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We analyzed the entropy production in the majority-vote model by using a mean-field approximation and
Monte Carlo simulations. The dynamical rules of the model do not obey detailed balance so that entropy is
continuously being produced. This nonequilibrium stochastic model is known to have a critical behavior
belonging to the universality class of the equilibrium Ising model. We show that the entropy production

exhibits a singularity at the critical point whose exponent is estimated numerically.
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I. INTRODUCTION

Irreversible systems in the stationary state are in a process
of continuous production of entropy. In systems like the one
studied here, governed by a master equation, that is, defined
by a continuous time Markov process, the irreversibility is
characterized by the lack of detailed balance. When a system
governed by a Markov process is reversible, that is, when the
dynamic rules are such that detailed balance is obeyed, the
production of entropy vanishes at the equilibrium state. This
is indeed the case of the Glauber model and any other dy-
namics used to simulate the equilibrium Ising model. The
production of entropy is then a signature of irreversibility.

The rate of change of the entropy S of a system can be
properly decomposed into two contributions [1]

Z:H o, (1)

where II is the entropy production due to irreversible pro-
cesses occurring inside the system and @ is the entropy flux
from the system to the environment. The quantity IT is posi-
tive definite whereas @ can have either sign. In the stationary
state the entropy S of the system remains constant so that
@ =II. Notice that the quantity & is defined here as the flux
from inside to outside the system, so that it will be positive
in the stationary state.

In this work we study the steady state production of en-
tropy in a nonequilibrium lattice model, namely, the
majority-vote model [2-4]. This is a polling model in which
individuals in a community take the opinion of their neigh-
bors with a certain probability p and the opposite opinion
with probability g=1-p. In two or more dimensions, this
model displays a continuous phase transition described by
the same critical exponents as the equilibrium Ising model
[4]. This is in agreement with the conjecture by Grinstein et
al. [5] according to which nonequilibrium stochastic systems
with up-down symmetry fall in the universality class of the
equilibrium Ising model.

The flux of entropy is determined by means of an expres-
sion which is the average of a function of the rates of tran-
sition from one state to another and its reverse [6-9,18]. As
the entropy production equals the entropy flux in the station-
ary state, the former can be determined from the expression
for the latter. We use mean-field and Monte Carlo simula-
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tions to calculate the entropy flux. In the stationary regime,
and at the critical point, the entropy flux, or equivalently,the
entropy production, displays a singularity governed by a
critical exponent which we estimate numerically.

II. ENTROPY PRODUCTION

Let us consider a system described by a continuous Mar-
kov process with stochastic variables defined over the sites
of a regular lattice. A configuration of the system is denoted
by o0=(0y,0,,...,0y) where N is the number of sites of the
lattice and o;=+1 is the spin variable associated to site i. We
will be concerned only with one spin flip dynamics, defined
by a transition rate w;,(o) in which the spin variable o;
changes its sign. The time evolution of the probability
P(o,1) is governed by the master equation,

P =3 (P ) - w(@P@], ()

where o’=(0y,0,,...,—0;,...,0y).
The Gibbs entropy S(¢) of the system at time 7 is defined
by

S(t) ==, P(o,0)ln P(0,1). (3)

Using the master equation (2), its time derivative can be
written as

—S(t)——zzl

P (("J t) [wi(0)P(c.1) = wi(0) P(e,1)].

(4)

In agreement with Eq. (1), the righ-hand side of this expres-
sion should be decomposed into two terms, the entropy pro-
duction IT and the entropy flux ®. These two quantities have
the following expressions [6-9]:

Ll

; wi(o)P(a,1) [Wi(Oj)P(Oj,t) —wi(o)P(o,1)]

(5)

and
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- wi(o)
D= 2 2 wio)P(eln ) . (6)

The right-hand side of Eq. (5) is always positive as can be
easily proved, and the right-hand side of Eq. (6) can be writ-
ten as the average over the stationary probability distribution,
that is,

®=3 <w Pk > 7)

wi(o’)

This is a particularly useful equation because it can be
employed to estimate ® from a Monte Carlo simulation. As
it is well known only quantities that can be written as aver-
ages can be determined numerically in a Monte Carlo simu-
lation. In this sense it is not possible to determine S, given by
Eq. (3), nor I1, given by Eq. (5), but it is actually possible to
determine @ from Eq. (6). We remark finally that in the
steady state [T=® so that it is possible to determine the
entropy production in this regime by a Monte Carlo simula-
tion.

