vation of the asymptotic charge and number density profiles
for the 2D electrical double layer, in the whole stability re-
gion of inverse temperatures B<<2. The Thirring free-
fermion point B=2 is discussed in Sec. VI. A brief recapitu-
lation and some concluding remarks are given in Sec. VIIL

II. 2D COULOMB GAS IN THE BULK
A. Basic definitions

We start with a brief description of the classical Coulomb
gas formulated in the infinite 2D space of points r € R2. It is
realized as the limit of a finite system with periodic boundary
conditions. The system consists of pointlike particles {i} of
charge {¢;= + 1} (the elementary charge e is set for simplicity
to unity) immersed in a homogeneous medium of dielectric
constant e=1. The interaction energy E of a set of particles
{g;,r;} is given by

E({g;,r}) = 2 C]i‘]jv(h'i - 1'j|), (2.1)

i<j
where the electrostatic potential v is the solution of the 2D
Poisson equation

Av(r)=-2m4(r) (2.2)

subject to the boundary condition Vu(r)—0 as |r|— . Ex-
plicitly, one has

_ (H) )
v(r)=-1In , relR-. (2.3)
o

The free length constant r(, which fixes the zero point of the
Coulomb potential, will be set to unity for simplicity. The
Fourier transform of the 2D Coulomb potential (2.3) exhibits
the form 1/[k|* with the characteristic singularity at k— 0.
This maintains many generic properties (like screening and
the related sum rules [12]) of 3D Coulomb fluids with the
interaction potential v(r)=1/|r|, r € R>.

The system is treated in thermodynamic equilibrium, via
the grand canonical ensemble characterized by the (dimen-
sionless) inverse temperature B and the couple of particle
fugacities z, and z_. Alternatively, chemical potentials .,
and g_ can be defined by z,=exp(Bu.)/\* where \ is the de
Broglie thermal wavelength. The bulk Coulomb gas is neu-
tral [38], and thus its bulk properties depend only on the
chemical potential combination w=(w,+u_)/2, ie., on
V’Z. It is therefore possible to set z,=z_=z; however, at
some places, in order to distinguish between the + and —
charges we shall keep the notation z.. The grand partition
function is defined by

oe) [e’s} Zi\_/+ ZN—
E=2 X =——0(N,.N),

N=0N_=0 N+!N_!

(2.4a)

where
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N
ON,N)= | IIdr expl- BEQgirH] (2.4b)
R2 i=1

is the configuration integral of N, positive and N_ negative
charges, and N=N_+N_. For the considered case of pointlike
particles, the singularity of the Coulomb potential (2.3) at the
origin r=0 can cause the thermodynamic collapse of
positive-negative pairs of charges. The stability regime
against this collapse is associated with the 2D spatial inte-
grability of the corresponding Boltzmann factor exp[Bv(r)]
=|r|~# at short distances, and therefore corresponds to small
enough inverse temperatures S<<2. At large distances, the
Coulomb interaction is screened to a short-distance effective
interaction of Yukawa type. The infinite system is homoge-
neous and translationally invariant. Denoting by (:--)5 the
thermal average, the number density of particles of one
charge sign g(=+1) is defined by n,=(Z;6, , r-r;))s. Due
to the charge symmetry, n,=n_=n/2 where n is the total
number density of particles. At the two-particle level, one
introduces  the  two-body  densities  n,,(jr—r'[)
=(E#j5q’ql_6(r—ri)6q,,q,_5(r’—rj))ﬁ, etc.

B. Sine-Gordon representation

The infinite 2D Coulomb gas is mappable onto the bulk
sine-Gordon theory [16]. Using the fact that, according to
Eq. (2.2), —=A/(27) is the inverse operator of the Coulomb
potential v and renormalizing the particle fugacity z by the
(divergent) self-energy term exp[Bv(0)/2], the grand parti-
tion function (2.4a) and (2.4b) can be turned via the
Hubbard-Stratonovich transformation into

f Deexp| - S(z)]

E(z) = , (2.5a)
J Db exp[ - S(0)]
where
S(z) = J dzr[L(Vd))z—Zz cos(b¢)], =B
R2 167 4
(2.5b)

is the Euclidean action of the 2D sine-Gordon model. Here,
¢(r) is a real scalar field and [D¢ denotes the functional
integration over this field. The one- and two-particle densi-
ties are expressible as averages over the sine-Gordon action
(2.5b) in the following way

n, =z (€%, (2.6a)

ng(jr—r'l) = zqzq/<eiqb¢(r)eiq’b‘z’(r’)). (2.6b)

The renormalized fugacity parameter z gets a precise mean-
ing when one fixes the normalization of the coupled cos
field. In the Coulomb-gas format, the short-distance behavior
of the two-body density for the oppositely charged particles
is dominated by the corresponding Boltzmann factor of the
Coulomb potential: n,_(r,r')~z,z_[r-r'|"? as |r-r'| —0.
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With respect to the representation (2.6b), in the sine-Gordon
picture this corresponds to

<eib¢(r)e—ib¢(l")> ~r- rr|—4b2 aslr—r'|—0. (2.7)
Under this short-distance (conformal) normalization, the di-
vergent self-energy factor disappears from statistical rela-
tions calculated in the sine-Gordon format.

The 2D Euclidean sine-Gordon action (2.5b) takes its
minimum at a ¢(r) constant in space. Due to a discrete sym-
metry ¢— ¢+27n/b (n being an integer), the action has
infinitely many ground states |0,,) characterized by the asso-
ciate expectation values of the field {¢),=27mn/b. In the con-
sidered infinite-volume limit and for »2<1, these ground
states become all degenerate [17]. Equivalently, the discrete
¢ symmetry is spontaneously broken so it is sufficient to
develop the sine-Gordon action (2.5b) around any one of its
ground states, say the one |0,) with (¢),=0.

