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Closed orbit change induced by nonzero dispersion rf cavities
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The particle motion in storage rings is coupled between the longitudinal and the transverse planes in the
presence of nonzero dispersion rf cavities. We found that the particle motion can be modeled separately with
a redefined closed orbit. The closed orbit can be described by a Green’s function, which was confirmed in the
simulation and in the experiment. The pathlength is calculated from the redefined closed orbit, and we found
that the longitudinal phase slip is related not only to the momentum, but also to the rf phase of the particle. The
effect on the longitudinal motion becomes significant if the phase slip caused by the rf cavities is large or if the
momentum compaction factor is small, such as in the lower alpha-c lattice which is intended to produce shorter

bunches.
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I. INTRODUCTION

Synchrobetatron coupling (SBC) by nonzero dispersion
cavities is a classical topic in accelerator physics. The phe-
nomenon was first observed in the 6 GeV electron synchro-
tron NINA [1]. The rf cavity excites a betatron oscillation
due to nonzero dispersion in the cavity, and the oscillation
amplitude depends on the arrival time. On the other hand, the
oscillation changes the path of the particle and affects the
arrival time. Therefore, the particle motion is coupled in the
horizontal and longitudinal planes. The beam becomes un-
stable when resonance conditions are met. Later it was found
that beam-beam collision, cavity higher-order modes, and
wakefields also induce SBC [2]. The SBC effect was be-
lieved to be innocuous if the beam motion is not on reso-
nance. However, in the implementation of the low momen-
tum compaction factor lattice, it was also found that SBC
affects the longitudinal motion [3] and limits the minimum
achievable bunch length [4]. Recently an application of non-
zero dispersion rf cavities was proposed in a laser cooling
scheme [5]. It becomes imperative to understand SBC at off-
resonance but under extreme conditions like very low syn-
chrotron frequency or very small longitudinal emittance.

Since the first observance of SBC, many models have
been established. Piwinski and Wrulich [6] based their model
on the closed orbit. They pointed out the closed orbit change
induced by acceleration and modeled the betatron oscillation.
The difficulty in their paper was the calculation of the lon-
gitudinal time delay caused by the betatron oscillation. In
order to derive self-consistent treatment, Chao [7], Corsten
and Hagedoorn [8], and Suzuki [9] developed a Hamiltonian
perturbation theory that analyzed resonances with a so-called
“SBC potential.” Longitudinal and transverse nonlinear ef-
fects were added to the analysis by Baartman [10] and Lee
[11]. The Hamiltonian method is good for resonance analy-
sis; however, it does not give a satisfactory longitudinal
phase shift.

In storage rings the betatron oscillation is much faster
than the synchrotron oscillation. The SBC effect on the syn-
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chrotron motion is also slow compared to the betatron oscil-
lation. We found that if we introduce a new closed orbit, the
motion in both planes can be modeled separately. We treat
the kick from a rf cavity as a dipole kick in the horizontal
phase space. This dipole kick distorts the closed orbit like a
dipole magnet and can be modeled by an analytical Green’s
function. This Green’s function is verified both in the particle
simulation and in the experiment. The longitudinal phase slip
can therefore be calculated from the closed orbit. We further
discuss the longitudinal motion with this phase slip and ap-
ply the result to two examples, in which the phase slip
caused by the cavities is non-negligible. The layout of the
paper is as follows. The equations of motion are derived in
Sec. II, the closed orbit Green’s function is derived in Sec.
III, the simulation and experimental results are shown in Sec.
IV, the longitudinal motion is discussed in Sec. V, and the
conclusion is drawn in Sect. VL.

II. THE INHOMOGENEOUS HILL’S EQUATIONS

In this section the equations of synchrobetatron motion
are derived from the Hamiltonian. The transverse motion of
particles in a ring accelerator can be described by the follow-
ing Hamiltonian [12]:

2 2\ 172
+p
H=—p(1+f)<1—’¥*) —ed, ()
p p

where we use the curvilinear coordinate system (x,y,s),
(x,py»y,py) are canonical conjugate coordinates, p is the to-

tal momentum, A=(A,,A,,A)) is the vector potential, and p
is the curvature of the reference particle path. Here we con-
sider only the transverse magnetic fields, i.e., A,=A,=0.

In order to study the synchrobetatron coupling, p will be
treated as a variable, namely,
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where the prime is the derivative with respect to s, 5 is the
Dirac delta function, Ap,/p, is the fractional momentum
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kick, d=(p—po)/po, and pg is the momentum of the refer-
ence particle. We note that even though the accelerating field
is not included explicitly in the Hamiltonian [Eq. (1)], Eq.
(2) includes all the momentum changes along the path; there-
fore, the transverse motion is completely defined (up to first
order).

