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A number of results for reactions involving subdiffusive species, all with the same anomalous exponent �,
have recently appeared in the literature and can often be understood in terms of a subordination principle
whereby time t in ordinary diffusion is replaced by t�. However, very few results are known for reactions
involving different species characterized by different anomalous diffusion exponents. Here we study the reac-
tion dynamics of a �sub�diffusive particle surrounded by a sea of �sub�diffusive traps in one dimension. We find
rigorous results for the asymptotic survival probability of the particle in most cases, with the exception of the
case of a particle that diffuses normally while the anomalous diffusion exponent of the traps is smaller than
2/3.
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I. INTRODUCTION

In the traditional version of the trapping problem, a nor-
mal diffusive �Brownian� particle �A� wanders in a medium
doped at random with static traps �B�, and disappears when
they meet, A+B→B. This problem dates back to Smolu-
chowski’s theory of reaction rates at the beginning of last
century, and is one of the most widely investigated and ap-
plied problems of nonequilibrium statistical mechanics
�1–4�. An important variation of the basic trapping problem,
in which a diffusive particle wanders in a medium in which
the traps are also diffusive, has been the subject of intense
research since the seminal work of Toussaint and Wilczek
�5�.

The principal quantity of interest in the trapping problem
is the survival probability P�t� of the A particles. From this
survival probability one is able to calculate essentially all
other quantities of practical interest. Yet this probability is
usually difficult to calculate, and the few instances in which
it has been obtained are considered landmark contributions.
In 1988, Bramson and Lebowitz �6,7� proved rigorously that
the long-time survival probability of a particle diffusing in a
one-dimensional medium doped with diffusive traps decays
as P�t��exp�−�t1/2�, � being an undetermined parameter.
The evaluation of this constant proved elusive for many
years, engendering much confusion and proposed solutions
that were mutually contradictory. Finally, recently Bray and
Blythe �8� proved in a simple and elegant way, assuming the
so-called “Pascal principle” �see below�, that the survival
probability of a diffusing particle with a diffusion coefficient
D� in a d-dimensional medium, with d�2, in which the traps
are also diffusive with diffusion coefficient D, is independent
of D� for long times. They furthermore proved that the sur-
vival probability coincides with that of an immobile target
�D�=0� in the presence of diffusive traps. In particular, in a
one-dimensional medium, P�t��exp�−4��Dt /��1/2�, where
� is the density of traps. Bray and Blythe obtained their
results by calculating an upper and a lower bound for the

survival probability that converge to one another asymptoti-
cally. Some �but not all� of the bounding results of Bray and
Blythe have been extended by Oshanin et al. �9� to systems
where the traps perform a compact exploration of the space,
i.e., where the fractal dimension dw of the trajectories of the
traps is greater than the dimension d of the space.

The Pascal principle states that the best strategy for sur-
vival is for the A particle not to move. This assumption was
adopted in one dimension “without proof” by Bray and
Blythe �8� to calculate an upper bound for the survival prob-
ability for d�2, although it was already proved in �10� in the
context of incoherent exciton quenching. More recently, the
principle was proved by Bray, Majumdar, and Blythe �11�.
Almost simultaneously but slightly earlier, Moreau et al. �12�
proved the Pascal principle for a rather general class of ran-
dom walks on d-dimensional lattices. These latter authors are
responsible for the name now bestowed on the principle.

The purpose of this paper is to extend the procedure and
results of Bray and Blythe �8�, which are valid for a Brown-
ian diffusive particle and Brownian diffusive traps, to situa-
tions in which the particle and traps move subdiffusively.
Anomalous diffusion of a particle is usually characterized by
its mean squared displacement x�t� for large t:

�x2�t�� �
2K�

��1 + ��
t�. �1�

Here K� is the �generalized� diffusion constant and � is the
anomalous diffusion exponent. Ordinary Brownian diffusion
��=1, K1�D� follows Fick’s second law, �x2�t��� t. The
process is called sudiffusive when 0	�	1. Subiffusive pro-
cesses are ubiquitous in nature �13–18�, and are particularly
useful for understanding transport in complex systems
�3,19�.

