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The analysis of real networks taken from the biological, social, and physical sciences often requires a
carefully posed statistical null-hypothesis approach. One common method requires comparing real networks to
an ensemble of random matrices that satisfy realistic constraints in which each different matrix member is
equiprobable. We discuss existing methods for generating uniformly distributed �constrained� random matrices,
describe their shortcomings, and present an efficient technique that should have many practical applications.
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I. INTRODUCTION

Characterizing the statistical and mathematical properties
of complex networks is an exciting multidisciplinary re-
search area having recent significant impact in the fields of
biology, social sciences, and physics �1–12,15�. When ana-
lyzing real-world systems, it has become common practice to
test whether an observed network is different from what one
might expect had it been constructed by chance alone—that
is, as if all network links were randomly rewired �4–12�.
This leads us into the arena of null-hypothesis testing where
the statistical features of an observed network are compared
to those found in an ensemble of representative random net-
works. This requires a technique for generating an ensemble
of random networks with each ensemble member being
equally as likely to occur as any other. However, generating
uniformly distributed samples from an ensemble of random
networks is a complicated procedure as emphasized by the
current controversy in the literature �5–7,10–12,15�, and the
more common algorithms fail to fulfill this criterion. Here
we introduce a method that generates uniformly distributed
random samples, is more computationally efficient than ex-
isting algorithms, is simple to implement, and should have
many practical applications.

A network is a directed graph whose nodes represent a set
of “agents,” with edges linking those nodes that interact in
some specified manner. In the study of biological networks,
the nodes might represent genes �/neurons� and the links
might represent regulation pathways �/synaptic connections�.
The degree of any given node is defined as the total number
of edges it is attached to. A network of N nodes can be fully
defined by a 0-1 binary matrix A= = �aij�N�N with aij =1 if a
directed link exists from node i to j and aij =0 otherwise.
Figure 1�a� makes clear the correspondence between a net-
work and its equivalent matrix representation. The row and
column sums of the matrix are given by ri=� j=1

N aij and
cj =�i=1

N aij, corresponding to the number of outgoing and in-
going edges of each node in the network, thereby fully de-
fining the degree distribution of all nodes.

The study of 0-1 binary matrices has a long history that is
not exclusively confined to networks �16�. In ecology, for

example, they are referred to as presence-absence matrices
and summarize the appearance of individuals or species at
particular habitats. In the field of island biogeography, rows
might represent different species, while columns might rep-
resent different sites or islands. If species i is present at site
j, then aij =1 in the binary presence-absence matrix A= ; oth-
erwise, aij =0. Presence-absence matrices do not necessarily
have an equal number of rows and columns, as do matrices
describing a network. Computational and statistical methods
for analyzing these matrices in biophysics and biological ap-
plications have been a source of great friction over the last
three decades �4–7,12–14�.

II. NULL-HYPOTHESIS APPROACH

The null-hypothesis approach is based on a comparison
between the observed network and an ensemble of networks
that are randomly constructed. By comparing the observed
data to “all possible worlds” one can deduce whether or not
it is significantly unusual and try to identify those features
which are responsible for any nonrandomness. In conducting
such tests, three ingredients are essential. First, it is impor-
tant to precisely define the random null hypothesis. Second
an algorithm is required for generating random networks that
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FIG. 1. �a� A typical network consisting of five nodes and seven
edges. The binary matrix A= = �aij�N�N on the right fully character-
izes the network structure. That is, if an edge is connected between
nodes i and j, then the matrix entry is set to aij =1; otherwise,
aij =0. �b� The feed-forward loop �FFL� is a three-node subgraph
with edges connected in the formation shown.
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are truly unbiased or “null.” Third, one needs to choose an
appropriate test statistic and determine whether the observed
score is significantly nonrandom with respect to the distribu-
tion of the statistic under the null hypothesis.

