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We present a critical investigation of the functional relationship between the two pressure time series
routinely used to define the index characterizing the North Atlantic Oscillation (NAO), well known to regulate
global climate variability and change. First, by a standard Markov analysis we show that the standard NAO
index based on the pressure difference is not optimal in the sense of producing sufficiently reliable forecasts
because it contains a dominating stochastic term in the corresponding Langevin equation. Then, we introduce
a variationally optimized Markov analysis involving two coupled Langevin equations tailored to produce a
NAO quasi-index having the desired minimum possible stochasticity. The variationally optimized Markov

analysis is very general and can be applied in other physical situations involving two or more time series.
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I. INTRODUCTION

The North Atlantic Oscillation (NAO) is increasingly be-
coming the focus of much attention in climate research lately
because several studies show now its importance to rival
with that of the El-Nifio Southern Oscillation (ENSO) in
terms of significance in global climate variability [1-7]. To-
gether with ENSO, the NAO is a major source of seasonal to
interdecadal variability in the global atmosphere [8,9].
Roughly speaking, the NAO describes a large-scale meridi-
onal vacillation in atmospheric mass between the anticyclone
over Azores and the subpolar low pressure system over Ice-
land.

The spatial pattern of the NAO is a pronounced dipolelike
pressure anomaly over the North Atlantic, with one pole at
the Azores high and another over the Iceland low. This di-
pole has two main phases [8]: a positive NAO phase, when
there is a strong pressure gradient between Iceland and
Azores, and a negative phase, when the pressure gradient
gets weaker. The positive NAO phase is associated, for in-
stance, with stronger westerlies over the eastern North Atlan-
tic and the European continent and with high precipitation
over Scotland and Norway [4,8,10]. The negative phase is
associated with weaker westerlies, with high precipitation
over the Mediterranean and Black Sea, and with the surface
air temperature in the North Atlantic [2,6,8,10]. Other vari-
ables, such as sea-ice levels and the geopotential heights, are
also affected by the NAO phenomenon [3,4].

Traditionally, the state of the NAO dipole system is char-
acterized by an index, the so-called NAO index A/, which is
basically the pressure difference between the pressure P; at
the high NAO pole and pressure P, at the low pole, namely

NEN(m,y)=P>1Y(m’)’)_P;(ma)’), (1)

where Pf(m,y) =[P;(m,y)—{P;)(m)]/ o,(m) with m, y denot-
ing month and year, respectively, (P;)(m) representing the
average of the pressure P; at the mth month over some sig-
nificant period of years, and o; being the corresponding stan-
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dard deviation. The fact that there are many possible loca-
tions from where to select P; and P, results in many
different NAO indices [8]. One of the most widely accepted
index is that discussed by Hurrel [9], based on the standard-
ized air-pressure difference [11] between Portugal (Lisbon),
P, and Iceland (Stykkisholmur), P,.

The question of whether or not the NAO is a chaotic or a
stochastic process was recently addressed in the literature by
Stephenson et al. [12]. Except for a few rare events, Collette
and Ausloos [13] have subsequently found that all partial
distribution functions of the NAO monthly index fluctuations
have a form close to a Gaussian, indicating a lack of predic-
tive power of the present index. However, we think that this
pronounced stochasticity could originate from Eq. (1), i.e.,
from a nonoptimal choice of the mathematical representation
of the index. Instead of using the pressure differences, we
ask whether it would be possible to find a better functional
relationship between the pressures allowing one to extract
from the data a dynamical equation with stochastic terms not
so dominant.

The goal of this paper is to propose a simple procedure to
obtain a new index with reduced stochasticity. The key point
is to directly use the two pressure time series and set up a
variational problem allowing one to quench noise terms in an
appropriate Langevin equation. Technically, this can be done
as follows. Consider the normalized pressure series P; as the
dynamical variables of two coupled systems and for them to
obtain a system of equations involving two coupled Lange-
vin equations governing the evolution of the pressure incre-
ments. Next, transform variables, from pressures into two
new variables, or “quasi-indices.” Then, by imposing a mini-
mum condition in one of the new variables one gets a varia-
tional problem which yields an optimal functional relation-
ship between the pressures. The Langevin equation
underlying this variationally optimized Markov analysis has
the smallest stochastic terms.

The variationally optimized Markov analysis being intro-
duced here may also be applied to generic situations involv-
ing two or more time series correlated (coupled) with each
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other. In particular, the variational approach is expected to be
useful in problems where the familiar Markov analysis of
single time series has already proved to be efficient, for in-
stance, to study small-scale turbulence [14], dynamical sys-
tems, such as the stochastic Lorenz system [15], statistics of
the foreign exchange U.S. market [16], the roughness of sur-
faces [17], and also in the geophysical context, namely to
study liquid water paths in clouds [17,18] and surface winds
[19].