The problem considered in this paper is a special case of
a broad class of reaction-subdiffusion processes that have
been studied over the past decades. One approach that has
been used to study these processes is based on the continu-
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ous time random walk �CTRW� with waiting-time distribu-
tions between steps that have broad long-time tails and con-
sequently infinite moments, 
�t�� t−1−� for t→� with
0	�	1. Using the CTRW formalism, Blumen et al. �20,21�
considered a variety of reactions, including the trapping
problem A+B�static�→B�static�, the target problem
A�static�+B→B, and the bimolecular reactions A+A→�
and A+B→�. The moving particles were modeled as
continuous-time random walkers with long-tailed waiting-
time densities. Recently, Sung and Silbey �22� have used the
CTRW model to study the dynamics of particles that react at
a boundary. A CTRW approach has also been applied by Seki
et al. �23� to study the kinetics of the recombination reaction
in subdiffusive media.

Another approach is based on the fractional diffusion
equation, which describes the evolution of the probability
density P�x , t� of finding the particle at position x at time t by
means of the fractional partial differential equation �in one
dimension� �13,24�

�

�t
P�x,t� = K�0Dt

1−� �2

�x2 P�x,t� , �2�

where K� is the generalized diffusion coefficient that appears
in Eq. �1�, and 0Dt

1−� is the Riemann-Liouville operator,

0Dt
1−�P�x,t� =

1

����
�

�t
	

0

t

d�
P�x,��

�t − ��1−� . �3�

Sung et al. �25� directly addressed this problem with a frac-
tional diffusion equation approach. Seki et al. �23� went be-
yond the CTRW model and derived a fractional reaction-
diffusion equation for the geminate recombination problem,
and one finds some disagreement between the assumptions
and results in this work and that in �25�. The fractional dif-
fusion approach has recently been used to get exact solutions
for two types of one-dimensional trapping problems: the so
called one-sided problem, in which all the traps lie on one
side of the particle, and the two-sided problem, in which the
traps are located on both sides of the particle �this is the
traditional or standard version of the trapping problem� �26�.
The fractional-diffusion approach has also been employed to
study other bimolecular reactions between subdiffusive par-
ticles. In particular, the annihilation A+A→� and coagula-
tion A+A→A of subdiffusive particles was studied �27� by
means of a fractional generalization of the interparticle dis-
tribution function method �4�. The evolution of reaction-
subdiffusion fronts for A+B→C reactions, where both A and
B move subdiffusively, is also amenable to analysis by
means of the fractional diffusion approach �28�. Other recent
work on fractional diffusion and CTRW models of subdiffu-
sive reacting particles can be found in a number of references
�29�.

In this paper we implement the fractional diffusion equa-
tion approach to study the one-dimensional trapping problem
in the long-time regime for subdiffusive �or diffusive� par-
ticles that move among a distribution of nonstatic traps. The
traps can be either subdiffusive or diffusive. For this purpose,
we generalize the ideas of Bray and Blythe �8�. Recent con-
tributions to the A+B problem based on the fractional diffu-

sion equation approach �22,26� share the simplifying charac-
teristic that the reaction takes place between a static particle
�or fixed boundary� and a subdiffusive particle. The present
work differs from those in that all the reacting particles �in-
cluding traps� are �sub�diffusive and, moreover, the diffusion
constant and the anomalous diffusion exponent of each spe-
cies may be different. Some of this work has been presented
in �30�.

In some cases, asymptotic anomalous diffusion behavior
can be found from corresponding results for normal diffusion
with the simple replacement of t by t�. This can be under-
stood from a CTRW perspective because the average number
of jumps n made by a subdiffusive walker up to time t scales
as �n�� t�, and in many instances the number of jumps is the
relevant factor that explains the behavior of the system. The
simple replacement result is evidence of “subordination” �see
Secs. 5 and 7.2 of �21��. However, there are other instances
where the behavior of subdiffusive systems cannot be found
in this way. A simple example is the survival probability of
subdiffusive particles in the trapping problem �see Sec. 5 of
�21��. In particular, for systems where each species has a
different anomalous diffusion exponent, such a replacement
becomes ambiguous. This is the case for the problem consid-
ered here.

Bray and Blythe obtained the asymptotic survival prob-
ability of a diffusing particle in a sea of diffusing traps by
calculating an upper and lower bound that converge asymp-
totically. We follow their procedure for subdiffusive particle
and traps with partial success. While it is possible to obtain
convergent bounds in most anomalous diffusion exponent
regimes, this procedure does not work in all regimes. In par-
ticular, the bounding procedure encounters difficulties when
the particle A diffuses normally and the traps are “too slow”
but not static.