When defining the null hypothesis it is necessary to allow
for realistic constraints that preserve properties of the ob-
served data—properties that might be considered invariant.
One common practice that we adhere to in this paper requires
conserving the distribution of both incoming and outgoing
edges for all nodes in the network—i.e., the degree distribu-
tion. This may be achieved by ensuring that each random
matrix inherits the same row and column sums r� = �ri�i=1

N and
c� = �cj� j=1

N as the observed system under study. Consider what
might arise if the degree distribution of the nodes in the
observed network A= was scale free �with a power-law distri-
bution� and the random matrices failed to reflect this degree
distribution. In such a case, the null hypothesis might well be
rejected for this difference alone, regardless of any unusual
characteristics in A= itself.

Thus interest centers on generating independent random
samples from the full universe U�r� ,c�� of all �U� possible
matrices which have the same row and column sums. We
note that an explicit formula enumerating U�r� ,c�� has been
developed �17,18�, which might be useful for estimating
sample sizes when conducting null-hypothesis tests. Unfor-
tunately, the formula is awkward to work with since for even
relatively small matrices �U�r� ,c��� is a large and unwieldly
number.

III. SAMPLING BY “SWITCHING”

The switching method �6–9,16� is the simplest and best
known technique for generating a random sample of matrices
in U�r� ,c��. The method takes advantage of “checkerboard”
patterns appearing in a matrix:

] ]

. . . 1 . . . 0 . . .

] ]

. . . 0 . . . 1 . . .

] ]

⇔

] ]

. . . 0 . . . 1 . . .

] ]

. . . 1 . . . 0 . . .

] ]

The checkerboard on the left can be switched to its mirror
on the right and vice versa without changing the matrices’
row and column sums. Matrices are considered to be “neigh-
bors” if one can be obtained from the other by performing a
single switch. Naively, it might be expected that by randomly
switching a large number of checkerboard units in the ma-
trix, it is possible to generate a random sample of matrices
from U�r� ,c��. This is the basis of the popular switching
method. As each random switch generates a new neighboring
matrix belonging to U�r� ,c��, the technique can be formulated
as a Markov chain �MC�. It has been proven that any matrix
in the universe U�r� ,c�� can be obtained from any other by
some finite number of switches and thus the MC is irreduc-
ible �15,16�. Being aperiodic, the MC must eventually con-
verge to a unique stationary distribution �19�.

It should be noted that some network studies exclude the
possibility of self-loops—i.e., aii=0 for 1� i�N in the net-

work’s corresponding 0-1 matrix. In such cases it is often
necessary to also constrain U�r� ,c�� to contain only those ma-
trices whose diagonal terms are all aii=0. This class of ma-
trices is not always irreducible, and therefore the above MC
formulation, as it stands, might be thought inappropriate.
Nevertheless, we can show that even for such cases, the
switching method is valid �20�.

As an illustration of the switching method consider a uni-
verse U�r� ,c�� of all 3�3 matrices with r� = �1,2 ,1� and
c� = �1,2 ,1�. This universe has �U�r� ,c���=5 members, which
are presented in Fig. 2. An arrow between two matrices in-
dicates that they are neighbors and that it only requires a
single switch to transform from one to the other. If the
switching is random, then not all matrices will be visited
with the same frequency. Hence the sampling is not uniform
�5,6,15�. In fact, each matrix will be visited for a time that is
proportional to its number of neighbors �5,19�. Thus a ran-
dom walk through U�r� ,c�� will produce matrices with fre-
quencies proportional to their associated number of neigh-
bors. For the case of Fig. 2, four of the matrices have three
neighbors and one matrix has four neighbors. Hence the first
four matrices will appear with frequency 3/16 and the re-
maining matrix with frequency 4/16.

It is possible to calculate the unique stationary distribution
of the MC produced by the switching method in a more
formal fashion �15,19�. Suppose the MC is in the state rep-
resented by A= i, a matrix which has a total number of ni
checkerboard units or, equivalently, ni different neighboring
matrices. Let pij be the probability of moving from matrix A= i
to matrix A= j in the MC and set

pij = 	1/ni if matrix Ai and Aj are neighbors,

0 otherwise.