We start by reviewing briefly in Sec. II the general theory
and numerical procedures to derive the Langevin equation
from the time series and in Sec. III we apply these proce-
dures to the monthly NAO index. Although in the case of the
NAO index there is only a small amount of available mea-
surements, the Markov analysis yields still reasonable re-
sults. We show that the Langevin equation underlying the
evolution of NAO index increments as a function of delay
times is highly stochastic, precluding its use for predictions.
In Sec. IV we extend the Markov analysis to the pair of
pressure time series from which the NAO index is usually
calculated [9]. We find that the underlying system of two
coupled Langevin equations still has high stochasticity. Fi-
nally, in Sec. V we introduce our main contribution, the
variationally optimized Markov analysis, which allows us to
obtain a new functional involving the pair of pressure mea-
surements. For this functional the Langevin equation yields
minimum stochasticity. Discussions and conclusion are given
in Sec. VL.

II. MARKOV PROCESSES AND TIME SERIES

Friedrich, Peinke, and co-workers have recently shown
[14-16,20] how to use experimental data to reconstruct the
dynamics of a system presumed to underly a stochastic time
series, under the assumption that the process is Markovian.
Their numerical procedure for reconstruction is based on the
derivation of drift and diffusion coefficients directly from
measured data. From the first and second order conditional
moments (of the conditional probability distribution of the
index ) one obtains Fokker-Planck and Langevin equations
for the evolution of the system, whenever the fourth condi-
tional moment of the increments vanishes [21]. In this sec-
tion we describe briefly this procedure for a generic time
series {X(n)} where n=1, ... ,N.

The starting point is the construction of auxiliary time
series {X,,(n)}, where X,,(n)=X(n+t)-X(n—1) for n=t
+1,...,N—t, where ¢ is an integer. To each auxiliary time-
series corresponds a probability density function p(X,2t).
The process is a Markovian one when the multiconditional
probability density function (PDF) fulfills a Chapman-
Kolmogorov equation [21]. If, in addition, the fourth condi-
tional moment vanishes, then one can consider that there is a
diffusion process over time increments underlying the time
series, which can be described by a Fokker-Planck equation
[21]. This diffusion process is governed by the Langevin
equation

d —_—
X =D+ DK, @)
T

where 7(7) is a Langevin force (&-correlated Gaussian
noise), and D" and D® are the first two Kramers-Moyal
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FIG. 1. Time series of the monthly NAO index N as defined in
Eq. (1), computed from measured data [11].

coefficients, the drift and the diffusion coefficients, respec-
tively, given by

DW(X 7 =— hrn MO 7AD, (3)
k! AT—0

where k=1,2 and M(k)(XT, 7,A7) are the conditional mo-

ments. These moments are given by

1
M(k)(XT’ T’AT) = E_ E [XT+AT(n) - X’r(n)]k 5 (4)

Xrenr

where the sum is taken over histograms of the PDFs of X 4,
and p=p(X . a, 7+A7|X,,7) is the conditional probability
given by the Bayes theorem, extracted directly from the aux-
iliary time series. A more detailed description of these pro-
cedures can be found in Ref. [14].

For practical purposes, the time 7 labeling the time series
is rescaled in Eqgs. (2)—(4), to 7=log,(€,,/1) where €, is the
Markov length, i.e., a time lag beyond which the values of
the time series are uncorrelated [16].

III. THE MONTHLY NAO INDEX AS A STOCHASTIC
PROCESS

In this section we assume the monthly NAO index time
series to be a Markovian process in time and perform the
standard Markovian analysis [14—16]. As will become clear,
such time series are highly stochastic, meaning that forecasts
based on them are unreliable. Here we present a complete
description of the main steps of the standard method, but also
including error analysis.

Figure 1 shows the time series of the standard monthly
NAO index between Portugal (Lisbon) and Iceland (Stykk-
isholmur) from January 1825 up to November 2002. Con-
secutive values in this series are highly uncorrelated as can
be checked by evaluating the correlation function

C(t) = 2 [Nk +1)

e - MINW - A1 (5)

where is the index average and o the corresponding vari-
ance. When the system is nonlinear, one computes [22] the
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FIG. 2. The correlation function C(r) and mutual information
I(t) for the standard monthly NAO index A as defined in Eq. (1). As
one sees, correlations may be neglected for 1> 1 (see text).

mutual information /(f) and records the first time that it de-
creases abruptly. As can be seen from Fig. 2 the correlation
function C(¢) vanishes for =1 month while the mutual in-
formation decreases abruptly for this same time lag. Thus,
both quantities indicate that consecutive values of the NAO
index are essentially uncorrelated. Nonlinear dependencies
might still exist motivating a Markovian analysis as follows.

