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Cohesive granular media flowing down an inclined plane are studied by discrete element simulations.
Previous work on cohesionless granular media demonstrated that within the steady flow regime where gravi-
tational energy is balanced by dissipation arising from intergrain forces, the velocity profile in the flow
direction scales with depth in a manner consistent with the predictions of Bagnold. Here we demonstrate that
this Bagnold scaling does not hold for the analogous steady flows in cohesive granular media. We develop a
generalization of the Bagnold constitutive relation to account for our observation and speculate as to the
underlying physical mechanisms responsible for the different constitutive laws for cohesive and noncohesive
granular media.
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I. INTRODUCTION

One of the central questions in the study of granular flows
is how to determine the relationship between the microphys-
ics of grain interactions and the collective or macroscopic
flow properties of the system. Elucidating these flow proper-
ties is of fundamental importance to a variety of fields rang-
ing from civil engineering to geophysics �1�. Moreover, this
question remains at the forefront of many-body physics as its
solution appears to demand entirely new concepts that are
applicable to systems driven far from equilibrium.

In this paper we explore the velocity field in steadily
flowing granular media in the chute geometry—an inclined
plane having a rough surface at its base and a free surface at
the top. Such flows have been previously characterized both
experimentally �2–9� and via simulation �10–16�. In this
work we address, through large-scale discrete element simu-
lations, the change in the flow field in the material as a func-
tion of interparticle adhesion. We present a modified consti-
tutive law relating shear stress within the bulk to the local
gradients in the velocity field and discuss the implications of
our proposed continuum description of the material. In addi-
tion we observe the formation of a plug flow regime in the
cohesive slab extending from the free surface at the top of
the slab into the bulk. The depth of this plug flow regime can
be calculated from a comparison of the yield stress of the
cohesive material to depth-dependent shear stress due to the
weight of the slab.

The study of cohesive granular media is necessary for the
application of granular physics to the behavior of such ma-
terials in their geophysical context, i.e., the dynamics of
landslides, snow avalanches, and even the lunar regolith. In
the former examples, a small aqueous wetting layer on the
particles forms menisci at intergrain contacts to produce an
adhesive force. In the latter case, high-vacuum conditions
facilitate close contacts between particles leading to interpar-
ticle adhesion due to van der Waals interactions. The study of
cohesive granular materials also helps to elucidate funda-
mental questions concerning the physical description of this
state of matter. One aspect of granular materials that differ-

entiates them from random elastic solids or liquids is that a
cohesionless granular system cannot support tensile stresses.
By observing the quantitative effect of known cohesive
forces upon granular flows, one should be able to bridge
between the better understood elastic solids and/or viscous
liquids and granular materials, which, by comparison, remain
rather mysterious. The change in the stress-strain relation
due to internal cohesion also provides insight into the rheol-
ogy of cohesionless granular matter. We discuss this further
below.

In the study of granular mechanics it is clearly desirable
to develop a continuum description of flow since calculating
the detailed dynamics of numerous intergrain collisions rap-
idly becomes intractable with increasing numbers of such
particles. In addition one expects, based on experience with
the continuum mechanics of solids, liquids, and gases, to be
able to develop a set of relations between macroscopic aver-
aged observables such as the velocity field v��x�, mass den-
sity ��x�, and stress tensor ����x� within the steadily flowing
granular material where details of the grain interactions enter
through a small set of parameters �17–19�. Such a constitu-
tive relation between the stress state in the material and its
rate of deformation taken together with momentum conser-
vation completely determines the flow properties of the
granular system assuming the boundary conditions on the
flow are sufficiently well known. There are now a number of
such hydrodynamic descriptions of granular flow which seek
to derive such constitutive equations from a more micro-
scopic theory �17,20�. There are a variety of such models that
rely on arguments based on effective viscosities �21–23�,
transient force chains �24�, or a superposition of a rate-
dependent contribution arising from collisional interactions
and a rate-independent part related to enduring frictional
contacts among the grains �25�.

