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Simulation of periodic patterns often suffer from artifacts due to incommensurability of the intrinsic length
scale and the system size. We introduce a simple numerical scheme to avoid this problem in finding equilib-
rium domain morphologies from a Ginzburg-Landau-type free energy. In this scheme, the boundary values are
determined only by the local equilibrium condition at the adjacent bulk sites. The scheme is especially advan-
tageous in equilibrating patterns that have two or more characteristic lengths. We demonstrate it using a model
of lamellar-lamellar coexistence in block copolymer blends.
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I. INTRODUCTION

Field models are widely used in mesoscopic description
of condensed matter. Numerical minimization of Ginzburg-
Landau free energy functionals is often useful in finding the
equilibrium structures in the ordered phases, such as those in
liquid crystals and block copolymers. Many of the me-
sophases exhibit periodic domain structures, equilibration of
which requires efficient numerical schemes. For instance,
global ordering through the ragged energy landscape can be
accelerated by simulated annealing �1�, incorporating hydro-
dynamic flow �2� or artificial inertial terms in the Langevin
equation �3�. Another, and crucial problem in simulating pe-
riodic domain structures is the choice of boundary condition.
The periodic boundary condition is preferred to the Dirichlet
or Neumann boundary conditions because it retains the trans-
lational invariance. However, even the periodic boundary
condition must be used with care when the size of the simu-
lation box is not commensurate with the intrinsic period of
the pattern, which is quite a general case. Equilibrium mor-
phologies in such a case can be very different from those in
a bulk system; an example for a block copolymer system is
given in Ref. �4�. To minimize the finite-size effect, we must
choose the box size equal to or a multiple of the intrinsic
length scale, which is not known beforehand in most cases.
There are some clever algorithms that adjust the box size to
the intrinsic period �5–8�. They have been developed in the
context of molecular dynamics �MD� or MD Monte Carlo
hybrid simulations. For example, Parrinello and Rahman �6�
extended a constant-pressure MD algorithm �5� by regarding
both the box size and shape as dynamical variables obeying
Newton’s second law of motion. Originally developed for
simulation of crystalline structures, it has been successfully
applied also to polymeric mesophases �9�. However, these
box-size adjusting methods are not sufficient when the sys-
tem has two or more intrinsic length scales that are not com-
mensurate with each other. For example, consider the chiral
smectic-C phase of a liquid crystal. It has two characteristic
periods along the layer normal, namely the layer thickness
and the twisting pitch. In general, they are not commensurate
with each other, and hence cannot be commensurate with the
box dimension at the same time. In this way, if there are two
or more characteristic periods in the same direction, the box
size is incommensurate with at least one of the intrinsic
length scales.

In the present paper, we introduce a simple boundary con-
dition that avoids the above-mentioned problem. In this
scheme, the boundary values are determined only by the lo-
cal equilibrium condition at the bulk sites adjacent to the
boundary. Therefore we call our new boundary condition
“local equilibrium boundary condition.” In this scheme, we
update the boundary values to reduce the deviation from lo-
cal equilibrium at the nearest bulk sites. Thus, equilibration
at the boundary proceeds in company with equilibration in
the bulk.

The organization of this paper is as follows. In Sec. II, we
introduce the local equilibrium boundary condition. In Sec.
III, the scheme is applied to equilibrium patterns of block
copolymer blends in lamellar-lamellar phase coexistence. In
Sec. IV we discuss the results and advantage of the present
scheme over conventional boundary conditions. We conclude
in Sec. V.

II. LOCAL EQUILIBRIUM BOUNDARY CONDITION

In this section, we explain the concept and implementa-
tion of the local equilibrium boundary condition using
simple field models to find the equilibrium morphology. We
consider a system described by an order parameter ��r , t�
with a free energy F���r , t�� containing only local interac-
tions �given in terms of gradient expansion�. The task is to
minimize the free energy by numerically solving a simple
dynamic equation for the order parameter. Since our purpose
is to obtain the equilibrium morphology, the dynamic equa-
tion is not required to describe the realistic dynamical pro-
cesses and can be chosen with some arbitrariness, as long as
it decreases the free energy in time and does not violate
conservation laws. First we consider the nonconserved case,
and assume the dynamic equation

��

�t
= −

�F

��
. �1�

To be concrete, we use the free energy

F =� dr�A

2
�2 +

B

4
�4 +

C

2
����2� , �2�

when necessary, for which Eq. �1� becomes the Allen-Cahn
equation �10�. In numerical simulation, the right-hand side of
Eq. �1� is discretized in the form
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− � �F

��
	

i
= − A�̂i − B�̂i

3 +
C

��x�2

j

Lij�̂ j , �3�

where � � is the discretization operator, i and j are site indi-

ces, �̂i is the value of � at i, �x the grid size, and Lij the
coefficient matrix of the discretized Laplacian. On the
d-dimensional hypercubic lattice, for example, we can set

Lij
=− 2d if i = j ,

=1 if i and j are nearest neighbors,

=0 otherwise.
� �4�

The time-discretized dynamic equation in the Euler scheme
is

�̂i�t + 1� − �̂i�t�
�t

= − � �F

��
	

i
�t� , �5�

where �t is the time step. The equilibration procedure is to
solve it under an appropriate boundary condition.