The conditional moments M") and M® defined in Eq. (4)
are computed from the time series in Fig. 1 as a function of
the time difference At=t,,~t, where t,, is the maximum
value of ¢ considered. Figure 3 shows M"(N5,,7,Ar) and
MP(N,,,1,At) for tyey=32 and N5 (n) = N(n+1)—-N(n-1) at
three different arguments of its PDF, namely, J\/'Qt:Jv ,/V +0

and A'—o. From a visual inspection one sees that for small
At the conditional moments behave in an irregular fashion,
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while for A¢= 16 they vary approximately linearly with the
time lag. In fact, scaling arguments [13] indicate that a suit-
able choice for the Markov length is €,,=16 and we take this
value as the Markov length for the time series, as indicated
by the vertical dotted line. At the end of this section we
confirm that this was indeed a proper choice. The error bars
of the conditional moments are computed in the standard
way (see Appendix A).

The limit in Eq. (3) is obtained using the rescaled time la
A7=17-7,,p=log,(t,/t), making a linear fit to M M and M@
beyond the Markov length, and intersecting it with the ver-
tical axis A7=0. This limit gives an approximate value for
the corresponding Kramers-Moyal coefficients, the drift DV
and the diffusion D', respectively. Note that the horizontal
axis in Fig. 3 is scaled with A¢=t,,,~t to plot all points
equally spaced. The limit A7—0 implies Ar=t,,~t—0
since A7=10gy(€,/1)=10g,(€ps/1,00) =10g5(t,.//1).

Fitting several values of AV it is possible to compute both
the drift D" and the diffusion D® coefficients as a function
of NV, as illustrated in Fig. 4 for three references, namely
tye;=32, 64, and 96. The error bars of both Kramers-Moyal
coefficients are determined directly from the linear fit algo-
rithm [23], taking the values of the conditional moments and
the corresponding errors as input. From Fig. 4 one clearly
sees that the drift coefficient D" varies linearly with A/,
while the diffusion coefficient D'? varies quadratically. Fur-
ther, one observes a slight asymmetry of the diffusion coef-
ficient around N'=0. This asymmetry may be due to the dif-
ferent time intervals during which the NAO index spends in
the positive and negative phase.

Taking 7,.,=32 as a reference we find the parametrizations
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FIG. 3. The first and second conditional moments, MY and M® for the time series A shown in Fig. 1. Here trer=32 and Ny=N (top),

No=N—-0 (center), and Ns,=N+ o (bottom). Fitting the curves beyond the Markov length €,,=16 and intersecting the fits with the vertical
axis Ar=0 yields the corresponding Kramers-Moyal coefficient (see text).
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DOW,) =d" +ds' N, (6)
DOWN,) =d? + dPN, + dPN2, (7)
where
d\V'=0.150+0.013, (8a)
dV) = - 1.048 £0.003, (8b)
d'? =3.47+0.05, (8¢)
d? =-0.158 £0.015, (8d)
d'? =0.407 + 0.003. (8e)

These parametrizations do not completely agree with
those found by Collette and Ausloos [13]. The difference is
probably due to differences in the data sets used, since they
consider the normalized pressures at different locations of
both pressure subsystems, namely, P; is taken from Ponta
Delgada (Azores) and P, from Akureyi (Iceland). Inspite of
this, the main features agree well, since in both cases there is
a negative slope in the drift coefficient, indicating a restoring
force for the evolution of increments, as well as a quadratic
dependence of the diffusion coefficient on the increments.

For other reference times, the parameterizations found are
equal to Egs. (6) and (7) within the error bars. Therefore, we
may assume that both coefficients do not depend signifi-
cantly on the reference time chosen.

The analysis performed in this section was made under
the assumption that the process is Markovian, i.e., the con-
ditional probability p(N ., a,, 7+A7| N, 7) constrained only
to the previous time step equals the conditional probability
PWNoiar THAT|IN, 73N, T—AT;...) constrained to any

number of previous time steps. A comparison of these con-
ditional probabilities is, however, not recommended since we
deal with very small data sets (~2 X 103 data points). Instead
of providing evidence for coinciding conditional probabili-
ties, we use the Kramers-Moyal coefficients in Egs. (6) and
(7) derived empirically and integrate the Fokker-Planck
equation (B1) as described in Appendix B.

Figure 5 shows consecutive PDFs for A7=log;(t,.s/1)=0,
1, 2, 3, and 4, corresponding to t=32, 16, 8, 4, and 2,'respec-
tively, starting from an initial PDF taken at #,,,=32. By inte-
grating the Fokker-Planck equation, using the coefficients in
Egs. (8), one tests the validity of our approach, which as-
sumes from the very beginning that the process is Markovian
within a certain range of A increments, with a Markov
length €,,=16. Notice that the noise level might be underes-
timated since we did not consider the errors of the NAO
index measurements. Therefore, to improve the fits in Fig. 5
we used a larger value for d(lz), keeping all the other coeffi-
cients as given in (8).