III. MAJORITY-VOTE MODEL

The majority-vote model is a one-spin-flip stochastic dy-
namics defined by the following transition rate

wi(o) = %[1 - ya’,-}"(zﬁ (T,»+,5>] , (8)

where F(x) is a function that equals —1, 0, or +1 according
to whether x<<0, x=0, or x>0, and the summation is over
the nearest neighbor sites of site i. Notice that the transition
rate w;(o) has up-down symmetry, that is, it is invariant un-
der the sign change of all spin variables ;. At each time
interval, a site i is chosen at random. If the majority of the
neighbors are in state +1 (=1) then the site takes the value
+1 (1) with probability p and the opposite sign with prob-
ability g=1-p where p=(1+1y)/2. We will restrict ourselves
to the case 0=<g=1/2 so that 1=vy=0. The model can also
be interpreted as an Ising system in contact with two heat
reservoirs: one, the source of heat, at infinite temperature,
and the other, the sink of heat, at zero temperature [4]. Spin
systems in contact with two heat baths at different tempera-
tures [10-18] are perhaps the simplest models with nonequi-
librium steady states exhibiting dynamic phase transitions.
In the stationary regime, the present model displays a con-
tinuous phase transition from an ordered (ferromagnetic)
state to a disordered (paramagnetic) state. On a square lattice
it is found by numerical simulation that the critical point
occurs at ¢,=0.075(1) [4]. The ordered state occurs when
0=¢g<gq, and the disordered state when g.<g<1/2. For
0<g<1/2, this model does not obey detailed balance and
we expect a strictly positive entropy production. When ¢
=1/2 the system is completely disordered and corresponds to
a reversible system so that the entropy production vanishes
in this case. The critical behavior [4] puts this model in the
same universality class as the equilibrium Ising model. This
result comes from the conjecture by Grinstein er al. [5]
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which states that models with stochastic evolution rules with
up-down symmetry belong to the Ising universality class.

From the transition rate w, (o) given by Eq. (8) it is
straightforward to show that

wlo) (1 —>0f<20,+5) )

B/(0)=In i)

Therefore, the entropy flux per site ¢p=P/N for the majority-
vote model can be determined as the average

¢=(Bi(o)w(0)). (10)
Notice that for a square lattice the function F(x) reads

1
g(O’l + 0'2+ g3 + 0'4)(3 - 0'10'20'30'4).

(11

f(0'1+0'2+0'3+0'4)=

IV. MEAN-FIELD RESULTS

From the master equation we get the following equations
for the time evolution of the magnetization {o;)
d
—(07) == 2(aw(0)). (12)
dt
In the first order dynamic mean-field approximation, or
simple mean-field approximation, the correlations are ne-
glected and we need only this equation. We apply the ap-
proximation to the case of a regular lattice of coordination 4.
In the stationary state, the magnetization m={o;) is given by
the equation

m=%/m(3—m2). (13)

Using this approximation, we derive the following expres-
sion for the entropy flux:

AT P 2 4)
¢—<lnp>(4(3m m") 16(5+6m 3m”) |. (14)

The paramagnetic solution, m=0, gives the following ex-
pression for the entropy flux in the paramagnetic phase:

5 1-
¢=E(1—2q)ln (15)

The ferromagnetic solution is given by the expression

1-6
m= | —2 (16)
1-2¢q

which is valid for ¢ <gq.=1/6. From this result it follows that
the entropy flux in the ferromagnetic state is

1- 1-
p= 419, 1-q (17)

1-2¢q q
The stationary entropy flux, or equivalently the entropy pro-
duction, is a continuous function of the parameter g as shown
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FIG. 1. Entropy flux ¢ for the majority-vote model in the simple
mean-field approximation as a function of the external parameter g.
The dotted line indicates the position of the critical point occurring
at g.=1/6.

in Fig. 1. At the critical point it presents a singularity repre-
sented in this mean-field approximation by a discontinuity in
the first derivative.