In the fully equilibrated state, the local equilibrium con-
dition ��F /���=0 holds at any bulk site, while at boundary
sites we cannot evaluate ��F /��� as it contains spatial de-
rivatives of the order parameter. To determine the boundary
value, we shall focus on any bulk site a which is adjacent to
a boundary site b. Our idea is to update the boundary value

�̂b towards the local equilibrium condition at the adjacent
site,

� �F

��
	

a
= 0. �6�

This idea is implemented by the following dynamic equation,
which reduces ��F /���i in time,

��̂b

�t
= −

�

��̂b



a

W�� �F

��
	

a
� . �7�

Here, the sum is taken over the bulk sites adjacent to b, and
W�x� is a potential function that has only one minimum at
x=0. The simplest choice would be the parabola,

W�x� =
w0

2
x2.

The curvature w0 must be chosen so that equilibration pro-
ceeds simultaneously at the boundary and in the bulk. If w0 is
too large, the local equilibrium condition �6� is satisified in-

stantaneously, which means that �̂i is frozen �as it obeys Eq.

�5��. If w0 is too small, then �̂b will not change much from
the initial value until the bulk equilibrates.

It is straightforward to extend the above scheme to a con-
served system, which is described by the dynamic equation

��

�t
= �2�F

��
. �8�

We approach the stationarity condition at the adjacent bulk
site,

��2�F

��
	

a
= 0, �9�

by solving the dynamic equation for the boundary values,

��̂b

�t
= −

�

��̂b



a

W���2�F

��
	

a
� . �10�

We note that the local equilibrium condition for a conserved
system is given by j�−���F /���=0 and is stronger than
the stationarity condition �2��F /���=0. However, decrease
of the current j in the bulk together with stationarity at the
boundary naturally ensures the decrease of j at the boundary.
For simplicity, we call Eq. �10� the local equilibrium condi-
tion.

Here we have a remark on the definition of the boundary
sites. Let us consider a hypercubic lattice of size Nd, whose
sites are located at r= �r1�x ,r2�x , . . . ,rd�x� where rs

=1,2 , . . . ,N �s=1,2 , . . . ,d�. Let us call a pair of sites i and j
are in the nth shell of each other, when they satisfy

max
s

�rs,i − rs,j� = n . �11�

For the model free energy �2� and the Laplacian �4�, calcu-
lation of ��F /���i requires �2� at the site i, which involves
only the first shell of i. Therefore, for the nonconserved case,
the boundary sites are simply the sites in the outermost layer
of the lattice; at least one of the site coordinates xs equals 1
or N. On the other hand, for the conserved case, calculation
of ��2�F /���i requires a fourth-order derivative, which in-
volves both the first and second shells of i. Therefore, we
define the boundary sites as the sites in the first and second
outermost layers of the lattice; at least one of the site coor-
dinates rs equals 1, 2, N−1, or N. In this way, our definition
of the boundary sites depends on the model free energy, dis-
cretization scheme, and the dynamic equation.

Now we comment on the range of applicability of the
proposed scheme. As mentioned above, the potential func-
tion W�x� and its curvature must be chosen carefully to avoid
freezing of the boundary values in the early stage of equili-
bration. In general, W can be a functional containing the
gradients of �F /�� �nonconserved case� or �2�F /�� �con-
served case�. Sometimes we find it better to minimize the
square of ���F /���a than the square of ��F /���a, because
the latter directly leads to vanishing of ��F /���a and easily
stops relaxation at the boundary. However, we do not have a
general prescription at the moment and limit ourselves to a
simplest possible choice.