As one clearly sees from Fig. 5, the initial distribution
retains its Gaussian shape through time and the PDFs of the
data (indicated by circles) are well fitted by the PDFs ob-
tained from the integration of the Fokker-Planck equation
(solid lines) within the range N e [-2,2]. Thus, the Markov
length €,,=16 chosen as well as the parametrization of the
Kramers-Moyal coefficients in Egs. (6) and (7) seem to be
appropriate for the present situation.

From the results in this section one concludes that the
standard NAO index N can be assumed as a stochastic pro-
cess within the range [-2,2], which corresponds approxi-
mately to one standard deviation of the PDF of the original
N values plotted in Fig. 1. The fact that the Gaussian shape
is almost invariant for any time lag means that the time series
is highly stochastic and that the forecast based on them is
unreliable. This conclusion agrees with results of Collette
and Ausloos [13]. Here, however, a detailed error analysis

056706-4



REDUCING STOCHASTICITY IN THE NORTH...

PHYSICAL REVIEW E 72, 056706 (2005)

0.06

0.04

PDF

0.02

3 107

{107

{10

0.06

0.04

PDF

0.02

0.06

0.04

PDF

0.02

0.06

0.04

PDF

0.02

0.06

0.04

PDF

0.02

0

-8 -6 -4 -2 0 2 4 8

1 10

88 -6 -4 -2 0 2 4 6 8

FIG. 5. Comparison between the probability density functions of the auxiliary time series for NAO (circles) and the integration of the
Fokker-Planck equation (solid lines), starting with an initial PDF at #,,,=32. The integration begins at t=1,,; (A7=0) and PDFs are plotted
at time steps t=32,16,8,4,2, i.e., at Ar=log,(t,,,/1)=0,1,2,3,4, respectively. For each time step the PDF is plotted in linear (left) and
logarithmic (right) scales. The good agreement seen indicates the Markov length €,,=16 used in the simulation to be a good choice and the

process to be almost Gaussian in the range [-2,2] (see text).

was added, indicating the errors of all calculations, in par-
ticular, the ones of the parametrized coefficients in Egs. (6)
and (7). In the next sections we investigate the origin of the
stochasticity and a way of minimizing it.

IV. COUPLED LANGEVIN EQUATIONS FOR THE NAO

As shown in the previous section, the NAO index leads to
a highly stochastic time series with consequent lack of pre-
dictability. However, since the NAO index is a specific func-
tional of the difference of the normalized pressures in the
two poles, it seems natural to ask: Is it possible to find an
alternative functional of the normalized pressures having
smaller stochastic terms? In other words, is it possible to
define a better index in the sense that it improves predictabil-
ity? In the remainder of the paper we answer this question
affirmatively. Instead of the standard NAO index, we work
directly with both pressure series. First, in this section, we
extend the Markov analysis by considering the two series as
a coupled system. Then, in the next section, we describe how
to obtain a better index for the NAO.

As mentioned, we now introduce a system of two coupled
Langevin equations:

*

dP,
— =hy+gum(D) +gm(n), (9a)
dr
dap;
d_7_2=h2+8217]1(7)+g227]2(7'), (9b)

where Pj represents the normalized pressures, i.e., P;k:(P,-
—(Py)/ o; and, for simplicity, from now on we write P; to
represent these normalized pressures. Here, both 7, and 7,
are also Langevin forces describing Gaussian noises with &
correlations, i.e., for i=1,2 one has (7(7))=0 and
(7)) m(7'))=8(7—7'). The functions h; and g;;, where i,j
=1,2 depend, in general, on P; and P, and 7 and are given
by [21]

(10a)

8= (D) (100)

where DUV is the drift “vector” and D'® the symmetrical
diffusion matrix.

The procedure to compute drift and diffusion coefficients
in two dimensions is a straightforward generalization of the
one-dimensional case, as described in Appendix C. The re-

ij
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the corresponding error bar at each grid point. At the bottom
of each figure one sees the surfaces obtained from the data,
while at the top the corresponding fitted surface is plotted.

All fitted surfaces in Fig. 6 are quadratic forms

sult of these computations are surfaces in the P; X P, plane.
As for the standard index, our simulations have shown that
the dependence on 7 can be neglected here. Figure 6 shows

these surfaces for all the Kramers

Moyal coefficients with
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TABLE I. Parametrization coefficients of the drift vector D l) diffusion matnx D(z), and of the functions

PHYSICAL REVIEW E 72, 056706 (2005)