In order to pass from the present Lagrangian formulation
(2.5a) and (2.5b) to the Hamiltonian one, one chooses, say,
the x direction to be the “Euclidean time” and associates
a Hilbert space H to any equal-time section {x=const,
y € (=%, )}. (Choosing the y direction to be the “Euclidean
time” gives equivalent quantization.) General states are vec-
tors in H whose evolution is governed by the Hamiltonian
operator

H=f°° dy{4771_[2+L(r9}¢)2+22 cos(bg) . (2.8)
o 167

In the considered region b><1 with the spontaneously bro-
ken discrete ¢ symmetry, the sine-Gordon field theory is
massive in the sense that H is the Fock space of massive
multiparticle states. After rotation x=ir to the (1+1)
Minkowski time-space (7,y), these multiparticle states are
interpreted as the asymptotic “in-” and “out-” scattering
states (see below).

The particle spectrum of the (1+1)-dimensional sine-

Gordon field theory is the following [17]. The basic particles
are the soliton S and the antisoliton S which form a particle-
antiparticle pair of equal masses M. They correspond to spe-
cific ¢ configurations that interpolate between two neighbor-
ing ground states, say |0,) and |0,;). Defining the
“topological charge” ¢ as

b [* 9 b
q= ;J_m dy(?—yfﬁ(x,y) = ;T[¢(x,°°) - p(x,— )],
(2.9)

g=+1(=1) for the soliton (antisoliton). Since the theory is
developed around the vacuum |0,), allowed field configura-
tions must start and end at {¢),=0, that is, the soliton and the
antisoliton can coexist in the particle spectrum only in neu-

tral pairs. The S—S pair can create neutral (¢g=0) bound
states {B;;i=1,2,...<p7'}; these particles are called
“breathers.” Their number depends on the inverse of the pa-
rameter

PHYSICAL REVIEW E 72, 061503 (2005)

i)
= = : 2.10
P \Taop (2.10)

The mass of the B; breather is given by
m;=2M sin(?i), 2.11)

and this breather disappears from the particle spectrum just
when m;=2M (i.e., p=1/i). Note that the breathers exist only
in the stability region of the pointlike Coulomb gas 0<pf
<2 (0<p<1); the lightest B, breather disappears just at the
border b?=1/2 (8=2), which is the field-theoretical manifes-

tation of the collapse phenomenon. The S—S pair remains in
the spectrum up to the Kosterlitz-Thouless transition point
b*=1 (B=4) beyond which the sine-Gordon model ceases to
be massive. In what follows, we shall restrict ourselves to the
stability region of pointlike charges 8<2.

Let a e{S,g,Bi(i:I,Z,...<p‘1)} denote the type of the
given particle and m, the corresponding particle mass. Since
the sine-Gordon model is a relativistic field theory, the en-
ergy E and the momentum p of the particle can be param-
etrized as follows:

E,=m,cosh 6, p,=m,sinh 6, (2.12)
where 6 e (—©,%) is the particle rapidity. The asymptotic
n-particle states {|n)} are generated by the “particle creation
operators” A (6),

Aq (A (6) -+ A7 (6,)[0), (2.13)
where |0) € H is the ground state of the Hamiltonian H given
by Eq. (2.8). The state (2.13) is interpreted as an in-state if
the rapidities are ordered as 6, > 6,> -+ > 6, and as an out-
state in the case of the reverse order 6, <6,<<---<<6,. The
in-state basis and the out-state basis are related via the scat-

tering n—n S matrix. The 2—2 process is described simply
by

AL (6)AT (02 = 2 S312(6 = 6)A; (0,)A7 (6)).
b1.by

(2.14)

Here, the momentum conservation demands mgy =my, and
Mg, =My, SO that the inequalities a, # b, or a,#* b, are al-
lowed only for the soliton-antisoliton pair with the degener-
ate masses equal to M. Like for any integrable field theory,
the n—n S matrix of the sine-Gordon model factorizes into a
product of n(n—1)/2 two-particle S matrices. The two-
particle S matrix possesses many symmetry constraints and
its explicit form was obtained by exploring four general axi-
oms: the Yang-Baxter equation; a unitarity condition; analy-
ticity and crossing symmetry; the bootstrap principle [17].

The (dimensionless) specific grand potential w of the sine-
Gordon model (2.5a) and (2.5b), defined in the infinite-
volume limit as
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—w=—>1InZ, 2.15
©= g (2.15)
was found by using the TBA in Ref. [18]:
2
my
-—w=—"""—"7T. 2.16
@ 8 sin(p) ( )

Here, m, is the mass of the lightest B, breather [see formula
(2.11) taken with i=1] and the parameter p is defined by Eq.
(2.10). Under the conformal normalization (2.7), the relation-
ship between the fugacity z and the soliton mass M was
established in Ref. [19]:

T {
Cal(1-b%)

— 2-2p°
. \WF[(1+p)/2]:| e

2T (p/2)

where I" stands for the gamma function. Since the total par-
ticle number density n of the 2D Coulomb gas is given by
the obvious equality

J(— w)
n = Z 9
Jz

(2.18)

Egs. (2.16) and (2.17) imply the explicit density-fugacity re-
lationship, and consequently the complete bulk thermody-
namics, of the 2D Coulomb gas in the whole stability region
B<2 [20]. The mass m; plays the role of the inverse corre-
lation length of the plasma particles [23,24]. Using Egs.
(2.16)—(2.18), it is expressible as

: 1/2
m1=K{Sm7(TZp)] =K{1—%22ﬂ2+0(,33)],

(2.19)

where

-
K=\2mPBn (2.20)

is the inverse Debye length. In the DH limit 8—0, m; re-
duces to « as it should be.

II1. 2D ELECTRICAL DOUBLE LAYER
A. Definition

We first introduce in detail the model of interest which
describes an electrode in contact with a classical electrolyte.
Let us consider an infinite 2D space of points r € R? defined
by Cartesian coordinates (x,y). The electrode-electrolyte in-
terface is localized at x=0, along the y axis. The half space

A={(x,y);x<0} is occupied by an ideal-conductor wall of
dielectric constant ey — o0, impenetrable to electrolyte par-
ticles. The electrolyte is localized in the complementary half
space A={(x,y);x>0}. It is modeled by the classical 2D
Coulomb gas of pointlike unit + charges. The interface (x
=0) is kept at zero potential while the bulk interior of the
electrolyte (x—) is assumed to be at some electrostatic
potential ¢. The nonzero potential ¢ causes a splitting of the
charge fugacities:
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z. =z exp(xBo). (3.1)

As was mentioned in Sec. II, the fugacity z determines the
bulk properties of the electrolyte. The difference of chemical
potentials u, —u_ (or ¢) is relevant only for the surface prop-
erties of the electrolyte region close to the interface (the elec-
trical double layer) [33,34]; if ¢#0 the electrical double
layer carries some surface charge density.