V. NUMERICAL SIMULATIONS

We have simulated the majority-vote model on a square
lattice with periodic boundary conditions for different values
of the size N=L X L of the system. The simulation was per-
formed as follows. At each time step a site is chosen at
random. It takes the value of the majority sign of its neigh-
bors with probability p=1-¢g and the opposite sign with
probability ¢ in accordance with the prescription given by
Eq. (8). After discarding the first Monte Carlo steps the sta-
tionary properties are calculated. We used from 10° to 107
Monte Carlo steps to calculate the averages such as the flux
¢ given by Eq. (10). The magnetization and other quantities
such as the susceptibility have already been determined by
Monte Carlo simulations [4] and will not concern us here. It
is found that a continuous phase transition takes place at ¢,
=0.075(1) and that the critical exponents are the same as
those of the two-dimensional Ising model [4].

In Fig. 2 we show the numerical results for the entropy
flux ¢ for several values of the size of the system L. The
entropy flux is finite and continuous. It has a maximum and
vanishes when ¢ — 1/2 and when ¢— 0 as expected since in
these two limits the system reaches an equilibrium stationary
state. When ¢ — 1/2 we found numerically that the flux van-
ishes according to

1 2
¢=b<§—q> , (18)
with b=0.190(3) and when ¢— 0, it vanishes according to
¢=aq21nl;q, (19)

with a=1.83(5).
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FIG. 2. Stationary entropy flux ¢ for the majority-vote model by
Monte Carlo simulation as a function of the external parameter g
for various values of the system size L. The dotted line indicates the
position of the critical point occurring at ¢.=0.075.

We remark that the critical point does not correspond to
the maximum of ¢. Actually, it corresponds to the point of
inflexion occurring just before the maximum as can be seen
in Fig. 3. At the critical point the entropy flux is finite but has
a singularity which we assume to be of the form

¢: ¢C+At|q_qc

where ¢, is the value of the entropy flux at the critical point.
The amplitudes A, and A_ correspond to the regimes below
(g<g.) and above (¢>g,) the critical point. The critical
exponent { should be related to other critical exponents of
the majority-vote model. Since the entropy flux is a dynami-
cal quantity, { may not be related only to the static critical
exponents but also to the dynamic critical exponents.

To determine the critical behavior it is convenient to study
the derivative of the entropy flux with respect to the external
parameter ¢ which, as follows from Eq. (20), behaves as

‘, (20)

de _
— ~lg-q)"". (21)
dq
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FIG. 3. Enlargement of Fig. 2 around the critical point.
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FIG. 4. Derivative d¢p/dq of the entropy flux ¢ with respect to
the external parameter ¢ for several values of the system size L. The
dotted line indicates the position of the critical point occurring at
q.=0.075.

We have numerically determined d¢/dq for several lattice
sizes L as shown in Fig. 4. Using a finite-size scaling theory
[19], then this quantity as a function of L should diverge at

the critical point as
(@) ~ [(=0/v (22)
dq /.

where v is the critical exponent related to the correlation
length. In the present case v=1 because the majority-vote
model is in the universality class of the Ising model. A simi-
lar behavior is expected at the maximum. From Fig. 5, we
see that the maximum of d¢/dq increases approximately as
In L leading to an exponent {~1.

VI. CONCLUSION

We have determined by mean-field approximation and by
Monte Carlo simulations the stationary entropy production of
a nonequilibrium model with up-down symmetry, namely,
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FIG. 5. Maximum of the derivative d¢/dq of the entropy flux ¢
with respect to the external parameter g as a function of the loga-
rithm of the system size L.

the majority-vote model. The calculation of this quantity by
means of Monte Carlo simulations was possible because it
equals the entropy flux, in the stationary state, and so this
quantity can be written as an average over a stationary prob-
ability distribution. The mean-field analysis as well as the
Monte Carlo simulations show that the stationary entropy
production is positive for nonequilibrium situation, it van-
ishes when the system attains an equilibrium stationary state,
and exhibits a singularity at the critical point. The mean-field
results gives a singularity represented by a discontinuous
first derivative as usually happens in mean-field calculations
of the energy as a function of temperature in equilibrium spin
models. The Monte Carlo data, analyzed by a finite-size scal-
ing theory, indicate that the stationary entropy production
presents a singularity governed by an exponent {= 1. This
exponent may be related to the dynamic exponent. This re-
lationship will be the object of a future investigation.
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