;- Due to symmetry D(z)—D(2 and g,;=g;,. From Eq. (10) one also has A; D

ay a aj ay as ag
D" ~0.920 0.085 -0.007 0.036 0.026 0.220
+0.062 +0.096 +0.058 +0.093 +0.089 +0.073
D" 0.000 -0.048 -1.093 0.040 0.032 0.342
=0.058 +0.092 +0.063 =0.099 =0.090 =0.072
Dy ~0.337 0.321 -0.089 ~0.083 ~0.280 0.818
=0.054 +0.082 +0.047 =0.070 +0.074 +0.057
DY) -0.028 -0.209 -0.323 0.425 ~0.186 0.870
=0.046 +0.073 +0.057 +0.087 =0.074 +0.059
DY) —~0.031 0.067 -0.091 ~0.006 0.376 —~0.184
+0.034 +0.054 +0.037 +0.058 +0.053 +0.041
g1 ~0.171 0.143 ~0.065 ~0.063 ~0.147 0.906
=0.009 +0.014 +0.009 +0.015 =0.013 +0.012
g ~0.021 -0.119 -0.161 0.193 ~0.089 0.931
+0.009 +0.014 +0.009 +0.015 +0.013 +0.012
g ~0.014 0.047 -0.046 0.009 0.181 ~0.106
+0.009 +0.014 +0.009 +0.015 =0.013 +0.012

S(Pl,P2)=a1P1+a2P%+a3P2+a4P§+a5P1P2+a/6.
(11)

Table I gives the coefficients «; for both the drift vector D
and the diffusion matrix D® and also for the functions &; and

;; defined in Eq. (10).

From Table I one sees that the drift coefficients D(l) and
D(l) are approximately linear, i.e., apart from the 1ndepen-
dent term, their dominant terms are P; and P,, respectively.
With this and from #;, Eq. (10a), we can say that the deter-
ministic parts of the Langevin equations (9) are almost un-
coupled. In fact, the absence of coupling between the two
deterministic parts is not surprising since we are considering
“instantaneous” coupling and, since both pressure sub-
systems are distant from each other, any eventual influence
of one subsystem on the other should be characterized by
some delay time, large enough to enable propagation of in-
formation.

As for the diffusion matrix, the two main diagonal ele-
ments D(lzl) and D(zzz) have significant contributions from the
quadratic terms. The same is true for the corresponding
functions g;; and g,,. Curiously, there is a fundamental dif-
ference: while in 811 the quadratic term in P is much higher
than the one in P2, in function g,, both quadratlc terms have
similar contributions. Thus, one could argue that the normal-
ized pressure P at the Azores high contributes more strongly
to the stochastic evolution of the pressure P,, than vice
versa. In other words, there is a sort of unidirectional cou-
pling of the stochastic forces between both subsystems, with
P, more strongly coupled to P; than P, to P,. This is analo-
gous to recent results [24] indicating that P, has a stronger
influence than P,.

The off-diagonal terms D D21 and g,=g,;, respec-
tively, are dominated by P P2 and, therefore, govern the

symmetrical part of the coupling between both subsystems.
The symmetric part of the coupling is due to the symmetry of
the diffusion matrix: D(2) D(2 (see Appendix C).

Similar surfaces (not shown here) were obtained for A;
and g;; in Eq (9) The functions A; are identical to the drlft
coefficient D [Eq (10a)]. To determine functions g;; one
must compute for each grid point a diffusion matrix and
obtain its “square root” VD [Eq. (10b)]. The matrix VD@
is obtained from D® by imposing an orthogonal transforma-
tion which diagonalizes D), taking the positive square root
of the eigenvalues along the main diagonal and applying the
inverse of the orthogonal transformation [21]. Note that for
any pair (P, P,) the diffusion matrix is positive definite and,
therefore, its eigenvalues are always positive, the corre-
sponding square roots being real. Moreover, the same sym-
metry of the diffusion matrix yields g;;=g;.

From the results in this section one sees that, as for the
analysis based on a single Langevin equation, coupled
Langevin equations still have high stochastic terms, in the
sense that they contribute significantly to the evolution of the
pressure variables. In the next section we show how to re-
duce this stochasticity to a minimum.

V. REDUCING STOCHASTICITY VARIATIONALLY

The purpose of this section is to introduce a general varia-
tional procedure allowing one to extract an optimal function
of the two pressure variables yielding a Langevin equation
with minimum stochasticity. As far as we know, this ap-
proach to reduce stochasticity is original. It can be applied to
spatially extended (coupled) systems characterized by sev-
eral time series correlated (coupled) with each other.

