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Using a microscopic model of interacting polar biofilaments and motor proteins, we characterize the phase
diagram of both homogeneous and inhomogeneous states in terms of experimental parameters. The polarity of
motor clusters is key in determining the organization of the filaments in homogeneous isotropic, polarized, and
nematic states, while motor-induced bundling yields spatially inhomogeneous structures.
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Soft active systems are exciting examples of a type of
condensed matter where stored energy is continuously trans-
formed into mechanical work at microscopic length scales. A
realization of this are polar filaments interacting with associ-
ated molecular motors in the cell cytoskeleton �1,2�. These
systems are characterized by a variety of dynamic and sta-
tionary states that the cell accesses as part of its cycle �3–5�.

Recent theoretical studies of the dynamics of solutions of
active filaments include numerical simulations �4,5�, mesos-
copic mean-field kinetic equations �6–9�, and hydrodynamic
equations where the system is described in terms of a few
coarse-grained fields whose dynamics is inferred from sym-
metry considerations �10–13�. Previous work has focused on
how motor activity renders homogeneous states unstable to
the formation of spatial structures, such as bundles, vortices,
or asters. In this paper we show that motor activity also
controls the possible homogeneous states of the system �14�.
In particular we find that the formation of a nonequilibrium
polarized phase at low densities can be driven by motor po-
larity without filament polymerization �10,13�. The spatial
structures observed in experiments are composed of the to-
pological defects of a bulk polarized state �XY model� �4�. In
order to describe them one must then understand how such a
state can be generated in a system with length-stabilized fila-
ments. A macroscopic polarized phase was not obtained in
our earlier work and changes qualitatively the phase diagram
of active solutions as compared to what is presented in Ref.
�9�.

We describe the system by a concentration of polar fila-
ments f�r , n̂ , t� in two dimensions �d=2�, modeled as hard
rods of fixed length � and diameter b ���b� at position r
with filament polarity characterized by a unit vector n̂, and a
density of motor clusters m�r , t�. The filament and motor
concentrations satisfy the equations

�t f = − � · J f − R · J , �1�

�tm = − � · Jm, �2�

where R= n̂��n̂ and the translational �J f ,Jm� and rotational
�J� currents have diffusive, excluded volume and active
contributions. The rotational current is J=JD+JX+JA,
with a diffusive current JD�r , n̂ , t�=−DrRf�r , n̂ , t� and a

contribution from excluded volume, JX�r , n̂ , t�=−�Dr /
kBT�f�r , n̂ , t�RVX�r , n̂ , t�, with

VX�r,n̂1,t� = kBT�
s1

�
s2

�
n̂2

�n̂1 � n̂2�f�r + �,n̂2,t� , �3�

where �= n̂1s1− n̂2s2 is the separation of the centers of mass
of the two filaments and �s . . . =�−�/2

+�/2ds. . . denotes an integra-
tion along the length of the filament, parametrized by s. The
active contribution to the rotational current �low density ap-
proximation� is

JA�r,n̂1,t� = b2�
s1

�
s2

�
n̂2

�A�n̂1,n̂2�m�r + s1n̂1,t�

� f�r,n̂1,t�f�r + �,n̂2,t� , �4�

where the motor-induced angular velocity is written as

�A = 2��0 + �1n̂1 · n̂2��n̂1 � n̂2� . �5�

It consists of two parts, corresponding to two classes of mo-
tor clusters �see Fig. 1�: polar clusters that tend to bind to
filaments with similar polarity ��0 /�1�1� �4,5�, and nonpo-
lar clusters that bind to filament pairs of any orientation
��0 /�1�1� �15�. Polar clusters ��0�0� were not considered
in our earlier paper �9�, but are crucial for the formation of a
polarized phase �16� �see also Ref. �14��. Both �0 and �1
increase with the increasing binding rate of the clusters to the
filament. A passive polar crosslink will also have this effect

FIG. 1. �Color online� Polar and nonpolar clusters interacting
with polar filaments. Assuming that clusters always bind to the
smallest angle, polar clusters �g→�� bind only to filaments in con-
figuration �a� while nonpolar clusters �g=0� bind to both configu-
rations equally.
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�17�, but with a different dependence on Adenosin Triphos-
phate �ATP� consumption.