A well-known proposal by Bagnold �26� for such a con-
stitutive relation for granular flows is that the shear stress in
the flow is proportional to the instantaneous square of the
rate of strain tensor and that the density is constant through-
out the material. Taking �as we do throughout this work� a
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coordinate system where the x axis is directed in the flow
direction and the z axis as the upward normal to the inclined
plane, the Bagnold relation is

�xz = ���zvx�2, �1�

where � is a constant having the dimensions of M /L. One
can reduce the supporting argument for Eq. �1� to dimen-
sional analysis; in the flowing granular system the one en-
ergy density available is the kinetic energy of the grains
themselves ��v2. As long as the local mass density remains
constant, Galilean invariance requires the shear stress to be
proportional to the square of the velocity difference across
the sample. The further assumption that the relationship be-
tween stress and the rate of strain is local produces Eq. �1�. A
simple heuristic argument to derive the scaling relation
shown in Eq. �1� and attributed to Bagnold is as follows: the
transport in the gradient direction �ẑ� of the component of
momentum parallel to the velocity direction �x̂� occurs only
through collisions between grains. The rate of those colli-
sions depends on the average velocity difference between
grains at different locations along the gradient direction
�a�zvx where a is the grain radius. The momentum transfer
per collision also scales linearly with the velocity difference
leading to �xz�m�a�zvx�2 where m is the mass of a single
grain.

It is instructive to compare the above argument to the
standard expression for the viscosity of a gas as determined
by kinetic theory. In that case the rate of intermolecular col-
lisions is controlled by the root mean square velocity of the
gas molecules that is fixed by the equipartition theorem.
Thus the viscosity of the gas is proportional to the square
root of temperature. The granular system is effectively at
zero temperature so that the random particle velocities are
driven themselves by the macroscopic velocity scale making
the effective granular viscosity as extracted from Eq. �1� de-
pend on shear rate.

In the remainder of this paper we first discuss the simu-
lation method in Sec. II before turning to a discussion of our
numerical results and calculations in Sec. III. In that section
we discuss the effect of intergrain adhesion on the validity of
the Bagnold constitutive law. We then conclude in Sec. IV.

II. SIMULATION METHOD

We performed discrete element simulations on a three-
dimensional system of N monodisperse particles of mass m
and diameter d on a rough base tilted an angle � with respect
to gravity. Our simulations volume is a rectangular box with
periodic boundary conditions in both the x and y directions, a
rough base, and an open top. The rough base is created by
taking a slice through a previously random close packed state
of particles with the same diameter d. We define the z axis to
be normal to the base and the x axis as the direction of flow.
We study a system of length 40d and width 10d. We studied
three granular slabs of differing heights H, containing
42 000, 83 000, and 125 000 particles, respectively. We refer
to these three systems by their approximate height, namely
H=100d, 200d, and 300d. We show an example of a cohe-
sive granular material in the steadily flowing state in Fig. 1
for H=300d.

We employ a modified version of the model developed by
Cundall and Strack �27� to model cohesionless particulates.
The model uses Hookean contacts to model grain to grain
interactions. We add a cohesive force between particles to

FIG. 1. �Color online� A representative example of the flowing
granular slab of height H=300 and A=0.8. Particles are colored by
magnitude of vx, from slowest to fastest. The cohesive granular slab
separates into a solidlike plug sliding upon a flowing granular bed.
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simulate damp granular media. Two contacting spheres i and
j with positions ri and r j are separated by rij =ri−r j, the
compression is then �ij =d− �rij�. The relative velocity is vij
=vi−v j which can be separated into normal and tangential
components,

vnij
= �vij · nij�nij , �2�

vtij
= vij − vnij

−
1

2
��i + � j� 	 rij . �3�

The normal and tangential forces acting on particle i due to
particle j can then be written as

Fnij
= �kn�ijnij −

m

2

nvnij

� + Fij
c ��ij� , �4�

Ftij
= �− ktutij

−
m

2

tvtij� , �5�

where kn ,kt and 
n ,
t are the elastic and viscoelastic con-
stants for interparticle motion along �n� and normal to the
line of centers �t�. utij

is the elastic tangential displacement
that is set equal to zero at the initiation of contact and is
truncated to satisfy the Coulomb yield criterion, �Ftij

�
�� �Fnij

�. The additional normal force Fij
c ��ij�, is the cohe-

sive normal force between particles i and j. This normal
force is derived from an effective cohesive potential acting
on particle i due to particle j. We simply choose a Gaussian
well centered around particle j,

Uij
c = − Ae−�ij

2 /�2
, �6�

where A is the strength of the attraction �in units of mgd� and
� is the width of the well. The force is then Fij

c =−�Uij
c . We

focus on 0.0
A
1.0, where A=1.0 corresponds to a force
capable of supporting 85 particles under gravity. While this
form of the cohesive potential cannot be justified in terms of
details of either van der Waals or wetting-layer mediated
interparticle interactions, we choose this form so that we can
vary the strength of the interparticle cohesion via the well
depth A while maintaining the short-range nature of the in-
teraction, which is controlled by �. There are several reason-
able choices for the shape of the cohesive well �28�, ours
captures the essential features of more physical adhesion sce-
narios and we expect that the effects of cohesive interaction
as modeled here, to accurately reflect the behavior of experi-
mentally accessible cohesive granular media.