Here, we consider a simplified model of “inert” ideal-
conductor wall which means that the electric potential is con-
stant inside the wall, without any fluctuations. A realistic
“living” ideal-conductor wall, made of a microscopic plasma
system of charged particles with the correlation length going
to zero, exhibits the electrostatic field fluctuations [39]; how-
ever, as was previously noted [40], the species density pro-
files and correlation functions are independent of these fluc-
tuations. The presence of the ideal-conductor wall is
described mathematically by charge images: the particle with
charge ¢ localized in the electrolyte region at the point r
=(x>0,y) induces the image with the opposite charge ¢"
=—¢g localized in the wall region at the point r"=(—x,y). The
interaction energy E of a set of particles {g;,r;=(x;>0,y,)}
then consists of two parts (see, for example, Ref. [41]):

1 * *
E({g;,r}) = E CIiCIjU(|I'i - l'j|) + 52 CIiCIjU(|ri - )
i<j ij

(3.2)

the first term corresponds to direct particle-particle interac-

tions, while the second term describes interactions of par-

ticles with the images of other particles and with their self-

images. The grand partition function Ebry is again given by
zﬁ’* -

bry = :§: 221 _;;_£2(]V+7[v—),

N=0N_=0 NV:!N_!

i1l

(3.3a)

where the configuration integral

N
OWN,N.)= | TId*, expl- BE{g,r)]  (3.3b)
A i=1

is now restricted to the half space x>0. The stability range
of inverse temperatures for the surface thermodynamics is
determined by the Coulomb interaction of the charged par-
ticle with its image [26]: the Boltzmann factor of a particle at
a distance x from the wall with its own image, proportional
to (2x)7#72, is integrable at small 1D distances x provided that
B<2. Note that the bulk and surface thermodynamic stabil-
ity intervals of S coincide.

Due to the translational invariance of the system along the
y axis, the species densities depend only on the x coordinate:
n,(r)=n.(x), x=0. The electrolyte is neutral in the bulk
interior of the electrolyte, i.e., it holds lim, . n.(x)=n,
=n/2. The species densities determine the particle number
density

n(x)= 2 ny(x)=n,(x) +n_(x)

g==1

(3.4)

and the charge density
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p(x) = 2 gny(x) =n,(x) - n_(x).

g=+1

(3.5)

The induced (averaged) electrostatic potential ¢(x) in the
electrolyte region is related to the charge density via the
Poisson equation

¢"(x) ==2mp(x). (3.6)

The potential satisfies the obvious boundary conditions
¢©(0)=0 and ¢(°) = ¢, and the regularity requirement (all de-
rivatives ¢’, ¢”, etc., vanish) at x—oo. Since we will be
interested in the asymptotic approach of ¢(x) to its bulk
value ¢ at large distance x from the electrode surface, it is
natural to introduce the quantity

dp(x) =

which vanishes as x— .

There are two sum rules which can be derived without
solving explicitly the boundary problem. First, the consider-
ation of Eq. (3.6) in the integral [ dx p(x) implies

ox) - ¢ (3.7)

fdwm=§¢@. (3.8)
0 au

We note that a nonzero surface (more precisely “line”)
charge in the electrolyte [; dxp(x) can appear only in the
special case of an ideal-conductor wall where this charge is
exactly compensated by the opposite surface charge o of
particle images, and the system as a whole is neutral. Since
an isolated charged line at x=0, carrying a uniform charge o
per unit length, induces the electric potential such that

¢'(0)=

the sum rule (3.8) can be understood as the neutrality-type
condition

- 270, (3.9)

fmdxp(x)+0'=0.

0

(3.10)

Second, the consideration of Eq. (3.6) in the integral
Jo dx xp(x) and the subsequent two integrations by parts lead
to

fmdxxp(x)zzi, (3.11)
0 m

i.e., the dipole moment of the charge density is related to the
potential difference across the electrical double layer. This
relation follows from elementary macroscopic electrostatics
[41].

At small distance from the wall x— 0, the species densi-
ties are determined by the Boltzmann factors of the corre-
sponding particle with its image [26]:

Zx
n.(x) ~ W, x—0. (3.12)
Consequently,
cosh(,[i’go)
n(x) (2 )B/Z , (3.13a)
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sinh(B¢)

R (3.13b)

p(x) ~ 22

B. Boundary Sine-Gordon representation

The considered particle-image system is mappable onto a
boundary sine-Gordon theory [26]. In particular, the grand
partition function (3.3a) and (3.3b) can be written as

f Dd) exp[— Sbry(z)]

Ebry(Z) = s (3 143.)

f D¢ eXP[_ Sbry(o)]
where

Sory(2) = f >Od2r[l%w(v¢)2—2z cos(b¢)}, b2=§

(3.14b)

is the 2D Euclidean action of the boundary sine-Gordon
model defined in the half space x=0 and the real scalar field
¢(r) fulfills the following Dirichlet conditions at the x=0
boundary:

P(x=0,y) = pg=—4ibeo. (3.15)

The fact that the boundary value of the field, ¢,, is a pure
imaginary number makes no problem: as is usual in field
theory, first one expresses the quantities of interest as func-
tions of real ¢, and then analytically continues the obtained
results to complex values of ¢,. This procedure was success-
fully applied to the calculation of the surface tension (i.e., the
surface part of the grand potential) for the present model
[26]. ¢ will usually appear in the combination

n=- o =2igp.

% (3.16)

Within the formalism developed in Ref. [26], the one-particle
densities n,(x) in the electrolyte region x=0 are expressible
as averages over the boundary sine-Gordon action (3.14b)
with Dirichlet boundary conditions (3.15) as follows:

nu(x) = (=0 (3.17)

Here, regarding the y invariance of the boundary mean val-
ues (e*’bd’(r))bry, we have set y=0 for simplicity. Thus the
particle number density (3.4) and the charge density (3.5)
read

n(x) = 2 (®P0) 4 (em AN, ], (3.18)

p(x) = 2 (70 —

respectively.