We start by considering the two coupled Langevin equa-
tions (9) whose coefficients %; and g;; are given in Table L
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From Egs. (9), one can make a general transformation of
variables (P;,P,)— (N;,N,) leading to a new system of
equations

le ’ ’ 2
;=h1 +g1m(7) + g1m(7), (12a)
N ! ! !
d_:=h2+gzl7ll(7)+8227]z(7), (12b)
where the new coefficients are
, AN; IN;
hi =h1_+h2_, (133.)
P, P,
, AN; dN;
g[j=glj(9_P1+g2ja_P2’ (13b)

for i,j=1,2 and where the dependence on 7 is neglected,
since this is what happens for our time series, as shown in
the previous section. One possible transformation of vari-
ables would be Ny=P;—P, and N,=P;+ P,, which yields N,
as the standard NAO index with strong stochasticity. Since,
in general, the Jacobian of (13) does not vanish, many other
choices are possible and the question we address now is for
which choice are the stochastic terms minimal? To this end,
we require that for one of the equations in (12), say Eq.
(12a), both stochastic terms be as small as possible when
compared to the deterministic one. In other words, the de-
pendence of N; on Py and P, is such that a functional is
minimized. We assume this functional to be

lgtlz, + llgallz,
Inillz,

where |f(P, ,P2)||L2 is the L,-norm of f(P;,P,):

: (14)

1”2
(P, P, = (f Jﬂ [f(Pl»Pz)|2dP1dP2> . (15)

As will be seen below, in practice, it is only necessary to take
a finite interval for the integration in both variables, typically
Q=[-1,1]X[-1,1].

Without any additional condition it is difficult to minimize
F in Eq. (14) since it is a quotient of integrals. Therefore we
impose the additional constraint

il B
4P dp,=1, (16)
Q

a

where a is a suitable constant to be chosen in the next para-
graph. Note that, since the constraint in Eq. (16) only im-
poses a value for the deterministic part of the evolution and
the proposed variational method deals with the problem of
minimizing stochastic terms when compared with determin-
istic ones, there are no spurious implications related with this
condition.

The above considerations lead to a variational problem in
two variables where one seeks to minimize F' under the con-
straint (16). This produces the Lagrangian
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hy)?
L=(8{1)2+(8{2)2+)\{%—1]’ (17)

where A is the Lagrangian multiplier. Since we are still free
to chose a, without loss of generality we fix a=\. This
choice is equivalent to writing the functions [, g,, and g,
in Eq. (12a) in units of the L, norm of the deterministic
function /.

Substituting Egs. (13) into Eq. (17), inserting the La-
grangian into the Euler-Lagrange equation

oL 9 oL d oL
——| == |-— = |=0, (19
o P, &(a_zv,) P, a(a_zv,)

oP, P,

and with elementary manipulation we arrive to the equation

Ny, &N, DaZNl+ &N,

N
—1+B &
IP,dP,

+
Py 9P,  oP? oP3

=F, (19)
where
A= i(é.’%l + g%z + h%) + i(811821 + 81280+ Mhy),
P, P,

(20a)

Jd J
B=——(g5+8n+m)+ 5(811821 + 81280+ ihy)
I

P,

(20b)
C=gh +gn+h, (20c)
D=gl +g5+h, (20d)
E=2(811821 + 81282 + Mihy), (20e)

oh oh
J—":—<—1+—2>. (20f)

oP, P,

From the coefficients /; and g;; in Table I one sees that all
coefficients in (20) are polynomials. More precisely, A and
B are cubics, C, D, and £ are quartics while F is a linear
polynomial.

In the range () considered, the discriminant (£/2)*~CD is
always negative, indicating that Eq. (19) is an elliptic equa-
tion [25]. Substituting the standard index N,=P;—P, in Eq.
(19) yields A—B=ZF, a condition not holding for most values
of P; and P,, as is illustrated in Fig. 7. This fact demon-
strates an important fact, namely, that the standard NAO in-
dex does not minimize the functional in Eq. (14) and, there-
fore, is not the function of P; and P, with minimal
stochasticity.

Discretizing Eq. (19) suitably one obtains N, as a function
of the previous variables P and P,, satisfying the variational
problem in Eq. (14). In other words, one obtains a new func-
tional N;=N,(P,,P,) such that its corresponding Langevin
equation, Eq. (12a), has minimal stochasticity, as desired.
Therefore, the new functional N, is a better NAO index in
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FIG. 7. Function L=A-B-F [see Egs. (20)] as a function of P,
and P, in the range [-1,1]X[-1,1]. The contour line indicates L
=0 for which Eq. (19) holds. Anywhere else the differential equa-
tion is not satisfied, meaning that the standard NAO index is not the
one with minimal stochasticity (see text).

the sense that it enables more accurate forecasting, i.e., with
less stochasticity, of the NAO system, extracted directly from
the two measured pressure series. Similarly to the standard
NAO index, forecasting of the pressure time series is still
difficult and out from the scope of the present method. How-
ever, from the new index one can extract relevant physical
information concerning the NAO system, for instance, an
asymmetry in the coupling between both pressure sub-
systems, as we explain next.