From Hamilton’s equation, one obtains the first-order
horizontal equation of motion,

o
X'+x'8 +Ks(s)x=—, (3)
p

where Kys)=1/p*=K,(s)-[2/p*-K,(5)]6, K, (s)
=B,(s)/Byp is the effective focusing strength, By, is the di-
pole field strength, and B;=0B,/dx is the quadrupole gradi-
ent. Here only the dipole and quadrupole fields are consid-
ered.

The homogeneous equation of Eq. (3) is

X'+x'8 +Ksx=0. (4)

The x’'¢é" term induces damping or growth of the betatron
oscillation amplitude. Note that a similar term (y'S’)
also appears in the equation of motion for y; therefore,
synchrobetatron coupling affects both transverse planes.
The change of the phase-space area is determined by the
Wronskian. Let x;(s) and x,(s) be the linearly independent
solutions of Eq. (4); then the Wronskian Wi(x;,x,)(s)
=W(x;,x,)(0)exp[ 8(0)— 8(s)]. In storage rings &(s) is a peri-
odic function, and o is usually small (~ 107%); therefore, the
effect of the x’ &' term is also small. We will ignore it for
now and discuss its impact later.

To find out the solution for the off-momentum particle,
substitute x(s)=x4(s)+D(s)d into Eq. (3) (ignoring x'&") and
let the coefficients of & vanish:

X+ Ksxp=—-2D'8 - D&, (5)

D”+K50:%). (6)

Equation (6) is the common dispersion equation, and Eq. (5)
becomes an inhomogeneous equation due to the nonzero de-
rivatives of &.

The above inhomogeneous equations can be solved in
vector space. Let Z=(x,x")7, then Eq. (5) can be written as

d
—Z=KyZ-F,8 - F,&, (7)
ds
where
K ( 0 1) (8)
M™\-Ks; 0/’

and F,=(0,2D")",F,=(0,D)".

The homogeneous equation of Eq. (5) can be obtained by
letting &'=0 and &"=0. Let M(s) be the solution of the ho-
mogeneous equation of Eq. (5), i.e., Z,(s)=M(s)Z(0), with
Z(0) as the initial condition; then
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M(s):exp(fY Ky ds), 9)

0

and the solution of the inhomogeneous equation can be ob-
tained from M(s) by [13]

Z(s)=M(s)Z(0) - M(S)fv M (sy)
0

X[F(s1)0' (s1) + Fy(s1)8"'(s1)1ds,. (10)

Equation (10) can be verified by direct substitution into Eq.
).

Note 5”:(d/ds)Ei[Ap(si)/po]S(s—s,-) is the derivative to
the Dirac delta function. The F, term on the right-hand side
of Eq. (10) becomes

M(s) f M5 Fr(s) 851 )ds,
0

— ) [ MRS G, (D
0
where  Fy=(-D,D’)" and the formulas (M™')’
=—M"'M'M~'=-M"'K,, have been used.
Combining Egs. (11) and (10), one gets

Z(s) = M(5)Z(0) - M(S)f M (s)D(s)) 8 (s,)ds.
0
(12)

where 5(s):[D(s),D’(s)]T. Equation (12) means the mo-
mentum change gives the particle a transverse kick as fol-
lows:

Ax=-D§',

(13)
Ax'=-D'¥8,

which clearly agree with the physical picture [6]. Note that
the absence of the x’&" term in Eq. (4) does not affect the
results here because it only generates some higher-order
terms. It is worth pointing out that the above equations can
also be derived from the transformed Hamiltonian [14].
Similar to the inhomogeneous dispersion equation (6), Eq.
(5) implies that the derivatives of the momentum also change
the closed orbit. Let us examine ¢ more closely before ex-
panding Eq. (12). In electron storage rings, momentum kicks
could be induced by the rf cavities, synchrotron radiation,
and intrabeam scattering. Because synchrotron radiation is a
random process, the kick is incoherent. The average energy
of a bunch changes adiabatically during radiation energy
loss, and the bunch moves gradually into its closed orbit. As
a result, the bunch receives no coherent kicks from the en-
ergy loss of the individual particles. The momentum change
due to collision has a similar effect. However, the momen-
tum kick from the rf cavity is the same for all the particles
with the same rf phase, and the average kick to a bunch is not
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zero if the synchronous phase is not zero. Therefore, we
expect coherent transverse effects induced by the rf cavity.
From now on we define

A
5I=E_p

L3(s — s; - nC), (14)
n,i Po

where C is the circumference, S is the Dirac delta function,
Ap;/py is the fractional momentum kick from the ith cavity,
and n is the number of turns. We will first study the closed
orbit change of a bunch, which resembles a single particle,
then extend the result to a bunch slice while studying the
longitudinal motion.