Our paper is organized as follows. In Sec. II we extend
the proof of the Pascal principle in one dimension to the case
in which both the particle and the traps move subdiffusively
and calculate the upper bound for the survival probability. In
Sec. III we present an alternative calculation of the upper
bound, which is particularly helpful for the calculation of the
lower bound in Sec. IV. The survival probability is estab-
lished, when possible, in Sec. V. Section VI presents a com-
pendiary of results and some comments on open problems.

II. THE PASCAL PRINCIPLE

The Pascal principle of random walks says that the best
survival strategy for a random walker A surrounded by a
random sea of trapping random walkers B is to stand still.
Here we extend the proof of the Pascal principle in one di-
mension to the case in which both the particle and the traps
perform subdiffusive random walks.

As did Bray et al. �11�, we consider a finite volume V
containing N=�V traps B initially distributed at random, and
a single A particle initially at the origin. The trajectory of the
A particle is z�t�. Bray et al. write the survival probability of
A as P�t�=exp
−
�z�t���, where the trajectory-dependent
functional 
 is to be determined. To find this functional they
derive an equation for it by calculating, in two ways, the
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probability density to find a B particle at the point z�t� at time
t:

� = 	
0

t

dt�
̇�t��G�z�t�,t�z�t��,t�� + �P�
�t�� . �4�

That the left side is this probability density is obvious. On

the right side 
̇�t��dt�= �−Ṗ / P�dt� is the probability that a B
particle intersected A in the time interval �t� , t�+dt�� for the
first time, and the propagator G is the probability density for
this particular B to be at z�t� at time t. We have slightly
augmented Bray et al.’s fundamental starting point by in-
cluding the second term on the right hand side, which is the
probability that the first intersection of a B with A occurs at
time t and not before. This term is ultimately unimportant
because it decays much more quickly than the first term and
so we omit it henceforth, but it is satisfying that the funda-
mental equation now holds at all times.

Proof of the Pascal principle requires us to show that the
trajectory z�t�=0 for all t gives the smallest possible value of

�z�. For this trajectory the fundamental equation is

� = 	
0

t

dt�
̇0�t��G�z�t� = 0,t�z�t�� = 0,t�� , �5�

where 
0�t�=
�z�t=0��. The propagator G�z�t�=0, t �z�t��
=0� is a function only of t− t�, which we abbreviate as
G�t− t��, so Eq. �5� is a convolution. Denoting the Laplace

transform of f�t� as f̂�s� yields for the transform of �5�

�̂�s� = s
̂0�s�Ĝ�s� , �6�

where we have noted that 
0�t�=0�=0 because the initial
survival probability is unity. It follows that


̂0�s� =
�̂�s�

sĜ�s�
. �7�

Inversion for the subdiffusive case in one dimension gives

G�t� =
t−�/2


4�K�

H1,2
2,0��0��1 − �/2,�/2�

�0,1�,�1/2,1� � =
t−�/2


4K���1 −
�

2
� ,

�8�

where � is the anomalous diffusion exponent for the traps,
K� is the associated generalized diffusion constant, and H1,2

2,0

is Fox’s H function �31,32�, whose value at the given argu-
ments we have used to write the last equality. The Laplace
transform of G�t� is

Ĝ�s� =
s�/2−1


4K�
. �9�

The inverse of Eq. �7� then immediately follows,


0�t� =
�
4K�t�

��1 +
�

2
� . �10�

To prove that z�t�=0 gives the global minimum of 
�z�t��
we again follow Bray et al. and write 
=
0+
1 in Eq. �4�
�without the last term�,

� = 	
0

t

dt��
̇0�t�� + 
̇1�t���G�z�t�,t�z�t��,t�� . �11�

Adding and subtracting �t− t��−�/2 /
4K���1−� /2� to G in
the integrand allows cancellation of the left side of Eq. �11�
against one of the terms on the right, leaving

0 = − 	
0

t

dt�

̇�t��


4K���1 −
�

2
�

R

�t − t���/2

+ 	
0

t

dt�
1


4K���1 −
�

2
�


̇1�t��

�t − t���/2
, �12�

where

R = 1 −

��1 −
�

2
�


�
H1,2

2,0��0��1 − �/2,�/2�
�0,1�,�1/2,1� � . �13�

An explicit expression for 
1 is obtained by Laplace trans-
forming this result, solving for 
̂�s�, and inverting,


1�t� =
1

���

2
���1 −

�

2
�	0

t dt1

�t − t1�1−�/2	
0

t1

dt2
R
̇�t2�

�t1 − t2��/2 .