Most of the simulations were run with kn=2
	105�mg /d�, kt=

2
7kn, 
n=50�−1, and 
t=0, where �=	d /g.

For the case of Hookean springs used here, these parameters
give a coefficent of restitution en=0.88 force normal colli-
sions. The normal spring constant kn is large enough to mini-
mize the overlap between particles but small enough to be
computationally efficient. Previous simulations for cohesion-
less grains �14� found that this value of kn provides results
similiar to those for larger values of kn. However, we do find
a subtle dependence of the flow rheology upon the value of
kn which we explore later in this paper. For the coefficent of
friction, we use �=0.5, which is typical for the types of

materials we are modeling. The normal damping term oper-
ates only when the particles are in actual contact so that, in a
narrow window of interparticle separations d�r�d+�,
these particles will experience a cohesive force without the
velocity dependent damping. Interpreted in terms of action of
interparticle wetting layers, this suggests that we discount
dissipative hydrodynamics in the wetting layer over micro-
scopic plastic deformation in the particle themselves. We ex-
pect that such hydrodynamic effects modify the effective
value of 
n as well as the interparticle separation over which
it operates, but we have not attempted to model this particu-
lar cohesion scenario in detail.

In a gravitational field g, the total force on a particle from
Eqs. �4�–�6� is

Fi
tot = mig + 


j

�Fnij
+ Ftij

+ Fij
c � , �7�

where the sum is over neighboring particles.
The stress tensor within a volume V is computed by sum-

ming over both the contact and kinetic terms of each particle
within that volume,

��� =
1

V



i
�


i�j

rij
�Fij

�

2
+ mi�vi

� − v���vi
� − v��� , �8�

where Fij
� =Ftij

� +Fnij

� +Fij
c� and v̄ is the time-averaged velocity

of the particles in V.
The time step for the integration of the equations of mo-

tion is �t=10−4�. After equilibration the systems were typi-
cally run between 1 and 5	107 time steps. Steady state was
determined using the total kinetic energy of the system as a
criterion for suitable equilibration of each sample.

III. RESULTS

In chute flow there are three qualitatively distinct regimes
determined by the height of the slab H, the inclination angle
� of the lower surface with respect to the direction of gravity
�6,14�, and the intergrain cohesive stresses determined in our
model by A—see Eq. �6�. For small enough inclination
angles �i.e., below the maximum critical angle� or alterna-
tively for short and/or cohesive slabs, the granular heap is
stationary. Below the angle of repose for a given slab height
and cohesive energy, transiently flowing states of the slab
dissipate energy more rapidly than the input of gravitational
potential energy so that the slab stops. We refer to this as the
no flow regime. At much larger angles, on the other hand, the
energy dissipation with the slab is less than the gravitational
energy input so that the slab continuously accelerates down
the plane. We refer to the parameter space exhibiting this
behavior as the unstable regime. At angles intermediate be-
tween these two regimes for a given cohesive energy and
slab height, we observe steady-state flows. In this work we
concentrate primarily on such steady-state behavior in slabs
of the largest height H=300d. The phase diagram spanned by
the cohesion parameter A and the inclination angle of the
slab � for this system shown in Fig. 2. In this work we
investigate the steady-state flowing regime after transient be-
havior associated with the initiation of flow have decayed.
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The onset of such steady-state behavior is determined by
observing the total kinetic energy of the system.