The translational currents are J f =JD+JX+JA and

Jm = − Dm � m + ��
s
�

n̂
n̂f�r,n̂,t�m�r + n̂s,t� , �6�

where � depends on the speed and processivity of the mo-
tors. The filament diffusive current, Ji

D=−Dij� j f , is expressed
in terms of a diffusion tensor Dij = �D� +D��	ij /2+ �D�

−D��Q̂ij with Q̂ij = n̂in̂j −
1
2	ij. The excluded volume contri-

bution is Ji
X=−�Dij /kBT�f� jVX. The active contribution to the

translational current is

Ji
A�r,n̂1,t� = b2�

s1

�
s2

�
n̂2

vi
A�n̂1,n̂2,��m�r + n̂1s1,t�

� f�r,n̂1,t�f�r + �,n̂2,t� , �7�

with vA the motor-induced velocity, taken of the form

vA =



2
�n̂2 − n̂1� +

�

2

�

2�
− ��n̂1 + n̂2� . �8�

The parameters �, 
, and � have dimensions of velocity and
depend on the angle between the filaments. The term propor-
tional to 
 drives the separation of filaments of opposite
polarity, while the � contribution arises from the net velocity
of the filament pair �18�. The negative sign reflects the fact
that filament mean motion due to motor activity is opposite
to their polarity. The contribution proportional to � arises
from spatial variations in motor activity along the filament,
such as motors stalling before detaching at the polar end. It
drives bundling of filaments of the same polarity. These pa-
rameters where estimated in Ref. �19� via a microscopic
model of motor-induced filament dynamics as 
	�	u0, �
	u0�lm / l��u0, with u0 the mean motor stepping rate and lm

the length scale �of order of the motor cluster size� for spatial
variations in motor activity. As seen below, this term is cru-
cial for developing inhomogeneities and pattern formation.

To study the macroscopic properties of the solution, we
truncate the exact moment expansion of f�r , n̂ , t� as

f�r,n̂,t� =

�r,t�

2�

1 + 2p�r,t� · n̂ + 4Sij�r,t�Q̂ij� , �9�

keeping only the first three moments,

� dn̂f�r,n̂,t� = 
�r,t� �density� ,

� dn̂n̂f�r,n̂,t� = 
�r,t�p�r,t� �polarization� ,

� dn̂Q̂ij f�r,n̂,t� = 
�r,t�Sij�r,t� �nematic order� .

�10�

Homogeneous bulk steady states. We first consider the
dynamical equations for a spatially homogeneous solution.

In this case the only contributions to the equation of motion
of the filament density come from rotational currents. The
motor density has a constant mean value �we let m0=mb2�
and the filament density, f�r , n̂ , t�, and its moments can be
expressed in terms of their spatial averages, i.e.,
�1/A��drSij�r , t�=Sij�t�, �1/A��drp�r , t�=p�t�, with A the
area of the system. In the following, all lengths are measured
in units of the filament length, �. Averaging over the orien-
tation n̂ using Eq. �9�, we find that in a homogeneous system

=
0=constant and

�tpi = − �Dr − m0
0�0�pi + �8Dr

3�
− m0�2�0 − �1�

0Sijpj ,

�11�

�tSij = − �4Dr −
8Dr
0

3�
− m0
0�1
Sij

+ 2m0
0�0�pipj −
1

2
	ijp

2� . �12�

In a passive system ��0=�1=0� there is a transition from an
isotropic state to a nematic state. A mean-field description of
such a transition, which is continuous in two dimensions �2d�
�but first order in 3d�, requires cubic terms in the nematic
order parameter in the equation of motion. The transition
here is identified with the change in sign of the decay rate of
Sij, which signals an instability of the isotropic homogeneous
state. This occurs when excluded volume effects dominate at
a density 
N=3� /2. The homogeneous state is isotropic for

0�
N and nematic for 
0�
N. No homogeneous polarized
state with a nonzero mean value of p is obtained in a passive
solution.