�14�

The rest of the argument follows exactly as in Bray et al.
�11,30�. Since R�0 and 
̇�0 �because P�t� is a nonincreas-
ing function of time�, it follows that 
1�t��0 for all paths
z�t�, with equality when z�t�=0 for all t. The survival prob-
ability of our A particle averaged over all possible trajecto-
ries z is P�t�= �e−
�t��z= �e−
0�t�−
1�t��z, and the above proof
shows that �e−
0�t�−
1�t��z�e−
0�t�. Therefore

PU�t� = exp�− 
0�t�� = exp�−

4�2K�t�

��1 +
�

2
�� �15�

is a strict upper bound for the survival probability P�t�, thus
extending the proof of the Pascal principle to subdiffusive
particles in one dimension.

III. ALTERNATIVE CALCULATION OF UPPER BOUND
FOR THE SURVIVAL PROBABILITY

The survival probability PU�t� of a static particle A sur-
rounded by a distribution of mobile traps �the “target prob-
lem”� was considered as early as 1986 using a CTRW model
�21�, and more recently for the three-dimensional case by
means of a fractional diffusion approach �25�. In the previous
section we obtained the result �15� following the approach of
Bray et al. �11�. Here we recalculate PU�t� by generalizing

TRAPPING REACTIONS WITH SUBDIFFUSIVE TRAPS… PHYSICAL REVIEW E 72, 061103 �2005�

061103-3



the original approach of Bray and Blythe �8� to the subdif-
fusive case because it provides results useful for the calcula-
tion of the lower bound in the next section.

Consider a target A of size 2L centered at the origin, and
let Q1�t �y� be the probability that the trap initially placed at
y�L has not reached the end of the target at y=L by time t.
Then, in terms of the Fox’s H function �33�

Q1�t�y� = 1 − H11
10�� y − L


K�t���1,�/2�
�0,1� � � 1 − H� y − L


K�t�� .

�16�

For �→1 the Fox’s H function becomes the complementary
error function �with K1�D�, and the ordinary Brownian mo-
tion result is recovered,

Q1�t�y� = 1 − erfc� y − L

4Dt

�, � = 1. �17�

Next, consider N independently diffusing traps that are
initially placed at random in the interval L�y�L+R. Here
and henceforth 2R is the size of the system, which we will
take to infinity at appropriate points in the calculation. The
probability QN�t� that the stationary target A has survived up
to time t is

QN�t� = �
i=1

N
1

R
	

L

L+R

dyi�1 − H� yi − L

K�t���

= �1 −
1

R
	

L

L+R

dyH� y − L

K�t���N

, �18�

or, in terms of the density �=N /R of traps,

Q��t� = lim
R→�

�1 −
1

R
	

0

R

dyH� y

K�t����R

= exp�− �
K�t�	
0

�

dzH�z�� . �19�

Note that the result is independent of the size of the target.
We need to evaluate the integral

I� = 	
0

�

dzH11
10��z��1,�/2�

�0,1� � , �20�

which can be done from the properties of the Fox’s H func-
tion �31�. One finds that

H11
10��z��1,�/2�

�0,1� � =
d

dz
H11

10��z��1 + �/2,�/2�
�0,1� � . �21�

But

H11
10�����1 + �/2,�/2�

�0,1� � = 0 �22�

and

H11
10��0��1 + �/2,�/2�

�0,1� � =
1

��1 + �/2�
, �23�

so that I�=1/��1+� /2�. Therefore,

Q��t� = exp�−

�2K�t�

��1 + �/2�
� . �24�

This is the survival probability of the target when all the
traps are located to its right. When the traps are located on
both sides of the target, the survival probability of the target
is the square of Eq. �24�,

PU�t� = Q�
2 �t� = exp�−


4�2K�t�

��1 + �/2�
� . �25�

This result, which is of course identical to Eq. �15�, is the
upper bound on the survival probability of the moving par-
ticle.