Finally we should mention a restriction on the initial con-
dition. Our scheme with the conventional bulk dynamic
equation such as �1� or �8� is not sufficient to obtain true
equilibrium patterns from disordered initial conditions. In
fact, the initial configuration must be well ordered in that it is
free from defects or contains only a small amount of defects.
This is because the motion of defects is driven by deviation
from the local equilibrium condition. The deviation at the
boundary decays to zero exponentially fast according to Eq.
�7� or Eq. �10�, while the bulk dynamics �1� or �8� leads to
power-law-type slow coarsening of defects. Therefore, de-
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fects are trapped at the boundary before they can annihilate
in the bulk. In order to obtain a defect-free equilibrium pat-
tern from an arbitrary initial condition, we must modify the
bulk dynamic equation and avoid trapping by local minima
of the free energy. Such accelerated equilibration schemes
for periodic patterns have been proposed in various contexts
�1–3�. We could attempt to combine these methods for the
bulk and our new boundary scheme, which is a subject of
future work. In the present paper, we limit ourselves to a
demonstration of our new boundary condition with a conven-
tional bulk dynamic equation. This means that we must
choose an initial configuration sufficiently close to the equi-
librium one.

III. SIMULATION OF BLOCK COPOLYMER BLENDS

In this section, we test the local equilibrium boundary
condition in a two-dimensional simulation of diblock copoly-
mer melts. We focus on the lamellar-lamellar phase coexist-
ence in a mixture of AB and CD symmetric diblock copoly-
mers. The chain lengths of AB polymer and CD polymer are
different. This results from a macrophase separation into
AB-rich and CD-rich domains, each of which are microphase
separated into A�C�-rich and B�D�-rich layers �respectively�.
In equilibrium, the AB-rich and CD-rich lamellae have dif-
ferent layer widths due to the different chain length, and
make a certain angle to each other so that the A-rich and
C-rich layers are smoothly connected at the phase boundary;
see Fig. 1. How can we numerically reproduce this domain
morphology? It is clear that the pattern is not compatible
with the periodic boundary condition, unless there holds a
special lucky relation between the system size, the two layer
thicknesses, and the angle between the layers. Therefore, the
lamellar-lamellar coexistence provides an ideal test case for
our local equilibrium boundary condition. We compare it
with the periodic boundary condition by examining the sta-
bility of ordered phase. For this purpose, we can use the
initial condition close to the equilibrium configuration.

We use a phenomenological Ginzburg-Landau model
adopted by Ohta et al. �13�. Below we will briefly summa-
rize their model. The order parameters are �0=��A+��B,
�1=�A−�B, and �2=�C−�D, where �K is the volume frac-

tion of K segment and ��K=�K− �̄K is its spatial fluctuation
�K=A ,B ,C ,D�. The incompressibility condition 
K�K=1 is
assumed. The free energy is a sum of local and long-range
parts,

F = Flocal��0,�1,�2� + Flong��1,�2� . �12�

The local part is given in the form

Flocal =� dr� 

K=0,1,2

�gK��K� +
CK

2
���K�2�

−
B0

2
�1�2 −

B1

2
�0�1

2 +
B2

2
�0�2

2� , �13�

where Bi and Ci are constants and gK�x� is a double-well
function. Instead of the conventional polynomial form
gK�x�=−x2 /2+x4 /4, we choose the form

gK�x� = − AK ln�cosh x� +
x2

2
, �14�

which enhances numerical stability �11�.
The long-range repulsive interaction between the same

species, which is an entropic effect due to the A-B and
C-D bondings, is given by

Flong = 

K=1,2

�K

2
� dr� dr���K�r�G�r − r����K�r�� ,

�15�

where the coefficient �K is proportional to NK
−2 �see Ref.

�13��, N1 and N2 being the chain length of AB and CD co-
polymers �respectively�, and the kernel G�r� is defined by
−�2G�r�=��r�. The dynamic equations are of conserved
type and read

��K

�t
= �2 �F

��K
�K = 0,1,2� . �16�

Using the property of G�r� mentioned above, the equations
for �1 and �2 can be rewritten as

��K

�t
= �2�Flocal

��K
− �K��K − �̄K� . �17�

Thus, although the free energy contains long-range interac-
tion, the dynamic equations are completely local and con-
tains only spatial derivatives, which is a requisite for imple-
menting our local boundary conditon. We use its dynamic
version, Eq. �10�, with � replaced by �K and the potential
function for each component,

WK�x� =
wK

2
x2 �K = 0,1,2� . �18�

Now we define some terminology to avoid confusion. We
use “boundary” for the first and second outermost sites of the
simulation box and “interface” for the domain wall between
AB-rich and CD-rich regions. Assuming sine-wave profiles
for the lamellae and a sigmoidal profile for the interface, we
estimated the amplitudes, layer thickness, and interfacial