The specific case of Dirichlet boundary conditions in the
semi-infinite sine-Gordon model does not spoil the integra-
bility property of the bulk theory [25]. In passing from the
Lagrangian formulation (3.14a) and (3.14b) to a Hamiltonian
one, contrary to the bulk case, we have two different choices

(P01, (3.19)
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considering either x or y as the Euclidian time.

If y is taken to be the Euclidean time, then the boundary is
in space, and a boundary Hilbert space Hjp is associated to
any time slices {x € (0,%), y=const}. The time evolution is
governed by the Hamiltonian

* 1
H3=f dy[4771'[2+ —(ﬁy¢>)2+21 cos(bop) |,
0 16m

(3.20)

where the boundary condition (3.15) is satisfied. The bound-
ary Hilbert space consists of boundary bound states [35], and
bulk multiparticle states:

AZI(GI)AZZ(GZ) T Azn(9,1)|0>3, (321)
where |0)5 € Hj is the ground state of the Hamiltonian Hy
given by Eq. (3.20). The state (3.21) is interpreted as an
in-state if the rapidities are ordered as 0> 6,>6,>--->6,
and as an out-state in the case of the reverse order 0 <6,
< 6,<---<46, The in-state basis and the out-state basis are
related via the reflection n—n R matrix. This matrix factor-
izes into the product of pairwise scatterings (2.14), and of
Ri’(ﬁ)’s, the individual one-particle reflections A (—6)
— A} (0) (6 positive) off the boundary. Owing to the energy
conservation, R’(6) vanishes if m,# m,. The R amplitudes
were obtained explicitly for the soliton-antisoliton pair in
Ref. [25] and for the breathers in Ref. [42]. We shall need the
Dirichlet R amplitudes for the lowest B, and B, breathers;
with the notation jo:(ﬁ) ERg)(H), one has explicitly

5)5)Z-5)

RYV(6) = (p 3)(7”) 1) (3.22a)
ANEAT /-

and

(@_1_2)(@_1+2)
T 2 2 T 2 2
X ] 1 , (3.22b)
E L
T 2 2)\w 2 2
where we used the symbol
0 imx
Slnh<5+7>
(x)= : (3.23)
) 0 imx
smh(———)
2 2

The reflection amplitudes of breathers have simple poles at
the imaginary rapidity #=im/2. In the particular case of the
first two breathers (3.22a) and (3.22b), one finds that
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- 2
R 19°
RY(6) ~ —S1—

, j=12, 3.24
20— im (3.24)
where the “boundary couplings” g; and g, are extracted in
the form
pr C(pw\ |12
1+ cos ? — sin 7
g1=2 tan(m ,
1—-cos| — | +sin{ —
2 2
(3.25a)
5 tan(m _ M)tan(m . M)
4 2 4 2
82= 12
p pT T  pm
tan(—) tan(—)tan(— + —)
2 4 2
(3.25b)

In the alternative Hamiltonian description one can take x
to be the Euclidean time and associate with any equal-time
section {x=const, y € (—,)} the same Hilbert space H as
in the bulk theory. The Hamiltonian operator is now given by
Eq. (2.8). The boundary at x=0 appears as the initial condi-
tion described by the boundary state |BY e H. In the 1+1
Minkowski space-time, |B) can be written as a superposition
of the bulk asymptotic states (2.13):

o)

5—0 > K™)AL (- 0>A;(0)}|0>.

0 “T(ab)

B) = exp{ > 8AN0) +

(3.26)

The amplitude K*’() is related to the reflection matrix as

K(6) = RZ(%T - 0), (3.27)
where a denotes the antiparticle of the particle a (l_?J-:B ).
Ghoshal and Zamolodchikov [25] identified g, with the

boundary coupling g,, but Dorey et al. [36] found in the case
of the Lee-Yang model the relation

g,=g.2. (3.28)

The strong evidence that this formula extends to any bound-
ary (1+1)-dimensional quantum field theory, and in particu-
lar to the sine-Gordon one, was presented later in Ref. [37].

IV. MEAN-FIELD THEORIES
A. The Debye-Hiickel limit

The position-dependent species densities in the electrical
double layer can be evaluated systematically via an expan-
sion in powers of B around the DH high-temperature limit
B—0. The technique is based on a Mayer expansion of the
free energy with series-renormalized bonds between each
couple of field circles; for a detailed description of the
method see Ref. [26].

In the lowest expansion order, the species concentrations
are considered to be constant in the electrolyte region,
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n.(x)=n/2 (x=0). Under this assumption, the renormalized
bond is given by K=K with

K(O)(rl,rz) =- ﬂKo(Krlz) + ﬂKo(KrTZ). (41)

Here, « is the inverse Debye length (2.20), K, is the modified
Bessel function of second kind, r,=|r;—r,] and r},
=|r,—r,|=|r]—r,|. The first correction to the constant spe-
cies densities can be obtained iteratively by inserting the
lowest-order K% into a basic generating formula for the den-
sity profiles, with the result

n.(x) = geXp{iﬂBP - o(x)]+ §K0(2Kx)}. (4.2)

Here, ¢(x) is the electric potential induced by the charge
density p(x) via the Poisson equation (3.6).

Expanding the exponential in Eq. (4.2) to order 83 gives
for the charge density

p(x) = Bnle— e(x)].

Inserting this into Eq. (3.6) and considering the boundary
conditions for the electric potential, one gets

(4.3)

Sepu(x) =— @ exp(- kx), (4.4a)

ppu(x) = Bne exp(— kx), (4.4b)

where the deviation of the electric potential from its bulk
value is defined by Eq. (3.7). The surface DH “image-
charge” opy, defined by the couple of equivalent Egs. (3.9)
and (3.10), is obtained in the form

K@

=—_—. 4.5
ODH o (4.5)
In terms of opy, the relation (4.4a) is written as
27TO'DH
Sepu(x) = exp(— kx). (4.6)

Expanding the exponential in Eq. (4.2) to order B, the
particle number density reads

npy(x) =n+ dnpy(x), dnpy(x) = %KO(ZKX). 4.7)

At large distances x from the wall,

Bn

12
2<i) exp(—2xkx), x—o. (4.8)

dnpp(x) ~ P

Note that this lowest-order relation is independent of ¢.