Incidentally, as is well known, the survival probability for
the target problem is related to the distinct number of sites
S�t� visited by a trap up to time t �21,34�,

PU�t� = e−��S�t��+¯, �26�

where the dots represent higher moments that decay more
rapidly with time. Comparing this expression with Eq. �25�,
one finds that the asymptotic average value �S�t�� of the ter-
ritory explored up to time t by a subdiffusive walker with
generalized diffusion coefficient K� and anomalous diffusion
exponent � is

�S�t�� �
2
K�t�

��1 + �/2�
. �27�

This result agrees with that found by Yuste and Acedo �26�
using a different approach.

IV. LOWER BOUND FOR THE SURVIVAL PROBABILITY

Let PL�t� be the probability that the mobile particle A
remains inside a box of size L and that all the traps remain
outside this box until time t �we distinguish between L, the
size of the box, and L, which denotes lower bound�. When
this happens, the particle A survives. It is clear that PL�t� is a
lower bound for the survival probability P�t� of interest be-
cause there exist many other trajectories involving the simul-
taneous presence of the particle and traps within the box L
that allow the particle A to survive. This lower bound was
first calculated for diffusive particles and traps by Redner
and Kang �35� and further considered �and in some cases
corrected� in �6,36�.

The probability PL�t� is itself the product of three prob-
abilities.

�1� The probability Q1 that at t=0 the box of size L con-
tains no traps

Q1 = e−�L. �28�

�2� The probability Q2 that no traps enter the box of size
L up to time t

Q2 = exp�−
2

��1 + �/2�

�2K�t�� = PU�t� . �29�

Note that it is the derivation of the previous section, which
explicitly shows this probability to be independent of the size
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of the box, that allows us to write this result.
�3� The probability Q3 that the particle has not left the box

of size L up to time t. We proceed to evaluate this quantity.
Let W�x , t� be the probability of finding the particle A at

position x at time t if it was at position x=0 at time t=0 and
there are absorbing boundaries at x= ±L /2. Solving the frac-
tional diffusion equation by means of separation of variables
�13� one finds

W�x,t� =
2

L�
n=0

�

�− 1�n sin � �2n + 1���x + L/2�
L �

�E���− K��
� �2n + 1�2�2t��/L2� , �30�

where K��
� and �� are the generalized diffusion constant and

the anomalous diffusion exponent of the particle A. There-
fore,

Q3 = 	
−L/2

L/2

W�x,t�dx

=
4

�
�
n=0

�
�− 1�n

2n + 1
E���− K��

� �2n + 1�2�2t��/L2� . �31�

Next we distinguish two cases in the handling of the sum
in Eq. �31�: first we deal with a subdiffusive particle, and
subsequently with an ordinary diffusive particle. In the sub-
diffusive case, we note that for large arguments �z�1� the
Mittag-Leffler function has the expansion

E���− z� = �
m=1

�
�− 1�m+1

��1 − ��m�
z−m �32�

so that

Q3 =
4

�
�
m=1

� �− 1�m+1L2m

��1 − ��m���2K��
� t���m �

n=0

�
�− 1�n

�2n + 1�2m+1 .

�33�

Therefore, for t→� one finds

Q3 =
1

8��1 − ���
L2

K��
� t��

+ O� L2

K��
� t���2

. �34�

Consequently, a lower bound on the survival probability of
the particle A is

PL�t� = Q1Q2Q3

= e−�L exp�−
2

��1 + �/2�

�2K�t��

�
1

8��1 − ���
L2

K��
� t���1 + O� L2

K��
� t���� . �35�

It can easily be ascertained that this expression is
maximal when L=L*�2/� �independent of time�, i.e.,
PL�t�� PL*�t� with

PL*�t� =
e−2

8��1 − ���
�2

�
�2 1

K��
� t��

�exp�−
2

��1 + �/2�

�2K�t��

��1 + O� 1

�2K��
� t���� . �36�

This then is our best lower bound for the survival probability
P�t� of a subdiffusive particle.

When the particle A diffuses normally, Eq. �31� becomes

Q3 =
4

�
�
n=0

�
�− 1�n

2n + 1
exp�− D��2n + 1�2�2t/L2� �37�

with D��K1�. For long times �8�

Q3 �
4

�
exp�− D��2t/L2�, t � 1 �38�

so that

PL�t� = Q1Q2Q3 �
4

�
e−�L exp�−

2

��1 + �/2�

�2K�t��

�exp�− D��2t/L2� �39�

for t�1. This lower bound can again be maximized by op-
timizing the value of L. The optimal value is �8�
L*= �2�2D�t /��1/3 �time dependent�, so that

PL�t� � PL*�t� =
4

�
exp�−

2
�2K�t�

��1 + �/2�
− 3��2�2D�t/4�1/3� .