A. Plug flow

In Fig. 3�a�we plot the velocity in the flow direction vs
height from the bottom of the slab �z� for a range of values of
the cohesive energy A. In each case the inclination angle is
�=22°. One of the central results of this work is immediately
evident in these figures. For nonzero values of the intergrain
cohesive energy A, the velocity plateaus at a finite fraction of
the height of the slab. The granular material has, in effect,
phase separated into a liquidlike flowing region and a solid-
like region that does not admit a nonzero rate of the shear
strain. We refer to this behavior near the free surface as plug
flow and the solidlike region as the plug. It is clear from this
figure that the thickness of the plug depends on the cohesive
energy A. Figure 3�b� shows the dependence on the plug
thickness at fixed A on the inclination angle �. Finally, Fig.
3�c� demonstrates that the thickness of the plug is indepen-
dent of the total height of the slab as long as the material
remains in the flowing state for that slab height. Therein the
granular velocity down the chute for three slabs of heights
H=100d, 200d, and 300d is plotted as a function of the depth
from the free surface for an inclination angle of �=22° and
A=0.8.

The development of the plug in steady state is signalled
not only by the appearance of the velocity plateau, but also
by the development of the localized jump in the particle
volume fraction with height. The flowing material below due
to shear dilatancy is generically at a lower volume fraction,
while the plug is denser. Typically this volume fraction
change is on the order of 4% and occurs over a height range
of 4–10 particle diameters. We use this abrupt change in the
particle volume fraction with height to more precisely deter-
mine the interface between the flowing and plug regimes.
The inset of Fig. 4 shows a typical example of this volume
fraction change at the plug boundary.

To interpret these observations, we propose that the cohe-
sive granular material can support a finite yield stress �c
before flowing. Since shear flow requires dilatancy, the criti-
cal yield stress should be equal to the typical cohesive stress

in the pile. We estimate the maximal value of this cohesive
stress as follows. We assume all contacts provide some av-
erage adhesive force and then calculate the mean number of
such interparticle contacts per unit cross-sectional area nc in
terms of the volume fraction of the particles �. The yield
stress is then estimated as the product of the average adhe-
sive force per contact and nc. To determine the average ad-

hesive force per contact f̄ , we assume that the interparticle
separations at each contact are randomly distributed within
the attractive potential well between d and d+�. Using this
assumption we find that the mean magnitude of the adhesive
force is given by

FIG. 2. Phase diagram for chute flow of a fixed height granular
slab. The diagram is spanned by the tilt angle � and strength of
cohesion A. There exist three well defined regions corresponding to
no flow, stable flow, and unstable flow. Lines are drawn to seperate
the regions.

FIG. 3. Velocity profiles as a function of z. In all three figures
the velocity is measured in units of v0=	gd. In �a� profiles are
shown for different values of A with �=22°, H=300d. In �b� veloc-
ity profiles for different values of the tilt angle � with A=0.6, H
=300d. And �c� the velocity profile as a function of the depth from
the free surface for differing slab heights H with A=0.6, �=22°. For
H=100d, only a stopped plug is observed as H is similar to the size
of the plug w. In each profile two distinct regions are visible, a
flowing state at depth and a plug flow of varying thicknesses at the
free surface. For the noncohesive case A=0.0 the plug size
vanishes.
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f̄ =
�U�0� − U����

�
, �9�

in terms of the potential U defined in Eq. �6�. From Eq. �9�
and nc=3� / �2�a2� we find that the yield stress is

�c =
3� f̄

2�a2 . �10�

We determine the thickness of the plug w by equating the
shear stress in the slab due to the weight of the overlying
material to this yield stress. We find the thickness of the plug
is

w =
A

� sin �
� e − 1

e
� , �11�

where e is the base of the natural logarithm. To test this
proposal we plot in Fig. 4 the calculated plug from Eq. �11�
with that measured by the particle density change at the plug
boundary.

Over the parameter range tested, the calculated thickness
of the plug is in reasonable agreement with the data. Clearly
the linear dependence of the plug size on the cohesive energy
is supported by the data. Precise tests of the 1/sin � depen-
dence of the plug thickness, on the other hand, are difficult
due to the limited range of available angles for which the
slab exhibits steady-state flow. Our calculation of the slope
of the theoretical curve must be treated as an upper bound as
it is based on the assumption that all interparticle contacts
generate some attractive force. Due to jamming in disordered
sphere packings, it is reasonable to suppose that at least some
contacts have interparticle spacings less than d and are there-
fore repulsive in nature. Such contacts between jammed
spheres reduce the effective yield stress.