To integrate Eq. (19) we suppose that at the boundaries N,
is a linear function of either P; or P,, while at the corners of
Q) one assumes N;=0 at (P,P,)=(-1,-1) and (P,P,)
=(1,1), N;=1 at (P;,P,)=(1,-1) and N;=-1 at (P,,P,)
=(-1,1). This choice of boundary conditions is motivated by
climatological facts concerning the NAO system. Namely, as
mentioned in the Introduction, when P; is large and P, is
small, the NAO system is in the positive phase, correspond-
ing to high values of the index. Inversely, when P; is small
and P, is large the index should be small. Thus, we assume
that the index N, is maximal when P, is maximal and P, is
minimal, and it is minimal when the opposite occurs.

Using centered differences to discretize derivatives in Eq.
(19) and applying a successive over-relaxation algorithm
[23] starting from the boundary conditions given in the last
paragraph, one obtains the optimal N, as a function of P; and
P,. Figure 8 shows the surface N,;(P;,P,) obtained in this
way, where one clearly sees a deviation from a plane, mean-
ing that N, is not linear in P; and P, as the standard index
presupposes. The best least-square fit for this surface is also
a quadratic form

N(P1,Py) = B\ P, + BoP] + B3Py + B4P3 + BsP Py + Bg.
(21)
with

B, =0.5407 £ 0.0071, (22a)
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FIG. 8. Solution N,(P;,P,) of Eq. (19) with linear boundary
conditions (see text), minimizing the variational in Eq. (14). In (a)
and (b) the surface is shown in two different views, to emphasize its
curvature, showing that Ny is not linear in P; and P, as the standard
NAO index. In (c) one sees the surface projected in the (P, P»)
plane with contour lines, emphasizing the asymmetry around the
secondary diagonal P{=-P,.
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B, =0.2465 +0.0122, (22b)
B3 =~ 0.6344 = 0.0006, (22¢)
B,=0.3370=0.0011, (22d)
Bs=-0.0170=0.0122, (22¢)
Bs=—0.3384 = 0.0005. (221)

While Figs. 8(a) and 8(b) emphasize the curvature of the
surface N,;(P;,P,), Fig. 8(c) shows the contour lines of the
surface projected in the (P,,P,) plane. From this contour
lines one clearly sees that there is an asymmetry due to the
different coefficients of the terms in P; and P,.

While the new index defined above has a time series
which looks like that in Fig. 1 and has a correlation length
slightly larger than the standard index, the diffusion coeffi-
cient decreases significantly. In fact, as illustrated in Fig. 9,
while the deterministic part remains almost the same [see
Fig. 9(a)] the stochastic term controlled by the diffusion co-
efficient decreases to approximately one-third of the coeffi-
cient for the standard index. More precisely, repeating the
same Markov analysis as in Sec. III this time for the new
index, one obtains a fit for the drift and diffusion coefficients
of the form of Egs. (6) and (7), respectively, with the param-
etrization

diP = 0,120 + 0.010, (23a)
dVeY =~ 1.074 % 0.006, (23b)
d'?mr =122 +0.02, (23¢)
dPmeY=—0.10£0.01, (23d)
d2 = 0.414 + 0.003. (23e)

By comparing Egs. (23) with the previous Egs. (8), one sees
that, while the parametrization for the drift coefficient (deter-
ministic term) remains approximately the same, the diffusion

coefficient ruling the stochasticity of the dynamics is now
much smaller. In particular, d(lz)’"ew~d(12>/ 3.

VI. DISCUSSION AND CONCLUSIONS

In this paper we performed a detailed Markov analysis of
the standard monthly NAO index comparing it with a more
general analysis where, instead of the index derived from the
pressure time series, we work with the measured pressures
directly. In both situations we find stochastic terms to be
large implying unreliable forecasting.

In order to reduce stochasticity we propose a general
variational procedure which transforms variables from the
two pressure time series into a pair of new variables, one of
them having the minimum stochasticity possible. This varia-
tionally optimized Markov analysis is general and may be
applied also to other systems characterized by two or more
time series, correlated (coupled) with each other, for in-
stance, in spatially extended systems. We believe that the
variationally optimized Markov analysis represents a new
development in the field. It should be helpful to deal with
problems where the familiar Markov analysis of single time
series has already proved to be efficient.

To delimit the validity of the variationally optimized Mar-
kov analysis one could check deterministic models, e.g., Lo-
renz system, introducing noise as an additional term, and try
to obtain the optimal variable transformation from time se-
ries extracted from the system. This test will be reported
elsewhere.

Concerning the particular case of the NAO system, al-
though time series are relatively small (2135 points), yield-
ing large errors, the results above gave evidence that the
NAO index may be interpreted as a Markovian process and,
with the variational problem proposed above, it was possible
to obtain a functional relationship between both pressures
having less stochasticity than the standard index. To use this
new index for climatological purposes it would be necessary
to redefine the two different phases of the NAO, in order to
understand the physical meaning of it.