In order to calculate the closed orbit change given by Eq.
(12), first one has to expand Eq. (9). It is difficult because &
is considered a variable in our model. However, one can use
the solution of the reference particle (§=0) to obtain a per-
turbation solution. If §=0, M(s) in Eq. (9) is just the transfer
matrix of the reference particle. Mathematically, Eq. (12) can
be expanded analytically with the transfer matrix; however,
in the next section we solve it with another method that gives
more physics insight. The method is essentially the same as
expanding Eq. (12).

III. THE CLOSED ORBIT GREEN’S FUNCTION

We will solve for the closed orbit solution starting from
Eq. (13). The horizontal kicks by a nonzero dispersion cavity
are given by

A A
AP0 g A = - pr(sy 22
Po Po

Ax=- D(So)

(15)

where s is the cavity location and Ap(s)/p, is the fractional
momentum kick. We note that the particle does not physi-
cally jump in x; the kick in space is because of the disconti-
nuity of the reference closed orbit.

Because of this kick, the particle can no longer stay on the
reference orbit, but rather has a betatron oscillation given by

x(5) =~ GO BGsinl, + xs0) 222
Po
(16)
A
(9= Vs b x50 = 1
0
where
1
H(so) = + (alsg) D(s0) + Blso)D' (50)) ).
,3(50)
(17)
_ —1 D(SO)
Xso) =t DG + D ) )
k(s) =tan™'[1/a(s)], (19)

and a(s),B(s),y(s) are the Courant-Snyder functions and
thy 5= ls) = (sy) is the phase advance from s to s.

PHYSICAL REVIEW E 72, 056501 (2005)

Due to the nonzero dispersion in the cavity, the total
momentum gain is not purely in the s direction, but
at an angle in the (x,s) plane. The effective fractional
horizontal momentum gain is dp,/py~x' (50)|x(30

=\H(sp)! B(so)[Ap(sy)/po). The momentum shifted into the
horizontal direction is cancelled in the long run because the
betatron oscillation tune is a noninteger. Therefore this pro-
cess is dissipative. The lost fractional momentum is approxi-
mately  dp./py~ |x |x(so) _o=[H(s0)/2B(s0)[Ap(s0)/ po ),
which is a second- order term. The particle compensates this
loss by moving to the right phase.

The oscillation is the same for a bunch slice, regardless of
x and x’' of the individual particles in the slice. This re-
sembles the result of a dipole magnet kick. The difference is
that the dipole magnet changes only x’ but the rf cavity gives
a vector kick; nonetheless, they are all dipole kicks in phase
space.

If there are N cavities in a ring accelerator, the total hori-
zontal displacement will be

x(s)=- \B(S)E \ (s)sm[(/l“ + x(s5)] (s)- (20)

i=1

Summing over n turns, where n=0,1,2,..., and

n<1/v, with v, as the synchrotron tune, one gets

N Ap(s)
x(s) == VB D VH(s) ==

i=1 Po

><Im[e"[W—¢<f1>+x(sﬂ1(ei2”<"-1>Vx 4o

VB(s) E WAP(S)

 2sin TV =

X[cos W(s,s;) — cos(V(s,s;) + 2nmv,)], (21)

+1)]

where

W(s,s;) = ls) = (s;) + x(s;) = vy, (22)

v, is the horizontal tune, and 27v,> ¢(s)—¢(s;)=0. The
first term in the bracket of Eq. (21) is independent of time;
therefore, it represents the closed-orbit change. The second
term is an oscillating term. One can define the closed-orbit
Green’s function of one cavity as follows:

VB(s)

2 sin v,

Gls,s") =~ VH(s")cos W(s,s'), (23)

and the closed-orbit change due to all the cavities will be

p(s)

Xeorf(8) = E G, (s.5)) (24)

In Appendix A we give another method to derive this
Green’s function.

In order to study the properties of the terms in Eq. (21),
we further define the lattice functions £(s) and &(s) as
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L(s) = 2_\B(S) 'M H(s")cos W(s,s'),
sin 7y, B()Eo
(25)
&s) = > \'B(S) d '—Ef(s—) H(s")sin W(s,s'),
sin 7y, ,80 X
(26)

where E,[(s")=dU(s")/ds" is the peak electric field strength

in the rf cavities, and ,[30 and E are the relativistic factor and
the energy of the reference particle, respectively. Equation
(21) becomes

x(s) = L(s)sin p— VL (s) + E(s)

sin ¢ cos[2nmv, + Y(s)], (27)
where Y (s)=tan™" &(s)/{(s), and {(s)sin ¢ is the closed-orbit
change.