 �1�

Take �� = ��1 , . . . ,��U�� as a probability vector where �i is
the probability of the MC being in the “state” represented by
matrix A= i. As a consequence of the ergodic theorem, �i is
proportional to the mean amount of time the MC visits the

FIG. 2. An example universe of all 3�3 matrices with row
sums r� = �1,2 ,1� and column sums c� = �1,2 ,1� �see also �5,6,22��.
This universe has five members which are connected by a network
of checkerboard switches. Some members have a higher probability
of being switched to, and therefore when sampling this universe
randomly via checkerboard switches, the frequencies of the matri-
ces in the sample are not uniform.
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state A= i �19�. With each interchange, the probability distribu-
tion of the MC is updated by

�� t+1 = �� tP= , �2�

where P= = �pij�N�N is the transition matrix. For an irreducible
and aperiodic MC, the limiting stationary distribution is the
probability vector �� *= ��1

* , . . . ,��U�
* �, which fulfills

�� *P= = �� * ⇔ �
i=1

�U�

�i
*pij = � j

*. �3�

Taking �i=ni /�k=1
�U� nk we find that

�4�

Hence the stationarity condition is satisfied �Eq. �3�� and

�� * = �� S
* = �n1, . . . ,n�U����

k=1

�U�

nk. �5�

That is, each matrix is visited in proportion to the number of
checkerboards it contains or equivalently its number of
neighbors.

This has the implication that the switching method cannot
generate samples of U�r� ,c�� that are uniformly distributed.
Instead, it is biased—the greater the number of neighbors a
matrix has, the more time it will be visited by the MC. For
such an MC, the ergodic mean of a chosen statistic f con-

verges to its theoretical mean: f̄ t →
t→�

��� *
S

under the nonuni-

form distribution �� S
*, where t is the length of the MC.

As a check on this we examine a biological example
based on the so-called feed-forward loop �FFL� motif �8,9�.
The FFL motif is a particular three-node subgraph �see Fig.
1�b��, named aptly because of its hypothesised role in bio-
logical networks. There is large body of work �4,8,9� which
aims to test whether the FFL motif is significantly more
abundant in biological networks than chance would allow
for, in which case the FFL might be viewed as evidence for
an evolutionary design principle. Hence, as our test statistic,
we let f denote the number of FFL motifs in the matrix under
investigation.

Consider the specific universe U�r� ,c�� of all 10�10
matrices with r� = �3,1 ,7 ,2 ,1 ,3 ,7 ,2 ,5 ,9� and c�
= �4,8 ,1 ,4 ,9 ,3 ,1 ,6 ,3 ,1�. We listed all �U�=2214 matrices
of this universe and calculated the f score for each of these
matrices. It was thus possible to calculate the exact theoret-
ical mean ���� *

S
=58.2� of f under the stationary distribution

�� S
* given by Eq. �5�—that is, the mean expected to result

from implementing the biased switching method. �Note that
this differs from the theoretical mean for matrices that are
uniformly distributed.� The expected number of FFL’s per
matrix was found to be ��� *

S
=58.2 under �� S

*. Figure 3�a�
shows this by iterating via the switching method and plotting

the mean number of FFL motifs per matrix as a function of
sample size. The MC rapidly converges to the mean
��� *

S
=58.2 FFL’s.