B. Testing Bagnold scaling

From the Bagnold conjecture, Eq. �1�, for the constitutive
relation in the flowing granular state, one may immediately
determine the flow profile down the chute. The resulting ve-
locity profile takes the form

vx�z� = 2	H3�g sin �

9�
�1 − �H − z

H
�3/2� . �12�

In the Appendix we derive this velocity profile for the case of
a free surface at the top of the flowing medium, i.e., no plug
as well as the analogous velocity profile for the case of a
finite shear stress applied to the top of the flowing state due
to the weight of the plug.

In previous research on cohesionless granular chute flow
�A=0.0�, the down-chute velocity versus height vx�z� has
been reported as being consistent with the Bagnold power-
law form. We also find such apparently reasonable
agreement—see the uppermost curve in Fig. 3�a� In the pres-
ence of cohesion �A�0�, however, the expected Bagnold
velocity profile fits the data poorly. We interpret this failure
of the Bagnold hypothesis as demonstrating a different mode
for vertically transporting �z� down-chute momentum �px�
due to the presence of long-lived contacts in the material.
These long-lived adhesive contacts in the material create
clusters spanning different streamlines in the flow as has
been proposed by Ertaş and Halsey �29�. In the presence of
shearing flow, these forces acting along these clusters of par-
ticles transmit momentum px proportional to the shear rate

̇=�vx /�z. Thus for cohesive granular materials the Bagnold
relation can be generalized to a form that is a sum of terms
that are linear and quadratic in the shear rate. We propose the
modified Bagnold relation

�xz − �c = �� �vx

�z
�2

+ �� �vx

�z
� . �13�

The second of these terms represents the different mode of
momentum transport made possible through the long-lived
contact networks in the material while the first term arises
from the short time scale collisions originally considered by
Bagnold �26�. The constant stress term on the left-hand side
of the above equation is the finite yield stress of the cohesive
material. The above relation applies only in the flowing
states, i.e., for values of the shear stress greater than the yield
stress �c. The constant � is the Bagnold parameter intro-
duced earlier in Eq. �1�, while the second constant �, having
dimensions of a viscosity measures the relative importance
of the long-lived contacts to the transient collisions. Clearly,
this modified constitutive relation leads to a different veloc-
ity profile vx�z� for the material below the plug. In Fig. 5 we
plot two best fits to the velocity profile in the flowing state.
We have chosen data corresponding to A=0.8, �=22° that
shows a typical example of the flow profile in the strongly
cohesive limit. The curve �+� is the fit of the data to the
Bagnold velocity profile where we have used the least-
squares method. Note that one cannot simultaneously fit this
initial slope of the velocity profile and match the curvature of
the data. The modified Bagnold relation gives the best fit to
the data.

FIG. 4. The thickness of the plug w vs the cohesive energy A for
a fixed angle of inclination, �=22°, and pile height, H=300d. The
dashed line shows the plug width prediction from Eq. �11�. The
uncertainties in the plug thickness are determined from the width of
the density jump at the lower boundary of the plug. In �b� is a
sample density plot for A=0.8, note that the plug boundary be-
comes more diffuse for smaller values of A.
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Simply demonstrating a better fit with the modified Bag-
nold form is not, in itself, conclusive evidence of the break-
down of Bagnold scaling as one expects a better fit from a
model with an extra adjustable parameter. To better justify
our conjecture we first examine the dimensionless ratio of
the viscous stress proportional to �
̇ to the Bagnold stress
�
̇2:

� =
�

�
̇
. �14�

For the Bagnold hypothesis, � vanishes. In essence we can
determine the extent of the breakdown of such Bagnold scal-
ing by extracting the fit parameters � ,�, as well as the shear
rate from velocity profiles as shown in Fig. 5 in order to
compute the value of � from our numerical data. This ratio
can be computed for a variety of samples having different tilt
angle and different cohesive energies. In addition the ratio
can be computed at different heights within the flowing layer
of a given sample.

In Fig. 6, we show a plot of � vs A. Examination of this
figure reveals three trends. First, we note that for any height
z within the flowing part of the slab and for any tilt angle �,
� increases with increasing cohesive energy A. The devia-
tion for a purely Bagnold constitutive law as measured by �
increases with height in the slab for all measured angles and
cohesive energies. For a given height in the slab and a given

cohesive energy one finds that � decreases within increasing
tilt angle �.