�40�

Note that the dominant term inside the bracket depends on
the value of �, the anomalous diffusion exponent for the
traps. We distinguish three cases.

�1� Traps with 2/3	��1. In this case, for t�1

2
�2K�t�

��1 + �/2�
� 3��2�2D�t/4�1/3 �41�

so that

PL*�t� =
4

�
exp�−

2
�2K�t�

��1 + �/2�
� . �42�

�2� Traps with �=2/3. Now

PL�t� � PL*�t� =
4

�
exp�− �2
�2K�

��4/3�
− 3��2�2D�/4�1/3�t1/3� ,

�43�

that is, the second contribution in the exponent in Eq. �40� is
of the same order as the first and must thus be retained.

�3� Traps with 0	�	2/3. Now the second term in the
exponent of Eq. �40� is dominant,

PL*�t� =
4

�
exp�− 3��2�2D�t/4�1/3� . �44�
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In the next section we examine our upper and lower
bound results to establish the behavior of the survival prob-
ability of A whenever possible.

V. SURVIVAL PROBABILITY

We now combine our upper and lower bound results. Re-
call that the label and exponent � is associated with the traps
and �� is associated with the particle A. The upper bound on
the survival probability is in all cases given in Eq. �25�, but
the lower bound depends on the anomalous diffusion expo-
nent of the particle. We distinguish the following cases.

�1� Subdiffusive particle �0	��	1� and diffusive or sub-
diffusive traps �0	��1�. The lower bound is given in Eq.
�36�, so that PL*�t�� P�t�� PU�t� leads to

2

��1 + �/2�
� −

ln P�t�

�2K�t�

�
2

��1 + �/2�

+
2 ln�
�2K��

� t��� + 2 + ln�2��1 − ����


�2K�t�

+ O� ��2K�t��−1/2

�2K��
� t�� � . �45�

For t→�, ln�
�2K��
� t����
�2K�t� and the upper and lower

bounds converge asymptotically. We therefore arrive at the
explicit asymptotic survival probability

P�t� � exp�−
2

��1 + �/2�

�2K�t�� �46�

for 0	��1 and 0	��	1. Note that for �=1 we recover
the normal diffusive result obtained earlier �8�. A noteworthy
result here is that the survival probability depends only on
the exponent � that characterizes the traps and not on �� that
characterizes the particle. This is interesting vis a vis the
subordination issue.

�2� Diffusive particle ���=1� and subdiffusive traps with
2/3	��1. The bounds here are

2

��1 + �/2�
� −

ln P�t�

�2K�t�

�
2

��1 + �/2�
+ 3��2

4�
�1/3D�1/3

K�
1/2 t1/3−�/2, �47�

and the asymptotic survival probability is again given by Eq.
�46�.

�3� Diffusive particle ���=1� and subdiffusive traps with
�=2/3 �marginal case�. Now PL*�t�� P�t�� PU�t� leads to
the more ambiguous inequalities

2

��4/3�
� −

ln P�t�

�2K�t�

�
2

��4/3�
+ 3��2

4�
�1/3D�1/3

K�
1/2 . �48�

The bounding procedure is therefore not able to predict the
value of the prefactor � in P�t�=exp�−�t1/3�, but the
asymptotic behavior −ln P�t�� t1/3 is evident.

�4� Diffusive particle ���=1� and subdiffusive traps with
0	�	2/3. The bounds here are also given by �47� so that
the bounding procedure is not able to determine the
asymptotic behavior of P�t� at all for this case. We are not
even able to assert the asymptotic stretched exponential form
P�t��exp�−�t��.