IV. SAMPLING BY “SWITCHING AND HOLDING”

The so-called Monte Carlo Markov chain �MCMC� hold
method �15,21–23� was developed to sample matrices from
U�r� ,c�� uniformly and without bias. The method is based on
the way in which a checkerboard unit may be randomly se-
lected in a binary matrix. In this scheme a set of two differ-
ent rows and columns is chosen at random from matrix A= i. If
this set falls on a checkerboard unit, a switch is performed,
and the newly generated matrix A= i+1 is registered as the next
state in the MC. However, if the set does not fall on a check-
erboard unit, the old matrix A= i is again registered as the next
state in the MC—i.e., A= i+1=A= i—and the MC is said “to hold

FIG. 3. �a� Mean number of FFL’s per matrix generated by the
switch, hold, and add methods �marked with arrows�, as a function
of sample length t �i.e., number of iterations� from U�r� ,c��, where
r� = �3,1 ,7 ,2 ,1 ,3 ,7 ,2 ,5 ,9� and c� = �4,8 ,1 ,4 ,9 ,3 ,1 ,6 ,3 ,1�. All
three simulations converge to theoretical predictions �horizontal
lines I and II correspond to ��� S

* and ��� U
* , respectively�. �b� P values

of the hold and add methods obtained by a one-sampled t test �see

�28�� between the theoretical mean ��� U
* and the ergodic mean f̄ t as

function of sample length. The significance level ��=0.05� is plot-
ted in black.
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on” to this matrix. The process is repeated by finding a new
random set of rows and columns and either holding onto the
old matrix if this trial fails to fall on a checkerboard configu-
ration or moving onto the appropriate neighboring matrix if a
checkerboard is found. This contrasts with the switching
method where the MC moves to the next state only when a
checkerboard is found. In the hold method every trial, check-
erboard or not, leads to the creation of a new state. The
sample of matrices so produced is thus comprised of a union
of chains of repeats of matrices.

In the hold method the length of each chain is stochasti-
cally determined and there is a correlation between this
length and the number of neighbors of a matrix. The fewer
the neighbors, the smaller is the probability of finding a
checkerboard unit, thereby increasing the chance the MC
holds onto the matrix and leading to a longer chain of re-
peats. The outcome is a negative bias for matrices with many
neighbors �favored by the switching method� and a positive
bias for matrices with fewer neighbors. The scheme con-
verges to a uniform distribution of frequencies of the differ-
ent matrices in U�r� ,c��. To see this formally, define the
MCMC transition matrix P= as:

pij = �1/QN matrices Ai and Aj are neighbors,

1 − ni/QN for i = j ,

0 otherwise,



�6�

where QN= �N�N−1� /2�2 is the number of possible sets of
pairs of rows and columns one can choose in an N�N ma-
trix �24�. These relations satisfy what are referred to as the
detailed balance equations

��ipij = � jpji�i,j�U, �7�

where �i=1/ �U� is the target uniform distribution. Therefore,

�
j=1

�U�

� jpji = �
j=1

�U�

�ipij = �i�
j=1

�U�

pij = �i �8�

and thus

�� * = �� U
* = �1, . . . ,1�/�U� �9�

is the limiting stationary distribution �Eq. �3��. Hence the
hold method leads to a stationary state that is uniformly dis-
tributed. This is demonstrated in Fig. 3�a� where the average
number of FFL motifs �same U�r� ,c�� as in the previous ex-
ample� is plotted as a function of sample size for random
matrices generated by the hold method. The MC generated
by the hold method converges to the theoretical mean
��� U

* =57.9 as calculated exactly for uniformly distributed
random matrices �� U

* .
A significant drawback of the hold method arises because

the probability of repeating or holding onto a matrix is given
by pii �as defined in Eq. �6�� and is in general very large. An
analysis of a wide range of random matrices of different
densities shows that typically pii�0.87, meaning that in gen-
eral more than 87% of the trial swaps fail to land on a check-
erboard unit. This makes the hold method extremely ineffi-
cient and leads to long and redundant chains of copies. As a

result, the number of distinct matrices is greatly reduced, as
is the diversity of the random sample of matrices. Thus for
the hold method to give a reasonable estimate of the universe
of which it is being drawn from, the sample must be very
large, as can be seen from Fig. 3�a�.