We now turn to an active system. We introduce a dimen-
sionless filament density, 
̃=
0 /
N, a dimensionless motor
cluster activity, �=
Nm0�1 /Dr, and a parameter measuring
the polarity of motor clusters, g=�0 /�1 with g=0 corre-
sponding to nonpolar clusters. Time is measured in units of
Dr

−1. The steady states of Eqs. �11� and �12� are the stable
solutions of

0 = − a1pi + b1
̃Sijpj , �13�

0 = − a2Sij + b2
̃�pipj −
1

2
	ijp

2� , �14�

where

a1 = 1 − 
̃g� , �15�

a2 = 4�1 − 
̃�1 + �/4�� , �16�

and b1=4+��1−2g�, b2=2g�. At low density the only solu-
tion is pi=0 and Sij =0 and the system is isotropic �I�. The
homogeneous isotropic state can become unstable in two
ways. As in the passive case, a change in sign of the coeffi-
cient a2 signals the transition to a nematic �N� state. Motor
activity lowers the density for the I-N transition that occurs
at 
IN���=1/ �1+� /4�. At 
̃�
IN��� the solution acquires
nematic order, with Sij

0 =S0�ninj −	ij /2�, where the unit vector
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n denotes the direction of broken symmetry. We obtain an
expression for the amount of nematic order �S0� by adding
a cubic term −c2
̃2SklSklSij to Eq. �14� giving S0
= �1/ 
̃��−2a2 /c2. The isotropic state can also become lin-
early unstable via the growth of polarization fluctuations in
any arbitrary direction. This occurs above a second critical
filament density, 
IP���=1/ �g��, defined by the change in
sign of the coefficient a1 controlling the decay of polariza-
tion fluctuations. For 
̃�
IP��� the homogeneous state is
polarized �P�, with pi�0. The alignment tensor also has a
nonzero mean value in the polarized state as it is slaved to
the polarization. One can identify two scenarios depending
on the value of g.

�i� For g�1/4, the density 
IP is always larger than 
IN
and a region of nematic phase exists for all values of �. At
sufficiently high filament and motor densities, the nematic
state also becomes unstable. Fluctuations in the alignment
tensor are uniformly stable for a2�0, but polarization fluc-
tuations along the direction of broken symmetry become un-
stable for a1�
̃b1S0 /2, i.e., above a critical density


NP =
1

g�
�1 +

b1
2

c2R
�1 −�1 +

2c2R�1 − R�
b1

2 �
 , �17�

where R=
IN /
IP. The polarized state at 
̃�
NP has pi
0

= p0ni and Sij
0 =SP�ninj −	ij /2�, where

p0
2 =

2a1a2


̃2b1b2
�1 − � 2a1

b1
̃S0
�2
 ,

SP = S0�1 −

̃2b1b2

2a1a2
p0

2 = 2� a1


̃b1
� .

The “phase diagram” is shown in the inset of Fig. 2.
�ii� When g�1/4, the boundaries for the I-N and the

N-P transitions cross at �x=1/ �g−1/4� where 
IN=
IP

=
NP and the phase diagram has the topology shown in Fig.
2. For ���x the system goes directly from the I to the P

state at 
IP, without an intervening N state. At the onset of
the polarized state the alignment tensor is again slaved to the
polarization field, Sij = �b2
̃ /a2��pipj −

1
2	ijp

2�, and pi= p0ni
and p0 are determined by cubic terms in Eq. �11�.

If �1=0, with �0�0, the I-N transition is independent of
motor density and always occurs at 
0=
N.

Spatially inhomogeneous states. In vitro experiments have
shown that uniform states are often unstable to the formation
of complex spatial structures. The instability arises from the
growth of spatial fluctuations in the hydrodynamic fields. In
particular, the rate of motor-induced filament bundling can
exceed that of filament diffusion yielding the unstable
growth of density inhomogeneities �6–9�. States with spa-
tially varying orientational order, where the filaments spon-
taneously arrange in vortex and aster structures, are also pos-
sible �10,13,14�. To understand the different nature of the
instability from each homogeneous state, we have obtained
coupled equations for the first three moments of the filament
concentration defined in Eq. �9� by an expansion in spatial
gradients described elsewhere �9,19�. With these equations
we then study the dynamics of spatially varying fluctuations
in the hydrodynamic fields. These are the fields whose char-
acteristic decay times exceed any microscopic relaxation
time and become infinitely long lived at long wavelengths.
We find that the low frequency hydrodynamic modes of this
active system are determined by fluctuations in the con-
served densities and in variables associated with broken
symmetries. A change in sign in the decay rate of these
modes signals an instability of the macroscopic state of in-
terest. For simplicity we only discuss here the case of con-
stant motor density.