VI. PANORAMA AND DISCUSSION

Bray and Blythe �8� have calculated the asymptotic sur-
vival probability of a diffusive particle A in a randomly dis-
tributed sea of diffusive traps B in one dimension, and have
determined the precise value of the coefficient � in the clas-
sic result P�t��exp�−�t1/2� first obtained by Bramson and
Lebowitz �6,7�. Within some constraints, we have general-
ized this result to the case where one or both of the species
move subdiffusively. Our particle A is characterized by the
anomalous diffusion exponent �� and the generalized diffu-
sion coefficient K��, and the traps by � and K�. In the process
of this generalization, we have extended the proof of the
Pascal principle, that the best survival strategy of a particle
in a sea of moving traps is to remain stationary, to the case of
particles and/or traps that move subdiffusively. These results
may be the first involving two subdiffusive species with dif-
ferent anomalous diffusion exponents.

When both species are subdiffusive �� and �� both
smaller than unity�, the survival probability is independent of
�� and determined entirely by the subdiffusive properties of
the traps, cf. Eq. �46�. When the particle moves diffusively
���=1�, on the other hand, we are unable to unequivocally
determine the coefficient � for all cases using this procedure.
If the traps move sufficiently rapidly �2/3	��1�, then the
result Eq. �46� is still valid. Note that this reduces to the
Bray and Blythe result when �=1. The case �=2/3 is
marginal in the sense that we can establish the behavior
P�t��exp�−�t1/3�, but are not able to determine the constant
�. Note that this particular time dependence of the survival
probability is the same as the classic result for the survival
probability of a diffusive particle in a sea of immobile traps
�37�. If the traps are too slow �“strongly subdiffusive”�,
0	�	2/3, we are not able to determine even the time de-
pendence of the survival probability on the basis of this ap-
proach. However, since we find the same stretched exponen-
tial behavior when �=2/3 and when �=0, a conjecture as to
the behavior throughout this slow trap regime might be ap-
propriate. The conjecture is that the survival probability de-
cays as P�t��exp�−�t1/3� in the entire regime 0���2/3.

We thus find that in so far as one can think of some sort of
subordination principle �and whether such thinking is appro-
priate here is debatable�, it is determined by the behavior of
the traps, i.e., by the replacement of t by t�. Even in the range
of exponents where this is possible, it is only possible for the
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main asympotic contribution to P�t� but not for the correc-
tion terms to the leading asymptotic term.

It is interesting to note that the value L*=2/� that maxi-
mizes the lower bound of the survival probability for a sub-
diffusive particle A does not grow with time. This implies
that finite particle size effects could become relevant with
increasing density �. This is completely different from the
case of a Brownian particle A, since the growth L*� t1/3 now
suppresses such finite size contributions for any given den-
sity.

At this point, we inject a digression that is relevant not
only to our analysis but also to the original work of Bray and
Blythe �8�. They assumed that the particle A is initially sur-
rounded by a random �Poisson� distribution of mobile traps,
an assumption also made in our explicit analysis, cf. Eq.
�28�. On the other hand, if at the start of the observations
�t=0� the process has already been taking place for some
time −� �i.e., if the process started at some time � in the
past�, then it is known that the distribution around the sur-
viving particles at time t=0 is not of Poisson form. Those
particles that initially had nearby traps are more likely to
have been trapped already than those that did not, so that
those particles that have survived are surrounded by a region
of fewer than average traps �sometimes referred to as a
“gap”�. Bramson and Lebowitz arrive at the conclusion that
the configuration of B particles is nevertheless dominated by
a Poisson random measure �7�. In Ref. �30� we confirm that
for any finite �, the gap does not affect the asymptotic sur-
vival probability results of Bray and Blythe. The detailed

nature of the gap is different in the diffusive and subdiffusive
cases, and unknown in the latter. However, we conjecture
that it is no more pronounced in the subdiffusive than in the
diffusive system, and that it does not affect our results either.

Our own results, of course, leave a number of questions
unanswered. One obvious question concerns the marginal
role of the trap exponent �=2/3 when the particle is diffu-
sive. Why is this a marginal exponent? A connection between
this critical value and the fact that for a Brownian particle the
length that maximizes the lower bound of the survival prob-
ability grows as L*� t1/3 seems plausible, but the conceptual
basis for such a relation is not clear.

The most pressing and intriguing puzzle to resolve is that
of calculating the survival probability when the particle A is
diffusive ���=1� and the traps are strongly subdiffusive
�0	�	2/3�. While we conjecture that the survival prob-
ability in this regime decays as P�t��exp�−�t1/3�, the upper
and lower bounds in this case do not have the same
asymptotic time dependence so we are not able to test these
conjectures on the basis of the procedures used in this paper.
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