Differentiating Egs. (25) and (26), one gets
d §(S) &(s)
ds\s)  B) 29
d &) )
ds VB - B 29
Consequently,
T -
ds [ \NB(s) VB(s)
SN = (1)
V7B

Therefore \/*(s)+&(s)= \,'/C,f(s),B(s), where C,/(s) is a con-
stant between two rf cavities, and Y (s) is the betatron phase
advance. Both C,{s) and Y(s) are discontinuous at the rf
cavity locations because the rf cavities are the perturbation
sources. Note that W(s,s,), defined in Eq. (22), is not con-
tinuous at these locations either. Nonetheless the closed orbit
X, ,.(8)=D(s) 5+ {(s)sin ¢ is continuous.

The second term in Eq. (27) is a definite betatron oscilla-
tion term. It damps down after the bunch finds the closed
orbit. Because of the { sin ¢ term, the transverse beam size is
related to the longitudinal bunch length and is given by

0%+ 2* cos? ¢50'§s~ (32)

The beam size increases because of the kicks from the rf
cavities. As a comparison, the transverse emittance also con-
tributes to the bunch length due to synchrobetatron coupling;
refer to [4] for details.

Take the Advanced Photon Source (APS) storage ring as
an example. There are 16 cavities distributed in four straight
sections with four cavities each. The lattice functions are
almost constant in all straight sections, particularly S,
~20m, y,~0.05m™!, and H~0.0015 m. In each cavity

2_ 2
o, =pB.+D
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Closed Orbit Change at APS Storage Ring
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FIG. 1. The calculated closed-orbit change at the APS storage
ring due to rf cavities. The parameters are as follows: total rf volt-
age U,y=9.2 MV; synchronous phase ¢,f=144.36°.

the momentum change is Ap/p~ 5% 1073; from Eq. (16) one
gets a betatron oscillation amplitude of 8 um or so. The
betatron phase advance between the four cavities in one
straight section is small, and the phase advance in one sector
is close to 2. Therefore, from Eq. (24) it follows that the
betatron oscillation caused by all cavities almost adds up
coherently. Figure 1 shows the calculated closed orbit change
under the current operation conditions. The maximum ampli-
tude is about 0.1 mm,
which is small compared to the dispersion function, e.g.,
D, jnax~0.2 m. This justifies our modeling approach, which
is based on the dispersion effect. As a reference, the C,f(s)
function is plotted in Fig. 2. The maximum value of C,(s) is
about 1 nm. Because both { and o4 are small, the beam size
contribution of the third term in Eq. (32) is very small.

IV. PARTICLE SIMULATION AND EXPERIMENTAL
VERIFICATION
A. Orbit change outside the rf zone

The closed-orbit change can be measured by varying the
rf voltage distribution at a constant rf frequency. The con-

1.25 T T T

0.75

0.5

Cy(s) (nm)

0.25

|
()]
[4)]

15 25 35
Sector Number

S
[4)]

FIG. 2. (Color online) The C,/s) function of the APS storage
ring. It changes value only in the straight sections of sectors 36, 37,
38, and 40, where rf cavities are placed.
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FIG. 3. (Color online) The comparison of the orbit change be-
tween the simulation (the diamonds) and the prediction (the solid
line) in part of the ring outside the rf zone. The agreement is similar
in the part outside the rf zone.

stant rf frequency ensures constant beam energy; therefore,
the dispersion effect is excluded. In the APS storage ring the
rf cavities are placed in sectors 36, 37, 38, and 40. Outside
the rf zone the bunch energy is the same if the rf frequency is
not changed; however, inside the rf zone the beam energies
are different when the voltage distribution is varied. First we
discuss the changes outside the rf zone.

The rf cavities at the APS are powered by two klystrons.
The power from each klystron can be adjusted by +20%,
which results in about a 20 micron maximum closed-orbit
change. This is well within the time-averaged resolution of
the APS beam position monitor (BPM) system, which is ap-
proximately one micron.

Particle simulations were first carried out with code EL-
EGANT [15]. One particle was tracked for 12 000 turns using
the APS lattice. Both radiation energy loss and quantum ex-
citation were included in the tracking. Since the horizontal
damping time is about 2600 turns, the trajectory of the par-
ticle on the final turn is the closed orbit. Two simulation runs
were performed. In the first run the voltage was 0.5625 MV
per cavity with a total gap voltage of 9 MV, which simulates
the normal operating condition. In the second run the first
eight cavities (in sectors 36 and 37) were set to 0.375 MV
while the voltages of the other eight cavities (in sectors 38
and 40) were 0.75 MV. The closed-orbit difference between
two simulations is shown in Fig. 3. The theory is in excellent
agreement with the simulation result.