The correlation length of the present time series is small,
due to the large time lag (one month) between consecutive
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values of the time series. One possible way to further
strengthen the role of the deterministic part in the NAO sys-
tem is to consider shorter time lags. Although climatologists
usually compute the standard NAO index between time in-
tervals of one month or one year [8], since the last 50 years,
the daily pressure of the two NAO subsystems was also re-
corded, enabling a standard definition of daily index similar
to Eq. (1), with a much larger correlation length and a larger
number of points. Preliminary results concerning the varia-
tional Markov analysis of this daily measures indicate that
also in that case an optimized functional relationship is ob-
tained, with less stochasticity than the standard daily NAO
index. Moreover, by using time lags of one day instead of
one month or one year, one could ascertain which time lag
between, say one day and one month, gives better results for
forecasting. From the Markov analysis it is also possible to
ascertain which kind of noise, additive or multiplicative, the
system has [26]. Finally, this approach could be extended by
considering the impact of a delayed coupling, since the two
subsystems composing the NAO system force one another
within a certain time scale. The study of these questions and
their relevance for climatological purposes are now being
carried out and will be presented elsewhere [27].
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APPENDIX A: ERROR ANALYSIS

The error bars in Figs. 3 are obtained from standard error
analysis, namely the error, function for the conditional mo-
ments M* with k=1,2 read

MO m AN =1 3 [ANFap,  (AD

AT
where AN (n)=N 2, (n)—N(n) and Ap is the error of the
conditional probability, namely

_ Apjnim + p(NT+A7" T+ AT;Np T)Ap,ef
- pWL7) (PN, D] ’

with Ap;,,, and Ap,,, representing, respectively, the errors of
the joint PDF p(N 4., T+ AT; N, 7) and of the PDF p(NV, 7)
of the reference time. These two errors are extracted directly
from the simulation as the square root of the number of val-
ues inside each corresponding bin.

The error function for the drift and diffusion coefficients
in Fig. 4 are obtained directly from a linear regression of the
corresponding conditional moments as functions of Ar,
where the error function in Eq. (A1) for the conditional mo-
ment is used as input. A similar error analysis was used for
the coefficients in the two-dimensional case (Fig. 6).

Ap (A2)
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The parametrizations in Egs. (6) and (7), in Table I and in
Egs. (22) were performed using standard least-square proce-
dures [23].

APPENDIX B: INTEGRATING THE FOKKER-PLANCK
EQUATION

We introduce the parametrizations (6) and (7) into the
Fokker-Planck equation

J
E_p(NT?TINT’aT,)=£FPP(N7$T‘NT’97J)’ (Bl)

where Lpp is the operator

d s
‘CFP=<_ (Q_A/;_D(])(NWT)-'-(?_]\/?_D(Z)(NT’T)). (BZ)

The initial condition p(Ny, 7) is taken at #o=t,,,=32 and
the integration is carried out by means of a suitable discreti-
zation scheme [21] yielding

p(NT+A7" T+ AT‘NT’ T)
B 1
- 2\/7TD(2)(./\/7., AT
(NT+AT_NT_D(1)(NrsT)AT)2 (B3)
4ADDN_ DAT '

The Fokker-Planck Eq. (B1) describes the evolution of
conditional PDFs. To know at each time 7 the single PDF
PN ia- T+A7), as the ones shown in Fig. 5 for time-steps
Ar=1, 2, 3, 4 and 5, one must integrate at each time step the

conditional PDF multiplied by the previous single PDF. This
is done by using the Chapman-Kolmogorov equation

Xexp(—

p(NT+AT’ T+ AT) = f p(NT+AﬂT+ AT|N77 T)p(Nr; T)de'

(B4)

APPENDIX C: DRIFT AND DIFFUSION COEFFICIENTS
IN TWO-DIMENSIONS

For the two-dimensional case of two coupled Langevin
equations, Egs. (9), the Kramers-Moyal coefficients read [21]

DV(P,, Py, D) = lim M\(P,,P,,7,A7),  (Cla)
A7—0

DP(Py,Py,7) =5 lim MP(P,,P,,7,A7), (Clb)
A7—0
where i,j=1,2 and conditional moments are given by

1
M,('l)(Pth, T7AT) = A_E Apip’ (Cza)
T

P.

i

1
M (P).Py, 7. A7) = i > APAPp,  (C2b)

T ’ ’
P[.P;
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where AP;=P!(7+A7)—P;(7) and where now the sum is
over the bins discretization, namely the PDF of Pi”j(r+A7—),

and pEp[ﬁ/(T+AT), T+AT| 13(7), 7] is the conditional prob-
ability of observing the two values P'=(P{,P;) at T+AT

PHYSICAL REVIEW E 72, 056706 (2005)

knowing that the values f’:(Pl,Pz) were observed at 7. As

one clearly sees from Eq. (C2b) the matrix of second order

conditional moments and consequently D® are symmetric,
2 _ @

Dy, =D
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