B. Leading high-temperature correction

The next iteration for n,(x) is obtained by using the DH
density (4.7) in the basic equation for the renormalized bond
K and treating on(x) as a perturbation. Now K=K©+K®),
where K© < 8 is defined by Eq. (4.1) and K" o< 82 is given,
to first order in the density perturbation, by the integral equa-
tion
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K(l)(l'l,l'z) = d2r3 K(O)(rl,r3) 5n(x3)K(0)(r3,r2).

x3>0
(4.9)

Taking also K into account, instead of Eq. (4.2) we have

n.(x)= gexp{ * Bop(x) + §K0(2Kx) + %K(l)(x)} ,

(4.10)

where K (r,r), with r having the coordinate x, is renamed
K" (x). Expanding the exponential in Eq. (4.10) up to order
3%, one obtains

2

o) =~ ool - £ Ky 20, (@11
2
Sn(x) = %Ko(zm + gK“)(x) + %[5@()6)]2
zl’l
+ ?[KO(ZKX)]Z. (4.12)

Inserting the charge density (4.11) into the Poisson equa-
tion (3.6) and considering the B expansion in the form

Be

Op(x) = — e + Tf(KX), (4.13)

the unknown f function is determined by the ordinary differ-
ential equation

J'(x) = f(x) = = €7Ky(2x)

with the zero boundary conditions f(0)=f()=0. In terms of
the 1D Green function

G(x,x") =—e*>sinh(x.)

(4.14)

(4.15)

with x-=min{x,x’} and x-=max{x,x'}, the solution of Eq.
(4.14) reads

flx) = f dx'G(x,x")[- e ¥ Ky(2x")].  (4.16)
0
At large x, f(x) behaves like e[ (7/2)—1]/4. Consequently,

6¢(x)x:m—go[1 —§<72—T— 1)]6_'“, (4.17a)

p(x) ~ Bnqo[l—é(z—l)}e_’“. (4.17b)
¥ 8\2

These formulas provide the pure exponential asymptotic de-

cay of the DH results (4.4a) and (4.4b), in agreement with

the concept of renormalized charge [6-9]. The renormalized

image charge o, is defined in analogy with Eq. (4.6) as

270,

ren

op(x) ~ exp(— kx); (4.18)

—0

note that there is no renormalization of the screening length
«~!in the lowest order of the 8 expansion. The renormalized
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charge has the following weak-coupling expansion:

ﬁ[l - E(f— 1) + 0(32)]. (4.19)

Oren =

e 8\ 2

From Eq. (4.16) one gets that f'(0)=1/2. Combining then
Egs. (3.9) and (4.13), the leading B correction to the surface
“image-charge” (4.5) reads

0=—Q[1 +§+0(32)].
2

; (4.20)

The problem of the number density deviation from its
bulk value, dn(x) given by Eq. (4.12), is more complicated
because the function KV(x) is only defined implicitly as the
solution of the integral equation (4.9). It can be shown after
lengthy algebra that

2

KD (x) ~ f exp(—2kx) as x — oo, (4.21)
Thus, at large distances from the wall,
P,
on(x) ~ ﬂ((pz + —)exp(— 2kx). (4.22)
oo 2 16

Note that this asymptotic behavior differs fundamentally
from, and is superior to, that obtained in the DH limit (4.8).
We conclude that, in contrast to the charge density, the DH
theory does not provide an adequate description of the large-
distance decay of the particle number density to its bulk
value.

C. Nonlinear Poisson-Boltzmann theory

In the nonlinear PB theory, one keeps the deviation of the
electrostatic potential from its bulk value, ¢(x)—¢, in the
exponential form (4.2). The DH expression for the charge
density (4.3) then takes the nonlinear form

p(x) =n sinh{ B¢ - ¢(x)]}. (4.23)
The corresponding Poisson equation
¢"(x) == 27 sinh{B ¢ — @(x) ]} (4.24)

is subject to the obvious boundary conditions ¢(0)=0 and
() =¢. We recall the well-known fact that, with the iden-
tifications ¢y (x)=—4ibgp(x) and z=n/2, the nonlinear PB
equation (4.24) corresponds to the static equation (¢ does
not depend on “time” y) of the “classical” variational treat-
ment of the boundary sine-Gordon action (3.14b),
5Sbry[¢)st(x)]:0~

For the present semi-infinite geometry, the solution of the
nonlinear PB equation (4.24) can be derived explicitly:

2 | 1+e " tanh(Be/4)
S¢(x) =——=In — .
B | 1—e " tanh(Be/4)

(4.25)

At asymptotically large distance x from the wall,
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Sp(x) ~ — %tanh(%)e"“. (4.26)

This behavior is again in full agreement with the idea of

renormalized charge. The renormalized image charge o,
defined by Eq. (4.18), reads

(4.27)

In the B— 0 limit and for a finite ¢, the DH result (4.5) is
reproduced as it should be. On the other hand, the leading 8
correction to the DH result in Eq. (4.19) is not reproduced at
this level. We shall show in the next section that the nonlin-
ear formula (4.27) describes correctly the scaling regime of
limits 8— 0 and ¢— ¢ with the product B¢ being finite.

The surface “image-charge” o, defined by either Eq. (3.9)
or Eq. (3.10), is obtained as follows:

o=— Lsinh<@) .
B3 2

For a nonzero B and in the limit of the infinite o charge,
which is equivalent in view of Eq. (4.28) to the limit
¢— o, the renormalized o, [Eq. (4.27)] saturates at the
finite value

(4.28)

. 2K

Oren=— s (4.29)

More generally, for a nonzero $ and in the limit ¢ — %, Eq.
(4.25) reduces to

2 [ 1 +exp(- KX):| 4.30)

,
d¢ ()= Bln 1 —exp(— kx)
i.e., the electric potential deviation from its bulk value satu-
rates at a finite value in every point of the electrolyte region
x>0, in accordance with the hypothesis of the potential satu-
ration [10]. Note that the potential saturation is a pure non-
linear effect: there is no saturation in the DH relation (4.4a).
The nonlinear PB (“classical” in field theory) equation
arises as the zeroth-order term in a loop expansion of the
grand partition function [43]. While the high-temperature 38
expansion is a perturbative expansion, the loop expansion is
a nonperturbative one. The relations between the two are
described in field theoretical books; see, e.g., Ref. [44].