In the experiment, the voltages in the first eight cavities
were changed in ten steps from 0.625 to 0.425 MV, mean-
while the reverse was done for the second eight cavities. The
total voltage was kept constant. For each step the closed orbit
was recorded by BPMs and averaged for one second. Even
though the power coupling in each cavity was slightly differ-
ent, the voltage step size was almost equal for all 16 cavities,
except the sign.

From Eq. (24) the closed-orbit change between the two
setups will be

A )y A A
Axc.o.,r S) = E Gl‘f(svsi)(w - M)
! Po Po
AVsi
) %%E £WiGls.50), (33)
0 i

where 1 and 2 stand for the two setups, AV is the voltage
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FIG. 4. (Color online) The measured closed-orbit change at
BPM S2B:P1 while AV is varied. The squares indicate the experi-
mental data and the line is the linear fit. The total gap voltage was
kept constant and the voltage step size was fixed for each cavity.
The slope obtained by fitting is discussed in Fig. 5.

change in units of MV, E is the energy of the particle in
units of MeV, and w; close to 1 is the coupling factor. There-
fore, at one location the closed-orbit change is proportional
to the voltage change in our experiment. Be aware that Eq.
(33) is true only when the total voltage is kept constant and
the voltage step size is constant for one cavity. Figure 4
shows an example of the closed-orbit changes at one BPM,
and they did appear to be a linear function of AV. The slopes
obtained from the fitting are compared with theory in Fig. 5;
again they are in good agreement.

Orbit change inside the rf zone

The particle in the APS storage ring loses 5.4 MeV energy
each turn due to synchrotron radiation, and the same amount
of energy is replenished by the rf cavities. The rf zone is
from sector 36 to sector 40 in the 40-sector ring. If the beam
energy at the entrance of the first cavity is E,, then between
cavity k and k+1,

k
E(s)=E4+ >, U;sin ¢, — AE,(s), (34)

i=1

where U, is the peak voltage in the ith cavity, and AE,(s) is
the radiation energy loss from the first cavity to s.

When the voltage distribution is changed, the energy dif-
ference at the same location is given by

0.2

S L L
90.1; i W 1
Eo og %mﬂi ﬁ{ j%{ H:? RE
3 :Jb“‘@ “@ %f“ WE
o] LT
é-o_zé é

rEEREE N NEEEEE N EEE RS

600 650 700 750
s(m)

FIG. 5. (Color online) The comparison of the slopes of
dx,, /d AV outside the rf zone. The squares were obtained from the
experiment and the line is from the calculation.

056501-5



W. GUO, K. HARKAY, AND M. BORLAND

80_|||»||||||||||||||||||||||1|||||_
L= =
3 = =
~— 40 —
0 — =
@) — -
o 20:' =
(@) = -
L — i |
s F :
2 gt e
0 = =
O 40k —
Bl v bvrrelvine v bern bevna e A

980 1000 1020 1040 1060 1080 1100

s(m)

FIG. 6. (Color) The closed-orbit change inside the rf zone. The
red diamonds are from the simulation, the blue line is the calculated
{(s)sin ¢, difference only, and the black line is calculated from Eq.
(36), including the dispersion effect.

k
AE(s) = 2 (Ui,2 - Ui,l)Sin &by, (35)
i=1

where 1 and 2 stand for the initial and final distributions.
Therefore, the total closed orbit change inside the rf zone
is also related to the dispersion:

(36)

Ax,,. = {(s)sin ¢, — £ (s)sin ¢, + D(s) AAf(S) .

BoEo
Figure 6 shows the simulated closed-orbit change inside
the rf zone. Both the simulation and the experiment param-
eters are the same as those in Sec. IV A. When the dispersion

effect is included, the theory agrees very well with the simu-
lation. The experimental result is shown in Fig. 7, and the

0.4

T [T T[T T T T[T T T T[T T T Ty
__03E E
> 025 =
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< ot b 1 ﬁiﬁ% E
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980 1000 1020 1040 1060 1080 1100

s(m)

FIG. 7. (Color online) The slope of dx,,/dAV inside the rf
zone. The squares with an error bar are obtained from the experi-
ment. The dispersion term was subtracted from the original orbit
data change, and the slope is obtained by fitting the difference with
AV. The line is the slope from the calculation.
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agreement is reasonable.