It is possible to quantify this further. Based on a large-
scale analysis of simulations we conjecture that the maxi-
mum number of neighbors an N�N matrix has is
nmax= �N /2�4, causing pii=1−nmax /QN→0.75 for large N’s
�i.e., the maximum number of checkerboards a 12�12 ma-
trix can hold is 1296, and thus pii=0.7025�. Since the major-
ity of N�N matrices have much fewer neighbors than nmax,
the probability of holding on to them in the MC chain is
pii	0.75, and for some cases the probability can be close to
1 �see Fig. 4�. It follows that the chains of repeats tend to be
very long and the variety of different independent matrices
sampled is low. As a general example, consider a fictitious
population in which each item, once sampled, has a 0.9 prob-
ability of being resampled. A sample set assembled from 100
draws would enclose on average only �11 distinct items
rather than 100 independent samples. The rest of this sample
set would in practice contain repeats of these �11 items.

V. SAMPLING BY “SWITCHING AND ADDING”

Here we propose the add method for uniformly generating
samples from U�r� ,c��. The method takes advantage of com-
putational techniques to locate and list all ni checkerboards
of each new matrix A= i in the MC. This obviates going
through the inefficient search process of randomly stumbling
upon sets of rows and columns to locate a checkerboard unit.
With the checkerboards located ab initio, the probabilities pij

FIG. 4. We analyzed N�N matrices for a range of sizes from
N=5 to N=100. Matrices were filled randomly with 1’s at different
densities, denoted as 
= �number of ones� / �N�N�. The mean prob-
ability of holding was calculated through simulations and tended to
decrease with matrix size N but was always large with pii�0.87.
Notice that for matrices with density 
 and for matrices with density
1−
 the mean probability of holding is equal, and so for matrices
with 
=0.5 the mean probability of being held on to is lowest. For

=0.5 the minimum probability of being held is pii=0.75 and the
maximum is pii=1, with the mean probability being pii�0.87.
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of the transition matrix in Eq. �6� can be assigned directly
and used to make the decision of holding on to the same
matrix or advancing to a new one. Each time a matrix A= i is
generated by the MC it has a probability of pii=1−ni /QN for
being reregistered, thus generating a chain of repeats. The
chain is composed of a series of failures �with probability pii�
corresponding to “holds” and terminates with a single suc-
cess that corresponds to finding a switch. It thus has a geo-
metric distribution with expected length

Li = 1 + �
j=1

�

j�1 − pii�pii
j = 1 + pii/�1 − pii� = QN/ni. �10�

The add method takes into account long-term averages by
directly representing every matrix generated by the MC for a
time period �in terms of iterations� that is proportional to its
expected hold time Li. That is, when the MC generates ma-
trix A= i, Li copies of this matrix are immediately added to the
MC sample. In the long run, the add method must represent
matrices in the same proportions as the hold method. In prac-
tice, for each matrix A= i generated by the MC, the matching
number of neighbors ni is recorded. Once the MC ends its
course, these recorded values of neighbors may be retroac-
tively used to determine how many times each matrix should
hypothetically be held on to.

Seen in another way, according to Eq. �10� each matrix
should be weighted by a factor that is inversely proportional
to the number of checkerboard units it contains. The result
agrees with Zaman and Simberloff �5�. This is an intuitively
pleasing result since in the switching method Eq. �5� implies
that matrices are visited in proportion to their number of
checkerboards, but the weighting of the add scheme com-
pletely compensates for this effect yielding uniformity in dis-
tribution.

A potential concern in implementing the add method is
that the values of Li=QN /ni in Eq. �10� are generally frac-
tional. If necessary, the Li can always be transformed to in-
teger values by multiplication with a common number C
�e.g., the lowest common multiplier of the ni�, a procedure
that conserves their relative ratios. Conversely, this same rea-
soning reveals why it is permissible to use fractional �rather
than integral� chain lengths Li=QN /ni. For example, when
estimating the mean of a statistic f i from a sample with the
add method, we use the formula

f̄ t =

�
i=1

t

f iCLi

�
i=1

t

CLi

=

�
i=1

t
f i

ni

�
i=1

t
1

ni

, �11�

where C is some common multiplier of all the ni, such that
CLi is an integer for all i. As the QN and C cancel out, the

sample mean f̄ t reduces to the familiar “weighted mean,”
where each weight correlates to the probability of being
sampled, wi=1/ni.