FIG. 1. A schematic domain morphology of coexisting lamellar
phases. Layers with different thicknesses are joined by making a
finite angle between them.
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thickness of the equilibrium morphology; see the Appendix
for details. With these we constructed a trial equilibrium pat-
tern, which we chose to be our initial condition,

�0�r� = �0 tanh�kx� ,

�1�r� = �1 + �1 tanh�kx�cos�q1 · r + �1� ,

�2�r� = �2 + �2 tanh�kx�cos�q2 · r + �2� , �19�

where we assumed the interface is located at x=0. In order to
lower the interfacial energy, the cross-sectional profiles of
the two phases at x=0 must match �see Fig. 1�. This gives
the relations �1=�2 and q1y =q2y �Q, the latter leading to
qKx= ±�qK

2 −Q2 �K=1,2�. Since the equilibrium wave num-
bers �q1� and �q2� are known, the value of Q can be deter-
mined by the angle

	 = arctan� q1x

q1y
� , �20�

which we regard as an adjustable parameter in our initial
condition.

The parameter values we used are A0=1.3, A1=1.0001,
A2=1.1, B0=0.1, B1=0.085, B2=0.09, C0=C1=C2=0.5, �1
=0.000 95, and �2=0.019. The angle 	 is set to 50° unless
stated otherwise. The grid size is �x=1, and the time step is
�t=0.1. The parameters for the local equilibrium boundary
condition are chosen to be w0=w1=w2=2. These values are
chosen by the following consideration. First, A0 determines
the amplitude �0 of macrophase separation into the AB-rich
��0
0� and CD-rich ��0�0� phases. We assumed strong
segregation, ��0��1. The thickness of the interface is esti-
mated from C0. For each macrophase, we fixed the ampli-
tudes �K �K=1,2� of the lamellae in terms of AK and BK.
The amplitudes are chosen small enough, which corresponds
to weak segregation. The coupling B1 �B2� induces mi-
crophase separation in the AB-rich �CD-rich� domain, in
which the amplitude of �1��2� must be larger than the other
�respectively�. The coupling B0 describes the attraction of
A-C and B-D, because of which the AB and CD lamellae
tend to fit each other at the interface. Once given the equi-
librium amplitudes of lamellae, we can control the layer
thicknesses through �K and CK. Especially, from the value of
�K, the ratio of the two chain lengths can be calculated as
N1 :N2=�0.019:�0.000 95=2�5:1. For more details, see the
Appendix and also Ref. �13�. We also found that the system
is close to equilibrium when the angle 	 is about 50°. For
other values of 	 we tested, the system was trapped in local
minima of the free energy, as explained in the next section.

IV. RESULT AND DISCUSSION

In Fig. 2, we show the snapshots of the order parameters
at t=0, 100, 500, and 1000. The results for the local equilib-
rium and the periodic boundary conditions are shown in the
left-hand and right-hand columns, respectively. In each snap-
shot, �1�r� is plotted in the AB-rich domain �where �0�r�

0�, while �2�r� is plotted in the CD-rich domain. With the
periodic boundary condition, the lamellae get deformed near

the boundary. This is to smoothly connect the domains at the
two ends, at the cost of elastic bending energy. On the other
hand, the local equilibrium boundary condition induces only
a slight deformation of the lamellae. Thus the new boundary

FIG. 2. Time evolution of the coexisting lamellar patterns.
Snapshots at �a� t=0, �b� t=100, �c� t=500, and �d� t=1000. The
left-hand and right-hand columns show the result for the local equi-
librium and periodic boundary condition, respectively.
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condition causes less finite-size effects compared to the pe-
riodic one, not only in the morphological sense but also in
lowering the free energy.

To further compare the two boundary conditions �the local
equilibrium and the periodic�, we measured the mean-square
relaxation rate

H�t� = 

K=0,1,2

� ��K

�t
�2

= 

K=0,1,2

��2 �F

��K
�2

, �21�

which quantifies the deviation from equilibrium. We plot
H�t� in Fig. 3. We see that H�t� for the local equilibrium
condition is always smaller than that for the periodic bound-
ary condition. We note that the difference between H�t� for
the two boundary conditions is largest at t=0 �see the inset of
Fig. 3�. This difference is due to the mismatch of the do-
mains at the two ends, and is reduced mainly in the early
stage. In the final stage, large-scale distortions of the lamel-
lae are continuing and the rate is several times larger for the
periodic boundary condition.