V. THE RELATED LONGITUDINAL MOTION

So far the closed-orbit change in the transverse direction
has been examined, and we are ready to study the longitudi-
nal motion. The energy gain of a particle from the rf cavity in
one passage is given by

Ap, qUsin¢ qU(r)sin ¢
Po BRE, ;

(37)
BiEo

where ,éo and E, are the relativistic factor and the energy of
the reference particle, g and ,é are the charge and relativistic
factor of the study particle, U(r) is the peak voltage
of the rf cavity, and r=\x*>+y?. For the pillbox cavity work-
ing at the TMy;, mode, k,=~2.405/r,, with r, as the radius of
the cavity, and U(r) is proportional to the zeroth-order Bessel
function of r; therefore, U(r) = Uo(l -1/4 kfx2).

The fractional momentum difference from the synchro-
nous particle in one turn will be

d_5_3+C q

de s 2 WB(Z)EO

where 6=(p-py)/po, Ap=d—,, 6=2mn (n=1,2,3,..., is
the orbital angle).

The closed orbit for a particle with fractional momentum
0 and rf phase ¢ can be written as

Xeo(8) =Xe0.0(8) + D(s) 8+ L(s)cos ¢ Adp

[U(s,r)sin ¢— U(s,0)sin ¢,], (38)

+ )\5’2(5) 52 + )\¢’2(S)A¢2 + )\¢,§(S)A¢5

+0(3), (39)

where x,., o(s) is the closed orbit distortion, which can be
assumed to be zero. N factors can be determined by tracking
or measurement since they are also related to the sextupole
and all the higher-order multipole fields [16].

From Eq. (39), Eq. (38) becomes
dé U
0 _GUrCOS by gy ey A + 155 Ab 54 325+ O(3),
do ZWﬁ%Eo

(40)

where Up;=3'*CU(s) is the total gap voltage, the
k factors are defined as K ,=(cos? p,—1/2k;7),
K5,2:<D2>, Kp,6= (2D{ cos o), and (f(s))
=(8mBEY) 'S qU(s)sin bk f(s).

From Egq. (39) the pathlength difference from the synchro-
nous particle is

Al
7= gy cos g A+ as, 6
+a¢’5A¢ o+ a5’252+01¢’2 A¢2+O(3) (41)
And the alpha factors are defined as ag;=(AD),
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FIG. 8. {(s)/p(s) in part of the ring.

ay1=(ALcos d), ays=(ANy s+A’DL cos d+D'{ cos ),
5,=(1A2D2+ AN 5, +1D"2), ay2={1/2422 cos? ¢,
FANg + L cos? g), where  (f(s))=L [ CH(s)ds,
C=Cy(1+ay,sin ¢,) is the closed-orbit length of the refer-
ence particle, A(s)=1/p(s), and p(s) is the radius of the orbit.
Note that a4 is the usual first-order momentum compaction
factor, and «,; is the first-order phase slip factor caused by
the cavity-induced closed-orbit change. In practice, the alpha
factors can be measured [17].

Hence, the total phase change per turn can be expressed
as

A
% = h7]¢‘1 COS ¢s A¢+ h775!15+ h7]¢35A¢5+ h?]az&z

+hng, Ad*+O(3), (42)

where h is the rf harmonic number, 75;=as;—1/7?
Np1=0p1s  Npo=ps—p1/ Yo' Mea=asy+(1+B%/2
—ag)/ );02, Np2=0xg, and ,éo, )A/O are the relativistic factors.

Equations (40) and (42) define the longitudinal motion.
For APS, 7,,=39X 10", which is much less than
751=2.8 X 107%; therefore, 74,1 does not affect the longitu-
dinal beam motion at APS. However, there are circumstances
where 7, cannot be ignored. One is in a specially designed
lattice where 7, is large; the other is when the first-order
momentum compaction factor is small, e.g., in the lower
alpha-c lattice. These two cases are discussed in the follow-
ing sections.

A. Longitudinal damping lattice

a4, can be made large in a specially designed lattice. The
integrand in the definition of ay; can be examined more
closely. Figure 8 shows {(s)/p(s) in several sectors of the
APS. In the dipole magnets £(s)/p(s) is of the order of 107,
and the total integral is small because {(s) changes sign fre-
quently along the ring. Since rf cavities resemble dipole
magnets, they can be arranged to form an orbit bump. Inside
the bump, {(s)/p(s) can be kept the same sign; therefore, a,
will be of the same order as [{(s)/p(s)|[Al/C]. There are
other methods to increase ay, too, like intentionally tilting
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the rf cavities. A horizontally tilted cavity gives the particle a
phase ¢ related transverse kick, which has a similar effect as
the nonzero dispersion cavity. In Appendix B the equilibrium
angle in the cavities is discussed.