The increase of � with A for all heights and angles
strongly suggests that the internal cohesion is primarily re-
sponsible for the breakdown of the Bagnold scaling. That the
magnitude of the discrepancy between the observed flows
and those derived from the Bagnold hypothesis depends on
the height within the slab �� vs z at fixed A and �� is con-
sistent with our hypothesis that long-lived contacts cause this
discrepancy. Clearly as one approaches the plug the inter-
grain contacts have extremely long lifetimes and the consti-
tutive relation for the material most greatly deviates from the
Bagnold form. It is reasonable to suppose that in the region
directly below the plug where the gravitational shear stress is
only slightly greater than the yield stress of the material that
there would be the greatest density of long-lived contacts in
the flowing state. Thus one would expect the greatest devia-
tion from Bagnold scaling near the plug. The data clearly
support this; for all tilt angles and cohesive energies � in-
creases with height in the slab. Finally, as the tilt angle is
increased at constant cohesive energy, the total kinetic en-
ergy of the system is increased. The grains, having higher
typical velocities will now have fewer long-lived contacts
and transient forces associated with brief intergrain collisions
will become the more dominant momentum-transfer process
in the material. Thus the effective constituent law will appear
to be closer to the Bagnold form.

It is apparent from Fig. 6 that even in the limit of no
cohesion there remains a significant deviation from the origi-
nal Bagnold constitutive law. This residual discrepancy can
be well accounted for by slight interpenetrability of the par-
ticles in the simulation. The Bagnold constitutive relation
can hold exactly only in the limit of hard sphere particles
�30�. To test this point we have examined cohesionless par-
ticles of varying stiffness kn for H=100d. The data in Fig. 7
shows that the residual deviations from Bagnold behavior of
our cohesionless model granular material can be attributed to
the finite stiffness of the constituent particles.

To more directly test that the breakdown of the Bagnold
constitutive relation is due to the growth of the number of
long-lived contacts in the flowing states with increasing co-
hesive energy we compiled a contact time histogram. We

FIG. 5. �Color online� Velocity profile for A=0.8, �=22° show-
ing the difference in the standard Bagnold fit �+� and the modified
Bagnold fit ���.

FIG. 6. � vs A for �=22° �closed symbols�, 24° �open symbols�
at three different heights in the flowing slab �� for z=H /4, � for
z=H /2, and � for z=3H /4�. � is a measure of the importance of
the linear term in �xz, as A increases so does the importance of this
linear term.

FIG. 7. � vs kn for cohesionless granular flows for H=100d and
�=22°. Note that the Bagnold constitutive law ��=0� desribes the
data better as the stiffness of the particles increases.
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measured the times over which two particles remained in
contact allowing for both rolling and slipping at the contact.
Collecting these data for a few representative runs having
either no cohesion �A=0� or strong cohesion �A=0.8� we
produced two contact time histograms as shown in Fig. 8.
Both histograms reflect the contact times in the horizontal
slice of the slab between 70
z
100 over a period of 10�,
where two particles are said to be in contact as long as their
centers remain within 1.01d. This vertical height was chosen
so that it is entirely contained within the flowing regime of
the cohesive slab. In fact, from our discussion of Fig. 6, we
would expect the largest population of long-lived contacts to
be found in the upper part of the flowing region near the
plug. For the cohesive system studied using the contact time
histogram, we then expect the greatest density of long-time
contacts to occur near z=200. In both samples the most com-
mon contact time is rather short: 0� tcontact
0.01�. This first
bin has been removed for clarity. Comparing the two histo-
grams we note that although there are long-lived contacts in
both the cohesionless and the cohesive granular material, the
number of such contacts is dramatically increased in the co-
hesive case. As discussed above, the presence of long-lived
intergrain contacts in the cohesionless case is at least possi-
bly due to the nonzero compressibility of the particles. The
enhancement of the number of such long-lived contacts, par-
ticularly those having lifetimes greater than �0.3�, with co-
hesion qualitatively supports our hypothesis that such con-
tacts are primarily responsible for the breakdown of Bagnold
scaling in the cohesive granular media. The relationship be-
tween this fraction of long-lived contacts and a quantitative
model for the parameter� will be explored in a future publi-
cation �31�.