V.ASYMPTOTIC CHARGE AND NUMBER DENSITY
PROFILES FOR <2

A. Boundary one-point functions: General formalism

Let us consider a general integrable 2D boundary field
theory, defined in the half space x>0 and possessing an
integrable boundary condition at x=0. For the time being,
the spectrum of the corresponding bulk theory is supposed to
contain only one particle of mass m. We aim at calculating
formally the mean values (O(x,0))y, (due to the transla-
tional y invariance, y is set to O for simplicity) of some, as
yet unspecified, local field operator O. As is explained in
Sec. III B, in the 1+1 Minkowski x time and y space, the
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boundary condition at x=0 acts as the initial-time condition
described by the boundary state

3= exp{ SAY(0) + f Lo H)A*(G)} 0)
w

0
(5.1)
which belongs to the bulk Hilbert space H. Thus
(0|O(x,0)|B)
Ox,0 = 5.2
(O(x,0))bry 0lB) (5.2)

note that the normalization is (0|B)=1.

A systematic expansion for the one-point function (5.2)
can be obtained by using a complete system of the bulk
n-particle states {|n)} forming H as follows:

(0|0(x,0)|B) = 22 (0|O(x,0)[n)(n|B).

n=0

(5.3)
In the rapidity representation, this formula reads

(0|O(x,0)|B) = (0|O(x,0)|0) + f g(ol(’)(x,o)l 0)(6|B)

T de, (T de

+ f o f 5, 01000161, 6:X61,6,/B)
2 ) g, 2

+.-.

, (5.4)

where |6)=A*(6)|0), |6,,6,)=A"(6,)A*(6,)|0), etc.

The matrix elements (6|B), (6,, 6,|B), etc., which depend
on the given boundary condition, can be calculated by using
the explicit form of the boundary state (5.1). The normaliza-
tion condition for the two-particle scattering

A(0))A™(6,) =2m8(0, — 6,) + S(6, - 6,)A™(6,)A(6,)
(5.5)

implies that

(61B) = (0|A(0)B) = ‘;—’2775(9). (5.6)

Analogously, we have

(6,.6,|B) = (0|A(6,)A(6,)B)

- Jm 90 k(o) 2m2s(6,+ 056 - 6). (5.7)
0 2m

and so on.

The matrix elements (0|O(x,0)|6), (0|O(x,0)|6;, 6,), etc.,
which do not depend on the given boundary condition, are
known as the bulk multiparticle form factors. Their x depen-
dence can be factorized out by means of a translation on the
operator O(x,0) [21]:

(0|O(x,0)|6) = e7mx cosh O | (5.8a)
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(0]O(x,0)[6;, 6y) = emcosh ek BIF, (6, — ),
(5.8b)

and so on. The bulk form factors F;=(0|0(0,0)|6),
F,(6,-6,)=(0]0(0,0)|6,, 6,), etc. can be obtained explicitly
in an axiomatic way, similarly to the case of the two-particle
scattering S matrix.

Finally, using the formulas (5.6), (5.7), (5.8a), and (5.8b)
in the expansion (5.4), the form-factor representation of the
one-point function reads

(O(5.0)ry = (0001, 0[0) + S Fre ™

“de o8
+ f _K( 0)F2(_ 20)6—2mx cosh 6 + O(e—3mx) )
0 2T

(5.9)

This formula is particularly useful for large distances x from
the wall since it provides a systematic large-distance expan-
sion. The first term is nothing but the bulk expectation value
of the operator O, (O), which is indeed dominant in the limit
x—oo, The leading correction term comes from the one-
particle state, with the particle mass m playing the role of the
inverse correlation length. The next-to-leading correction
term decays at large x as exp(—2mx) multiplied by an
inverse-power of mx, and so on.

The extension of the formula (5.9) to general integrable
2D field theories with many-particle spectrum {a} is straight-
forward. We only write down the final result:

(O 0y = (0) + X B2

“do
+ f “v 2 Kab(ﬁ)F(zab)(— 20)6—2max cosh @
0 “T (ap)

mg=mp,

+ e (5.10)

B. Electrical double layer

Since the number (3.18) and the charge (3.19) density
profiles are determined by the boundary mean values of the
exponential field, (¢'?® ¢(x’0))bry (g==1), the operator of inter-
est is

O,(x,0) = exp{igb¢(x,0)},

In the spectrum of the 2D bulk sine-Gordon theory, the
first two lightest neutral particles are the B, and B, breathers
with the corresponding masses [see Eq. (2.11)]

g=+1. (5.11)

m,=2M sin(%), p<1, (5.12a)

1
p<—. (5.12b)

my =2M sin(mp), 5

The mass m,<2m,, the equality taking place in the DH limit
p—0. Consequently, when applying the large-x expansion
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(5.10) to the boundary sine-Gordon theory with Dirichlet
boundary conditions (3.15), we have to consider the follow-
ing leading terms:

g —nx g —hniHX
(0,5, 0)ry =(O) + TF @)™+ 2 F P (g)e™
+f ﬁK“(@)F(ZH)(—2(9;q)€_2mlx cosh 6

0 2w

+ oo (5.13)

Here, the boundary couplings g, and g, are given by
Egs. (3.25a) and (3.25b), respectively, and K''(6)
=Rg)((i 7/2)— 6) where the reflection amplitude Rg) is given
by Eq. (3.22a).

Our preliminary task is to write down the bulk form fac-
tors in Eq. (5.13) for the exponential operator (5.11). We start
with the B; form factors which have been obtained in Ref.