When a,; cannot be ignored, keeping only the leading
terms in Egs. (40) and (42) and rewritting them in
E=(A¢, )" phase space, one gets

h7]¢,1 cos ¢, hmngs,
=1 U =
(=4 CIA T os 6 0 |7 (43)
2mBE,

where the prime is the first derivative with respect to 6.
Solving the eigenvalue equation, one obtains the eigenfre-
quencies

JE—
Q=12 - vf,, (44)
where
1
t=5hny, cos ¢,
and

V= \/— hns1qUr cos (Z)S/Zﬂ',égEO.

Therefore, the longitudinal tune is affected by «, ;. We note
that a,; is different for individual particles because of the
incoherent momentum kicks induced by synchrotron radia-
tion and intrabeam scattering. Consequently, the incoherent
longitudinal tune will be different.

Usually ¢<p,, and the solution to Eq. (43) is

haa]

Ad=— 50e”(isin 1(0+ 6y) + cos v,(0+ 00)>,
1%

| | (45)
8= 8ye' sin vy (6+ 6,),

where &, and 6, are determined by the initial conditions.
The stable conditions are

75108 ¢ <0 and 7, cos ¢, <O0. (46)

The first inequality is the usual stable condition for synchro-
tron motion. The second inequality means 7, ; must be nega-
tive below transition and positive above transition. The lon-
gitudinal phase space shrinks when the above conditions are
met, meanwhile the transverse emittances grow according to
Eq. (4). The total phase space volume is not preserved be-
cause of the dissipative transverse kicks from the rf cavities.
This effect is very small, and it could be overwhelmed by
many other factors. We are still looking for evidence that
supports this conclusion.

B. Lower alpha-c lattice

The lower alpha-c lattice has been installed in several
electron storage rings recently [3,18]. The electron bunch
length is usually of the order of a few picoseconds due to the
lowered momentum compaction factor. The lattice is used
for coherent synchrotron radiation generation and time-
resolved x-ray photography. The bunch length, however,
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saturates when momentum compaction factor goes below a
threshold value. Besides that, there are some interesting ex-
perimental phenomena that remain to be understood [18].
Proper modeling of the longitudinal motion seems to be cru-
cial. In the lower alpha-c lattice, the dispersion function is
significantly increased in the straight sections where the rf
cavities are located; hence, N1 is larger than that of the nor-
mal lattice. On the other hand, 7, is minimized by orders of
magnitude. Therefore, 7, ; must be taken into account in the
modeling of the longitudinal motion. The higher-order 7,
terms can be ignored because they are likely to be small.
Therefore, the longitudinal motion can be described by

dé_ qUrcos ¢,

" A¢+ K¢’2 A¢2+K¢’5AQ’) o+ K5’252,
d9  2mxpBE,

dA

d_;b=h77¢,1 COS ¢SA¢+h7]5’16+ h??&)353, (47)
where 75, is zero because of the symmetry [17]. Ignoring
the « terms and differentiating the first equation, one gets the
equation for 6,

&' =hny, cos ¢S — v, 8- V2538, (48)

where v, ;= \/ —(hns,qUrcos )/ (ZWESEO). For the electron
storage ring BESSY’s lower alpha-c lattice, Vi30%< vi 1> SO
we can treat the & term as a perturbation. In this case the
stability conditions for Eq. (48) are the same as those in Egs.
(46). In BESSY’s lower alpha-c operation, it was found that
the total momentum compaction factor had to be less than
zero to ensure a sufficiently large longitudinal bucket. This
could be related to the 7, factor. The complete solution of
Eq. (47) is beyond the scope of this paper. It is worth men-
tioning that the 7, terms should also be considered in the
modeling of the transition energy crossing.

VI. CONCLUSION

The synchrobetatron coupling caused by nonzero disper-
sion rf cavities is a classical topic in accelerator physics. The

(cos 27y, + a(sy)sin 2y,
r=

— ¥(so)sin 27v,
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current theory focuses mostly on the resonance. We have
studied synchrobetatron coupling effect at off-resonance.
Starting from the Hamiltonian, we found that the cavity can
approximately be described by an equivalent dipole kicker;
therefore, it changes only the closed orbit to the first order.
The change can be described by an analytical Green’s func-
tion, which was verified in the simulation and in the experi-
ment. The longitudinal phase slip is calculated from the re-
defined closed orbit. We found that the phase slip is therefore
related to both the momentum and the longitudinal position
of the particle. The synchrobetatron coupling effect on the
longitudinal motion becomes non-negligible if the phase slip
induced by the cavities is big or if the momentum compac-
tion factor is small. Longitudinal beam dynamics is dis-
cussed in both cases. We believe it has a significant effect on
the lower alpha-c lattice.
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APPENDIX A: THE GREEN’S FUNCTION FOR A DIPOLE
KICK IN PHASE SPACE