Isotropic state. This was studied in Ref. �9�. The only
hydrodynamic variable is the filament density, 
. The decay
rate of Fourier components of 	
=
−
0 at wave vector k is
controlled by the interplay of diffusion and motor-induced
bundling described by �. The homogeneous I state is un-
stable at large length scales for 
0�
B, with 
B
	D� / �m0��	�1 / ����. The homogeneous state is stabilized
at short scales by excluded volume effects and higher order
terms in the density gradients.

Polarized state. The hydrodynamic modes in the P state
are those associated with fluctuations in the filament density
and in the director field, n�r , t�, defined by p�r , t�
= p�r , t�n�r , t�, with �n�=1. The coupled hydrodynamic
modes describing the decay of Fourier components of den-
sity, 	
 and director fluctuations, 	n=n− ŷ= x̂	nx of wave
vector k are always propagating, with velocity whose mag-
nitude and direction are controlled by both the activity pa-
rameters 
 and �. For k along the broken symmetry direc-
tion, the modes decouple �i.e., 	
	ez
�k�t ,	nx	ezn�k�t� and
are given by

z
 = ikc1
̃�
̃ −
k2

8
�1 −

g�

6
− 20
̃��̃
 , �18�

zn = − ikc2
̃�
̃ −
5k2

48
�1 +

2

5

̃��g − 6�̃�
 , �19�

where 
̃=
 /�1, �̃=� /�1, and c1 and c2 are numbers of order
1. We have used D� =�2Dr /6 and �	
. Like the I state, the

FIG. 2. �Color online� The homogeneous phase diagram for g
�1/4 �the figure is for g=1 and c2=50�. For ���x, where 
IN and

IP intersect, no N state exists and the system goes directly from the
I to the P state. The phase diagram for g�1/4 is shown in the inset
�g=1/10, c2=50�.
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homogeneous P state is linearly unstable for 
0�
B. The
nature of the instability changes, however, from diffusive in
the I state to oscillatory in the P state, suggesting that spa-
tially inhomogeneous oscillatory structures, such as vortices,
may be stable at high filament or motor densities. The rota-
tional effects described by �	�1 stabilize director fluctua-
tions, but destabilize the density.

Nematic state. The hydrodynamic variables in the N state
are again the filament density and a director field n�r , t�,
defined in terms of the alignment tensor as Sij =S0�ninj

− 1
2	ij�. The decay of density and director fluctuations is con-

trolled by coupled diffusive hydrodynamic modes. The
modes decouple for k along the broken symmetry direction,
with

z
 = − k2�1

6
− 2
̃��̃
 , �20�

zn = −
k2

8
�1 +

19

36

̃�
 , �21�

and the homogeneous N state is destabilized by the growth of
density fluctuations for 
0�
B. For the arbitrary direction of
k relative to the direction of broken symmetry, director fluc-
tuations also become unstable at high density, but the fastest
growing mode is always associated with the buildup of den-
sity inhomogeneities. In contrast to the P state, the instability
is always diffusive.

We have studied the phase behavior of polar filaments
interacting with polar clusters. In addition to the isotropic
phase, both homogeneous polarized and nematic states can
be obtained as a function of filament density and motor ac-
tivity and polarity. Each of these homogeneous states is un-
stable at high filament and motor densities where it is re-
placed by complex spatial structures. The instability occurs

for 
0�
B	�1 / ���� and is controlled by the bundling rate
�, which destabilizes all homogeneous states, albeit through
different �diffusive versus oscillatory� mechanisms. The lo-
cation of the instability line in the phase diagram depends on
�1 /�. If �1 /��1/g=�1 /�0, then 
B�
P and the homoge-
neous nematic state is always stable, when it exists. If
�1 /��1/g=�1 /�0, then 
B�
P �Fig. 3� and all homoge-
neous states become unstable.
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FIG. 3. �Color online� Bundling renders homogeneous states
unstable for 
0�
B, where they are replaced by inhomogeneous
solutions. The 
B line may lie above the 
NP−
IP line or cross
through the N and I states, as shown in the figure �g=1, c2=50,
�1 /�=0.6�, depending on the value of �1 /�. The instability of the I
and N states is diffusive �dashed line�, while the instability of the P
state is oscillatory �dotted line�.
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