[22]. The one-particle B, form factor reads
F(g) =—igh(e'"?), q= =1, (5.14)

where the parameter \ is defined by

p A pm\ |2 PTodt t
N=2cos| — || 2 sin| — exp| — — .
2 2 o 2msint
(5.135)
The two B;-breathers form factor reads
F(8:9) == NROE, g= =1,  (5.16)

where the function R(6) is given on the interval —27+pr
<Im(6) <-pm by the integral

B “ dr sinh()sinh(pr)sinh[(1 + p)1]
R(6)= NeXp{ SJ . 1 sinh?(27)

-]}

(5.17a)

“ dt sinh(f)sinh(pf)sinh[ (1 + p)t]
N=expi4| — — )
0o ! sinh~(2¢)
(5.17b)
This function satisfies a useful relation,
sinh( 6
R(OR(O%im) = (6) (5.18)

sinh(6) ¥ i sin(pmr)’

which, together with R(—60)=S5,,(6)R(6), enables one to ex-
tend the definition of R(6) to arbitrary values of Im(6). (Here
S,1 denotes the BB, scattering matrix, see below). The
evaluation of the one-particle B, form factor can be based on
a bootstrap procedure [21]. Namely, since the B, breather is
a bound state of the two B, breathers (i.e., the B;B; scatter-
ing matrix has the B, pole), the one-particle B, form factor
can be calculated from the two-particle B, form factor (5.16)
as follows [21]:
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ipm+ € ipm+ €

FF(lz)(q)=—irese:()F(z“)(t9+ P 0-L ;q),
2 2

(5.19)

where I is related to the residue of the B, pole in the BB,
scattering as follows:

- res&:ipﬂsll(a) =12
Explicitly, one has [17]

(5.20)

sinh(6) + i sin(p )

S1,(6) = I'=+2tan(pm).

sinh(6) — i sin(pm)’
(5.21)

The one-particle B, form factor thus reads

tan(p) } 172
2 Rlim(1+p)]

ﬁ%w=—V[ (%),

(5.22)

With regard to the bulk neutrality condition (e??)
=(¢~?), under the transformation ¢— —¢ the form factor
F(ll)(q) changes the sign, F(]l)(+1)=—F(ll)(—l), while the form
factors F(zll)(ﬁ;q) [Eq. (5.16)] and F(lz)(q) [Eq. (5.22)] are
unchanged, F(zm(ﬁ; + 1):F(2“)(0;—1) and F(lz)(+1)=F(12)(—1).
Consequently, as is clear from the definitions (3.18) and
(3.19), within the series representation (5.13), the term with
F (11) contributes to the charge density p while the terms with

F (211) and F (12) contribute to the particle number density 7.

C. Asymptotic charge profile

The asymptotic large-x behavior of the charge density is
obtained in the form

P(x)x:wZH \/@{1 + cos(%T) - sin(%7>:|

PTdr ot
X exp(— f ——)tanh(pgo)exp(— mx),

o 2msint
(5.23)

where p=pB/(4—B) and the mass m; of the lightest B,
breather, given by the relations (2.19) and (2.20), is the
renormalized inverse screening length. The formula (5.23)
applies to the whole stability region <2 which is simulta-
neously the region of the existence of the B breather in the
particle spectrum of the sine-Gordon model. With respect to
the Poisson Eq. (3.6), the deviation of the induced electro-
static potential from its bulk value (3.7) behaves at large x as
5<p(x)~x_m—2ﬂ'p(x)/mf. We conclude that the pure expo-
nential asymptotic decay of the DH results (4.4a) and (4.4b),
taken with the renormalization of the inverse screening
length k— my, is recovered. This means that the concept of
renormalized charge, which is meaningful only if it is intro-
duced with the renormalization of the (inverse) screening
length, is applicable to the present model. The renormalized
image charge o, defined by Eq. (4.18) with the replace-
ment k—my, 1S given by
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pm (pW> . (pW)
——— | 1 + cos| — | —sin| —
2s1n(p77/2){ 2 2

PTdr ¢t
X exp| - —— |tanh(p¢).
o 2msint

It can be readily verified that the B expansion (4.19) is re-
produced by this formula. In the limits 8— 0 and ¢ — ¢ such
that the product Be is finite, Eq. (5.24) reduces to the result
(4.27) of the nonlinear PB theory which is therefore adequate
in such regime. For a given f3, increasing the potential dif-
ference ¢ to infinity, o, saturates monotonically at the finite
value

« K pw p (pm
Oen=—"—"\|T—"—= 1+c0s<—>—sm(—)
7B NV 2 sin(pm/2) 2 2

( f’”’ dr t )
X exp| — o .|
o 2msint

in agreement with the saturation hypothesis.

K
Oren = — W_B

(5.24)

(5.25)

D. Asymptotic number density profile

The asymptotic large-x behavior of the particle number
density n(x) is a more complicated topic. For the density
deviation from its bulk value dn(x)=n(x)—n, the form-factor
asymptotic expansion (5.13) gives

n(x) ~ n@x) + n'"(x), (5.26)
where the B,-breather term reads
tan(pm) |2
S 2)(y) = — E)\Z |: :| _
W) == INgo| T | el m)
(5.27)

with g, given by Eq. (3.25b) taken at 7=i2¢, and the BB,
integral term reads

“de
" (x) = f — x(@)e~2mx cosh 0 (5.28a)
0 W

1
x(6) =— Ensz' Y(O)R(6). (5.28b)
The presence of the B, term is restricted to p<<1/2
(B<4/3), the BB, is present in the whole stability region
p<1(B<2).As soon as B (or, equivalently, p) has a strictly
nonzero value, it can be shown from Eq. (5.28a) and (5.28b)
that
e—2m1x
" (x) « —— at large x,

/

\Vmyx

(5.29)

with 2m>m, for any $>0. The B;B; term thus becomes
subleading in Eq. (5.26), while the B, term (5.27) dominates:

on(x) ~ mP(x), B>0. (5.30)

—

As concerns the S—0 limit, considering R(im)——1,
N—2\pm, g, —8\2p/m[?+(m2/16)], p—pB/4, and