Consider a dipole kick in horizontal phase space at loca-
tion s=s, in an otherwise ideal storage ring with

Ax=A, Ax'=B. (A1)
However, the closed-orbit condition requires
Xg—A X
( \ )ZMT< ?), (A2)
xy—B Xo
where
So)sin 27,
Blso) : ) (A3)
cos 27, — alsg)sin 27w,

is the one-turn transfer matrix of the ideal storage ring; «, 3, and vy are the Courant-Snyder functions; and v, is the horizontal

tune.
Solving the above equation, one obtains

Xo=T—"—
2 sin v,

xo=———{ ¥sp)cos mv, A + [sin wv, — a(sy)cos wv]B}.

2 sin v,

{[sin v, + a(sy)cos 7v,] A + B(sy)cos 7v,B},

(A4)

The closed orbit at any other location s can be obtained by the transfer matrix, i.e.,
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X(S)> <X(SO)
<x(s)’ MOl 150

where M is the following matrix:

B(s)
Blso)

[sin ¢(s,s,) + a(sy)cos P(s,so)]

) : (A )
= . MG s
2 sin v, B

PHYSICAL REVIEW E 72, 056501 (2005)

(A5)

VB(5)Blso)cos §(s.50)

1+ a(s)alsy) - (so) —als) . =«
- \% cos ¥(s,s0) + 0:,% sin ¢(s,so) ﬂ( )[sm s, s0) — a(s)cos w 5,50) ]

and (s, so)=mv,—[¢(s)— h(sy)]. Consequently, the closed-
orbit change at location s is

1 Bls)

Xeo(8) = 2sinan. V Bisy)

[sm (s, s0) + asy)cos P(s,s0)]A

VB(s) B(sp)cos i(s,s0)B. (A6)

+—

2 sin v,

Substituting for A=—D(sy)Ap/py and B=—D'(sy)Ap/py, one
gets

VB 1

Xeo(8) == 2 sin v, \ B(s,)

——={D(s¢)sin w(s s0) + La(sg)D(sp)

A A
+ Blso)D’ (s0)Jcos w(s,so)}p—”
0

B(s) A
== — 2 H(sg)c0s Ws,50) 2, (A7)
2 sin v, Do

which has the same form as Eq. (24) in Sec. III. The func-
tions H(sy) and W(s,s,) are defined in Egs. (17) and (22),

respectively.
Similarly,
—
’ V ’Y(s) A Ap
5L 5) = 5 Hlsg)cos[ s 50) = x(so) + ()] 7
sin wv, Po

(A8B)
where x(so) and «(s) are defined in Egs. (18) and (19).

+

AP Z

FIG. 9. (Color) The coordinate system in the rf cavity. The tilt
angle between s and z is Y=x_ , =(D5+{sin ¢)’.

For a ring accelerator, x. , (s) can be expressed as

e S e s.5) - xs>+x<s>]

2 sin TVy =1

=~ —[als)2(s) + £s)]sin .

A0) (A9)

APPENDIX B: THE EQUILIBRIUM ANGLE

If the closed orbit has an angle with respect to the axis of
the cavity, the particle will get a transverse kick when pass-
ing through. This is like the effect of a tilted cavity. The
closed orbit is perturbed, and the particle will look for the
equilibrium closed orbit. As is diagrammed in Fig. 9, the
momentum changes in the rf cavity are

AP;=AP_cosY,

AP, =-AP_ sinY. (B1)
Let the final closed orbit be
Xe.o. =xc.o,0 +D(S)5+ g(S)Sin (Z’)+X(S)Ca; (B2)

then the angle Y between the closed orbit and the cavity axis
is

Y =D'(s59) 5+ ' (s0)sin ¢+ x'(50) - (B3)
The transverse kick received from the cavity will be
, Ap
Ax"==[D"(s0)0+ {'(so)sin p+x'(sp)cal = (B4)

Po

Due to the above kick, the closed orbit angle change at the
cavity location is given by

X' (50)ca = [sin 7y, — a(sg)cos mv, JAx". (B5)

2 sin v,

Solving the above equation, one gets the equilibrium angle at

S0s

= R(so)[D"(50) 8+ ' (sp)sin p]Ap/po
2+ R(s0)Ap/py

x,(s())ca = s (B6)

where R(sy)=1-a(sg)cot wv,. This is a second-order term
because D', {’, and Ap/p, are all small.
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