For the local equilibrium boundary condition, we may say
that the system reaches the equilibrium at the late stage �t
�500�, because there is no major difference between Fig.
3�c� �t=500� and Fig. 3�d� �t=1000�. The time difference
between �c� and �d� is comparable to the relaxation time
scale 
, which can be estimated as follows. For t�500, we
may say that H�t� decays exponentially. Using the values
H�500��3.5�10−10 and H�1000��8.7�10−11, 
 is esti-
mated as 
�500/ ln�H�500� /H�1000���360.

We also checked how the order parameter is equilibrated
near the boundary. Shown in Fig. 4 is the order parameter
change �2�t=1000�−�2�t=0� in the adjacent sites �in the
third outermost layer of the lattice�. We can see that the
boundary values are not frozen although its change is small
compared to the change in the center of the bulk.

We also varied 	, the initial angle between the AB-rich
lamellae and the phase boundary. In Fig. 5 shown are the
snapshots taken at t=1000 for �a� 	=40° with q1x and q2x
having different signs and �b� 	=90°. In both cases, we see

that the lamellae are sharply bent near the phase boundary.
The bent is so sharp that the curve has an overshoot. In Fig.
5�a�, the lamellae in the both phases exhibit undulation. In
Fig. 5�b�, only the long-chain lamellae are bent while the
short-chain lamellae remain straight. This should be due to
the difference in bending stiffness of the two phases. These
morphologies are considered to be far from true equilibrium.
However, we note that overshoots like in Fig. 5�a� have been

FIG. 3. Decay of the mean-square relaxation
rate H�t� for the local equilibrium and periodic
boundary conditions. The solid line �local equi-
librium� is always below the dotted line �peri-
odic�. Inset, relaxation in the early stage.

FIG. 4. �a� Snapshot at t=1000 with the local equilibrium
boundary condition �same as Fig. 2�d� in the left-hand column�. �b�
Change of order parameter �2�t=1000�−�2�t=0� along cross sec-
tions A-B �third outermost sites� and C-D �center line� in panel �a�.
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observed experimentally �see Fig. 4�a� of Ref. �12��. To re-
move the irregular structure, we must rotate the whole lamel-
lae. Such global motion does not occur in a realistic time
scale in laboratories.

V. SUMMARY

In this paper, we introduced the local equilibrium bound-
ary condition to minimize the effect of system size and to
obtain equilibrium patterns for a bulk system. The method
can be applied to a wide class of Ginzburg-Landau free en-
ergy and is especially advantageous for incommensurate sys-
tems. We applied it to the coexisting lamellar phases in a
binary mixture of block copolymers. We showed that the
new scheme leads to a more homogeneous pattern than the
periodic boundary condition. By varying the initial angle be-
tween the two lamellae, we obtained overshoots of lamellar

domains, which has been observed experimentally. These re-
sults support the advantage of the new boundary condition
over conventional ones.
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APPENDIX: INITIAL CONDITION

Here we explain the details of our initial condition. First
we consider a single lamellar phase. We assume the order
parameter profile

�0�r� = �00,

�1�r� = �10 cos�q · r� , �A1�

�2�r� = �20 cos�q · r� .

where �10,�20��00�1, which corresponds to the weak
segregation regime in the microphase separation and strong
segregation regime in the macrophase separation. Substitut-
ing into Eq. �12� and using the relation cosh�x��1+x2 /2
+x4 /24 for x�1, we can approximate the free energy density
f = f�q ,�00,�10,�20� as

f � 

K=1,2

�1

4
SK�q,�00��K0

2 +
AK

32
�K0

4 �
− A0 ln�cosh �00� +

1

2
�00

2 − B0�10�20,

SK�q,�00� = 1 − AK − BK�00 + CKq2 +
�K

q2 . �A2�

We minimize this with respect to q to obtain the equilibrium
wave number,

q0 = � �1�10
2 + �2�20

2

C1�10
2 + C2�20

2 �1/4

. �A3�

The resulting free energy density f0= f�q0� is then minimized
with respect to �00, neglecting the small cubic terms propor-
tional to B1 and B2, and finally minimized with respect to �10
and �20 restoring the cubic terms. Thus we have two sets of
solutions,

�q,�00,�10,�20� = � �q1,�0,�1 + �1,�2 + �2� ,

�q2,− �0,�1 − �1,�2 − �2� ,
�

�A4�

which correspond to the AB-rich lamellae and CD-rich
lamellae, respectively.

FIG. 5. Domain morphology for initial conditions with a large
angle between the AB and CD lamellae. Snapshots at t=1000 ob-
tained with the local equilibrium boundary condition. The angle 	 is
�a� 40° with q1x and q2x having the different sign, �b� 90°. �c�
Magnified picture of the enclosed area of �b�, which shows an
“overshoot” in the wider stripe close to the phase boundary.
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