IV. SUMMARY

We have studied the effects of cohesion in steady-state
three-dimensional chute flow. Cohesive granular materials
generically form two different flow regimes: a solid region
�the plug� extending below the free surface characterized by
a vanishing shear rate of strain and a flowing region below
the plug. The width of this plug region is independent on
total depth of the slab but dependent on the tilt angle, cohe-

sive energy, the mass density of the granular material, and is
accounted for by postulating the appearance of a finite yield
stress in the material. The value of this yield stress can be
reasonably determined from estimates of the mean cohesive
force within the slab and the mean number of such cohesive
contacts.

We find that in the flowing state below the plug the ve-
locity profile is similar to the Bagnold velocity profile: v
�z3/2. Nevertheless, there remain significant discrepancies
between the observed flow profile and the predicted Bagnold
form. In light of these deviations from the Bagnold form, we
suggest a modified form of the Bagnold constitutive law that
combines two essentially independent methods of momen-
tum transfer in the flowing state. This modified Bagnold re-
lation accounts for the usual collisional momentum transfer
between grains as well as for momentum transfer due to the
cohesive forces acting through the long-term contacts be-
tween grains in the flowing state. This modified profile fits
the data more closely. Extracting from these fits to the data
the ratio of the stress transferred via each method, we find
that this ratio exhibits a few reasonable trends. The effect of
the long-term contacts grow with cohesive energy and within
a single slab as one approaches the plug. This ratio decreases
with larger tilt angles; faster flowing slabs should more effi-
ciently break up any long-lived particle clusters.

To further test this hypothesis we directly measured a con-
tact time histogram within the flowing part of the slab. A
comparison between noncohesive and cohesive systems in-
deed shows a larger number of long-time contacts in the
cohesive system. This result qualitatively supports our hy-
pothesis that these contacts are responsible for the break-
down of the Bagnold constitutive law. To provide a true
quantitative model for the modified Bagnold constitutive law
that we propose it is necessary to calculate from a more
microscopic model the stresses transmitted by these long-
lived contacts. In order to do so we must determine the spa-
tial correlations between such contacts. These contacts may,
in fact, form spatially correlated clusters or chains that span
streamlines in the flow or perhaps represent randomly dis-
tributed pairs of particles �dimers� that remain bound for me-
soscopic periods during the flow. Clearly, at a fixed density
of such long-lived contacts the stress transmission due to
these contacts in the former case would be significantly
larger than in the latter �31�.

Understanding the constitutive relation of cohesive granu-
lar materials is clearly of fundamental importance to the
study of granular flows in a geophysical context as well as to
the handling of granular materials in industry where small
amounts of a wetting fluid create adhesion contacts between
the grains. Interestingly, this work suggests that studying
granular flows in the presence of small amounts of cohesion
allows one to break the expected Bagnold scaling in a con-
trollable and computationally efficient manner. It is clear
from this work and others �14,30� that the nonzero compli-
ance of the grains leads to measurable deviations from the
Bagnold scaling; the Bagnold law holds in the limit of hard
spheres. Studying significantly less compliant grains, how-
ever, is computationally difficult. The further study of cohe-
sive granular materials both analytically and computationally
should enable the exploration of granular constitutive laws

FIG. 8. Contact time histogram within the flowing part of the
slab for cohesive energies A=0.0 �black� and A=0.8 �gray� with tilt
angle �=22°. The shortest contact time bin has been removed for
clarity.
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for physically accessible systems that nearly, but not exactly,
obey the Bagnold constitutive relation.

APPENDIX: DERIVATION OF THE VELOCITY FROM
THE BAGNOLD CONSTITUTIVE LAW

Bagnold scaling is derived from a constitutive relation
between the shear stress and the strain rate,

�xz = �
̇2, �A1�

where 
̇=�vx�z� /�z. The steady-state Cauchy equation for
�xz is

��xz

�z
= �g sin � �A2�

therefore

�xz�z� = �g sin ��H − z� , �A3�

where H is the total height of the slab. Solving for vx�z�
gives the velocity profile shown in Eq. �12� above.

Modified Bagnold scaling is derived from the same con-
stitutive relation used in deriving traditional Bagnold scaling
�Eq. �A1�� with the addition of a linear term in 
̇,

�xz = �
̇2 + �
̇ . �A4�

Solving this with the same Cauchy equation from Eq. �A3�
results in

vx�z� =
2

3c	�

�G2 + cH�3/2 − �G2 + c�H − z��3/2� − Gz ,

�A5�

where c=�g sin � and G=� /2�
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