The weighting scheme of the add method may be easily
understood by returning back to the simple example in Fig. 2
where matrices U�r� ,c�� contains only five distinct matrices.

Their relative frequencies need to be weighted in inverse
proportion to their respective number of neighbors. The
first four matrices will thus have relative frequencies
1 /3�3/16 and the fifth matrix will have relative frequency
1/4�4/16. That is, after the weighting, all matrices are
equiprobable.

VI. COMPARING THE SWITCHING, HOLD,
AND ADD METHODS

Figure 3�a� provides a comparison of the switching, hold,
and add Methods again for the example universe U�r� ,c�� of
all 10�10 matrices with r� = �3,1 ,7 ,2 ,1 ,3 ,7 ,2 ,5 ,9� and
c� = �4,8 ,1 ,4 ,9 ,3 ,1 ,6 ,3 ,1�. With respect to the FFL motif
statistic f , it is clear that the add method converges far more
rapidly to the exact mean ��� U

* =57.9 than the hold method,
while as we have seen the switching method, being biased,
converges to a different mean altogether. A one-sample t test
�see �28�� was conducted between the exact mean ��� U

* and

sample mean f̄ t for both the hold method and the add method
as the MC simulation in Fig. 3�a� progressed, giving a p
value as a function of sample size �Fig. 3�b��. In contrast to
the add method, the sample mean generated by the hold
method stays significantly different from the exact mean
even for large sample sizes ��105�. As some of the key
network studies in the literature have relied on the hold
method with sample sizes of �1000 matrices, this may be a
cause for concern. Figure 3�b� makes clear that the sample
size of these studies might be underestimated by several or-
ders of magnitude.

VII. RUN TIME

The superiority of the add method is due to several rea-
sons. Recall that in the hold method the main motivation for
randomly picking rows and columns is not for finding pos-
sible checkerboard units �there are more efficient methods�,
but for determining through trial and error the length of the
chains of repeats. In contrast, with the add method each ma-
trix in this scheme is “held” for a period of time that is
calculated instantaneously and deterministically, rather than
by repeatedly “flipping a coin.” By analytically calculating
these values, not only does the add method spare unneces-
sary computational loops, but it also delivers precise values
to act as a weights needed to counteract the natural bias
induced by switching. This helps to speed up convergence to
stationarity.

It has been brought to our attention that the add method
belongs to a class of event-induced algorithms, pioneered by
Bortz, Kalos, and Lebowitz �25� and has been used in differ-
ent areas of computational physics �26,27�. For example,
when simulating the low-temperature relaxation of spin
glasses, instead of having an algorithm iterate through many
rejections, the waiting time method �27� calculates an ex-
pected average waiting time. The algorithm then jumps im-
mediately to its next state at the appropriate moment without
iterations. By saving extensive computations, this approach
is far more efficient.
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The rapid convergence of the add method is even more
transparent in Fig. 5, plotted for the universe U�r� ,c�� with
r� = �1,4 ,5 ,5 ,6 ,5 ,7� and c� = �6,6 ,3 ,6 ,4 ,6 ,2� which consists
of �U�=218 matrices. In this figure we plot the distance be-
tween observed �normalized� frequencies d� �t�= �d1

�t� , . . . ,d�U�
�t� �

of matrices generated by the MC after t iterations and the
true stationary distribution �� *=�� U

* = �1, . . . ,1� / �U�. We de-
fine the distance as

��� U
* − d� �t�� = sup

Ai�U
��Ui

− di
�t�� �12�

and plot the distance as a function of the number of matrices
generated by the MC. The three different sampling methods
were used to generate the vector d� �t�. Convergence to station-
ary frequencies requires that ��� U

* −d� �t�� →
t→�

0. In Fig. 5, one

immediately sees that the switch method fails to converge to
a uniform distribution, while the add method converges far
more rapidly than the hold method.