PHYSICAL REVIEW E 72, 061503 (2005)

m,— 2k in Eq. (5.27) leads to the expression

n@(x) = an((pz + %)exp(— 2kx) + 0(B), (5.31)
which is twice larger than the expected result (4.22) of the
systematic B expansion. This means that the formula (5.30)
does not reflect adequately the expansion of the asymptotic
én(x) around the B=0 point. The reason for this inconsis-
tency consists in the fact that, in the limit p — 0, besides the
important equality of inverse correlation lengths m,=2m;
=2k, the value of x(6) as well as of all its derivatives go to
infinity at #=0. As a consequence, also the B;B; term
(5.28a), which is subleading for a strictly nonzero 3, contrib-
utes to the leading order of the pure-exponential large-x be-
havior [see the relation (5.35) below]. It is important to add
that if we would be able to perform all 8 orders of the large-
x decay of &n"V(x), we should arrive at the exact asymptotic
behavior (5.29), valid for 8> 0, which is no longer purely
exponential. This mathematical technicality was observed in
the study of finite-size effects for the (1+1)-dimensional
sine-Gordon theory defined on a strip with Dirichlet-type
boundary conditions [37]; the next analysis follows a regu-
larization procedure presented in Ref. [37]. The dangerous
singularity of y(6), at 6=0 in the limit p— 0, can be isolated
from x(6) in the following way:

cosh 0+ cos(pm/2)

0) = 0), 5.32
X0 cosh ﬁ—cos(pﬂ'/Z)XO( ) ( )
where x,(6) is a regular function of # around 6=0:
4 62
X0(0) = x0(0) + X'o(0) 7 + -+ (5.33)

Here, x,(0) corresponds to the classical treatment, x”((0) to
the first quantum correction, etc. Within the regularized form
(5.32) complemented by the regular expansion (5.33), the
evaluation of the B;B, integral (5.28a) can be carried out in
close analogy with Ref. [37]. In particular, for very large x
and small p, one uses the results of Ref. [37]:

“ dfcosh 0+ cos(pm/2) cos(pm/2) ,

—2mx cosh 6 __

o 7 cosh 68— cos(pm/2) x—w Sin(pr/4) ¢
(5.34a)
Similarly, one can derive that
“dfcosh 0+ cos(pm/2) O, s
o 7 cosh 8—cos(pm/2) 2
~2 sin<’£)cos(m>e-2mx, (5.34b)
X 4 2

Regarding the explicit forms of x,(0) and x”((0), the result

for the BB, integral is such that
oon'"(x) 1
lim

i ) = 2 (5.35)

In view of relation (5.31), the sum in Eq. (5.26) thus repro-
duces the needed result (4.22). To conclude, the small B
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expansion around the B8=0 point of the asymptotic number
density profile involves artificial contributions from the BB,
integral term, this term being totally absent at a strictly non-
zero (possibly very small) value of B. In other words, the
small-8 expansion of the asymptotic density profile, when
truncated at some finite 8 order, does not reflect adequately
the asymptotic density profile at a nonzero value of 8. From
this point of view, the DH results for number density profiles
have to be taken with caution also for other boundary Cou-
lomb systems.

VI. FREE-FERMION g=2 POINT

For the sake of completeness, we summarize in view of
the subjects of present interest the exact results for the 2D
electrical double layer at the free-fermion S=2 point of the
Thirring representation of the Coulomb gas [14]. The exact
solution for the species density profiles at an arbitrary dis-
tance x>0 from the ideal-conductor wall reads

n,(x) - _——f dl[ 7:

X exp(—2kx),

K1 exp(xBe) +m
m cosh(Bo) + k;

(6.1)

where m=2mz is the rescaled fugacity (equal to the soliton
mass M, see formula (2.17) taken at h>=1/2 and p=1), k,
=(m*+1%)"? and n,=n/2 are the bulk densities regularized
by considering a hard-core repulsion around each particle.
The short-distance limit of Eq. (6.1),

ny(x) ~ == as x — 0, (6.2)
2x

is of the expected form (3.12). The charge density, calculated
from Eq. (6.1), implies via the Poisson equation the follow-
ing deviation of the electrostatic potential from its bulk

value:
Sep(x) = J‘” dlL
o= o 2K;mcosh(2¢) + k;

m sinh(2
#exp(— 2Kx).

(6.3)

At asymptotically large distances from the wall,

dp(x) ~

X—®

1 -\ 12
— —tanh <p<—> exp(— 2mx). (6.4)
4 mx

This asymptotic behavior differs fundamentally from the
purely exponential DH prediction (4.4a). The concept of
renormalized charge is therefore not applicable at the free
fermion point. The reason for the fundamental difference is
obvious. The lightest B; breather disappears from the particle
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spectrum of the sine-Gordon model just at the free-fermion
point B=2, and the asymptotic behavior of d¢(x) starts to be
governed by the soliton-antisoliton pair. Since m;—2M
(=2m) as B—2, the particle mass in the exponential decay
on the right-hand side of Eq. (6.4) is a continuous function of
[ at B=2. On the other hand, the position-dependent prefac-
tor (mx)~"? in the formula (6.4), determined by the form
factor of the soliton-antisoliton pair, has no “continuous”
analog in the leading asymptotic behavior of S¢(x) inside the
stability region S8<<2. The basic qualitative features of the
results at the B=2 point are expected to be present also for
B>2, up to the Kosterlitz-Thouless point S=4 where the 2D
sine-Gordon theory ceases to be massive.
In the limit ¢— 0, Sp(x) of Eq. (6.3) saturates at

; 1

op (x)=-— EKO(me). (6.5)
This function is finite in the whole electrolyte region x>0,
which confirms the validity of the hypothesis of the electric

potential saturation [10].

VII. CONCLUSION

The main aim of this paper was to test basic concepts
used in the theory of highly asymmetric Coulomb fluids on
the exact solution of a 2D electrical double layer. This model
is mappable onto the 2D semi-infinite sine-Gordon field
theory with Dirichlet boundary conditions which do not
break the integrability property of the bulk sine-Gordon
model with the known particle spectrum. At large distances
from model’s interface, the induced electric potential has the
pure exponential decay for small enough inverse tempera-
tures (couplings) B<2, including the DH 8— 0 limit. This
fact confirms the adequacy of the concept of renormalized
charge for weak couplings. In the extreme case of an infinite
potential difference between model’s interface and the bulk
interior of the electrolyte, the renormalized charge saturates
at a finite value which is in agreement with the saturation
hypothesis. Although the exact 2D results are not directly
applicable to three dimensions, the presented verification of
the basic concepts in two dimensions supports their general
validity.
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