In order to understand the add method’s convergence rate
better we compared it to t balls being dropped randomly into
a set of �U�=218 urns with equal probability. Let d� �t�

= �dA1
, . . . ,dA�U�

� be the observed �normalized� frequencies of
the balls in the urns. Figure 5 plots the distance ��� U

* −d� �t�� as
a function of t and makes clear that the balls converge to a
uniform distribution at what appears to be the same rate as
the add method. The comparison shows that the convergence
of the add method is set in the main by the sampling process
itself.

VIII. IMPLEMENTING THE NULL-HYPOTHESIS TEST

As an application of the add method consider the matrix
M= = �mij�N�N shown in Fig. 6 belonging to the universe

U(�1,4 ,5 ,5 ,6 ,5 ,7� , �6,6 ,3 ,6 ,4 ,6 ,2�) of 7�7 matrices.
This matrix describes a group of seven scientists interested in
seven different topics of research, such that each row in the
matrix represents a scientist and each column represents a
topic. If a scientist i is interested in topic j, then mij =1;
otherwise, mij =0. Assuming that some topics attract wider
interest than others and that some scientists have more di-
verse interests, we raise the following question: Is the distri-
bution of interests between scientists a matter of chance, or
do these particular seven scientists have some nonrandom
pattern of interest? For example, there might be a tendency
for scientists to be more drawn towards certain topics or to
avoid topics their colleagues are already working on. To the
naked eye, this matrix does not appear unusual, and it was
thus of interest to subject the matrix to the random null-
hypothesis test. We compared the matrix to the entire uni-
verse of all possible matrices sharing these constraints
�i.e., the universe U(�1,4 ,5 ,5 ,6 ,5 ,7� , �6,6 ,3 ,6 ,4 ,6 ,2�)�.
As a test statistics, we counted the number of times a scien-
tist i1 was interested in topic j1 while another scientist i2 was
interested in topic j2, such that i1 was not interested in j2, and
i2 was not interested in j1. This corresponds to the number of
checkerboard patterns between all scientist i1 and i2. The
total number of such checkerboards in matrix M= was found
to be n=23. The distribution of checkerboard scores found in
the universe U�r ,c� as sampled uniformly by the add method
is shown as a frequency histogram in Fig. 6. One sees that
the number of checkerboards in M= is unusual and signifi-
cantly overrepresented �p=0.04�, lying in the 5% critical re-
gion of the frequency histogram. Thus the interests of the
scientists is indeed nonrandom and there is an excess amount
of exclusion patterns whereby pairs of scientists tend to
avoid working on the same topic. This result may be repro-
duced by using the exact distribution of checkerboards found
from listing all �U�=218 matrices. However, if the same test
is carried out using the nonuniform switching method to gen-
erate a null model, a contrary result is obtained and the num-
ber of checkerboards in the above matrix is not significant

FIG. 5. The distance ��� U
* −d� �t�� �see Eq. �12�� is used as an index

of convergence to stationarity and plotted as a function of sample
length t for the three methods based on the universe U�r� ,c�� of
7�7 matrices �details in text�. The switch method converges to
theoretically predicted distance �upper black dashed line�. The add
method converges to zero in a manner similar to ball-urn sampling
experiment �lower gray dashed line; see text�. The hold method
converges towards zero as well, but at a much slower pace.

FIG. 6. Frequency histogram of the distribution of the checker-
board score �total number of checkerboards� in all matrices of U.
Matrix M= has 23 checkerboards and is thus considered to be un-
usual because it lies in the 5% significant region �in gray�.
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�p=0.07�. Thus the add method gives the correct interpreta-
tion while the switching method fails.

Finally, we note that we are able to generalize this method
so that it is also applicable for networks that lack self-loops
�aii=0 for all i�, as will shortly be reported elsewhere.

ACKNOWLEDGMENT

We gratefully acknowledge the support of the James S.
McDonnell Foundation, and thank Professor P. Sibani for
helpful suggestions.

�1� D. J. Watts and S. H. Strogatz, Nature �London� 393, 440
�1988�.

�2� A. L. Barabasi and R. Albert, Science 286, 509 �1999�.
�3� S. Maslov and K. Sneppen, Science 296, 910 �2002�.
�4� Y. Artzy-Randrup, S. Fleishman, N. BenTal, and L. Stone, Sci-

ence 305, 1107c �2004�.
�5� A. Zaman and D. Simberloff, Environ. Ecol. Stat. 4, 405

�2002�.
�6� L. Stone and A. Roberts, Oecologia 85, 74 �1990�.
�7� A. Roberts and L. Stone, Oecologia 83, 560 �1990�.
�8� R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,

and U. Alon, Science 298, 824 �2002�.
�9� R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I.

Ayzenshtat, M. Sheffer, and U. Alon, Science 303, 1538
�2004�.

�10� O. D. King, Phys. Rev. E 70, 058101 �2004�.
�11� S. Itzkovitz, R. Milo, N. Kashtan, M. E. J. Newman, and U.

Alon, Phys. Rev. E 70, 058102 �2004�.
�12� N. J. Gotelli and G. R. Graves, Null Models in Ecology �Smith-

sonian Institution Press, Washington, DC, 1996�.
�13� N. J. Gotelli and D. J. McCabe, Ecology 83, 2091 �2002�.
�14� B. F. J. Manly and J. G. Sanderson, Ecology 83, 580 �2002�.
�15� A. R. Rao, R. Jana, and S. Bandyopadhya, Sankhya, Ser. A 58,

225 �1996�.
�16� H. J. Ryser, Combinatorial Mathematics �The Mathematical

Association of America, Buffalo, NY, 1963�.
�17� B. R. Perez-Salvador, S. de-los-Cobos-Silva, M. A. Gutierrez-

Andrade, and A. Torres-Chazaro, Discrete Math. 256, 361

�2002�.
�18� B. Y. Wang and F. Zhang, Discrete Math. 187, 211 �1998�.
�19� S. M. Ross, Stochastic Processes �Wiley, New York, 1996�.
�20� See http://www.tau.ac.il/lifesci/departments/zoology/members/

stone/stone.html
�21� R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U.

Alon, e-print cond-mat/0312028.
�22� I. Miklos and J. Podani, Ecology 85, 86 �2004�.
�23� G. W. Cobb, www.mtholyoke.edu/courses/gcobb/stat344/

book.html
�24� For matrices representing networks with no self-loops,

QN=N�N−1��N−2��N−3� /4 is the number of “legal” pairs of
rows and columns one can choose from.

�25� A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys.
17, 10 �1975�.

�26� D. T. Gillespie, J. Comput. Phys. 22, 403 �1976�.
�27� J. Dall and P. Sibani, Comput. Phys. Commun. 141, 260

�2001�.
�28� Sequential samples were separated from each other by 1000

switches to prevent dependency. For the hold method the

argodic mean is f̄ t=�i=1
Ct Hif i / t and the variance is s̄t

2

= �Ct / �Ct−1����f2�t− � f̄ t�2�, where Ct is the number of chains
in a sample of length t and Hi is the length of each such

chain. For the add method, f̄ t= ��i=1
t Lif i� / ��i=1

t Li� and s̄t
2

= �t / �t−1����f2�t− � f̄ t�2�, such that for the sampled matrix at
state i, Li is the expected chain length �Eq. �10��.

GENERATING UNIFORMLY DISTRIBUTED RANDOM NETWORKS PHYSICAL REVIEW E 72, 056708 �2005�

056708-7


