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The collisionless expansion into a vacuum of a thin foil heated by an ultrashort laser pulse and adiabatically
cooling down is studied with a particular emphasis on the structure of the accelerating field and on the resultant
ion energy spectrum. For late times, a double layer structure at the ion front becomes the dominant feature. The
dependence of the maximum ion velocity on the thin foil width is established. The effect of a two-temperature
electron distribution function is discussed.
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There has been a large number of recent experiments
showing ion acceleration in the interaction of ultrashort laser
pulses with thin foils �1,2�. Three mechanisms are invoked to
explain the ion acceleration �3�, where the ions are acceler-
ated by the charge separation created at the front side of the
target, inside the target by a shock propagating across the
plasma �4�, or at the back of the target �5�. In the last case,
the detailed mechanism is the following: fast electrons are
first created at the target front side by the laser-plasma inter-
action. A crude estimate of the heated electron temperature is
simply given by the energy of the electrons oscillating in the
transverse field of the incident light wave �6�, kBTe= ��
−1�mec

2, where �= �1+ I�2 /1.37�1018�1/2, I is the intensity
in Wcm−2 and � is the wavelength in �m. The electrons then
propagate through the target and build a charge separation
field at the rear side. The corresponding electric field ionizes
atoms and accelerates ions �7�. The ion expansion is com-
monly described by the model of free isothermal expansion
into a vacuum of a plasma occupying initially a half space
�8–10�. This model predicts an ion velocity spectrum with a
high velocity cutoff, which is given by �10�

vmax � 2cs ln�� + ��2 + 1� , �1�

where cs= �ZkBTe /mi�1/2 is the ion-acoustic velocity, �
=�pit /�2eN, �pi= �ne0Ze2 /mi�0�1/2 is the ion plasma fre-
quency, ne0 is the electron density in the unperturbed plasma,
Z is the ion charge number, and eN=2.718 28. . .. The maxi-
mum velocity in �1� diverges logarithmically with time,
while the total energy in the fast ions diverges linearly, so
that to be able to apply the model to the interpretation of
experiments, one has to determine the relevant time t at
which the acceleration is stopped. A natural choice for t is
the laser pulse duration tl �2�, but one might argue that, in the
experiment, the acceleration does not stop suddenly, and that
it goes on even for t	 tl. On the other hand, the isothermal
model assumes a constant electron temperature, which can
be a reasonable assumption during the laser pulse, but is
certainly violated for late times, as the electrons progres-
sively give their energy to the ions �9� and cool down in the
expansion. Remarkable exact self-similar solutions were

given in the quasineutral limit for the adiabatic plasma ex-
pansion of plasma bunches into vacuum �11�. However, these
solutions require specific initial conditions, correlating the
spatial and the velocity space �for instance, for Maxwellian
distribution functions for the electrons and the single species
ions, the density has to be Gaussian in space�. Furthermore,
they do not describe the charge separation effect and the
structure of the ion front, which is crucial in the determina-
tion of the maximum velocity of accelerated ions.

In this paper, we propose an alternative model which
treats the collisionless expansion into a vacuum of a thin foil
of initial width L. The model fully takes into account the
electron cooling due to the energy transfer to the ions and the
charge separation effects. The most salient results of the
present work are the prediction of a double layer structure of
the ion front, significantly more pronounced than in the iso-
thermal case, and the prediction of the maximum ion veloc-
ity as a function of the foil thickness.

At time t=0 the ions are cold and initially at rest with
density ni=ni0=ne0 /Z for �x � 
L /2 and ni=0 for �x � 	L /2
with sharp boundaries �in contrast with the initial conditions
of the self-similar quasineutral solutions �11��. The expan-
sion being symmetrical with respect to x=0, we only simu-
late the half space x	0. The equations of the model are the
Boltzmann equation for the electron density ne, the Poisson
equation for the electric potential �, and the equations of
continuity and motion for the ion density ni and the ion ve-
locity vi, and do not differ in this respect from the equations
of the isothermal model �10�. However, the boundary condi-
tion is now different on the left part of the simulation box,
since one has E�x=0�=0 and vi�x=0�=0 for any time t. Fur-
thermore, the electron temperature is now a function of time
determined by the energy conservation equation,

dUe/dt = − dUions/dt − dUfield/dt , �2�

where Uions is the kinetic energy of the ions, Ufield is the
electrostatic energy of the electric field, and Ue
=g���NekBTe is the thermal energy of the electrons �all these
quantities are defined per unit surface�. Here Ne=ne0L is the
total number of electrons, and g��� is a function of �
=kBTe /mec

2 with g=1/2 in the classical limit ��=0� and g
=1 in the ultrarelativistic limit ��= 
 �. Alternatively, the
thermal energy of the electrons can be calculated directly by*Electronic address: mora@cpht.polytechnique.fr
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the work done by the electric field on the electron fluid,

dUe/dt = − e�
−





Enevedx = − kBTe�
−





ne � ve/�xdx

= e�
−





� � ne/�tdx . �3�

We have solved the system of equations with the Lagrang-
ian code described in Ref. �10�, to which the numerical reso-
lution of Eqs. �2�–�3� has been added. Our model differs
from the model of Ref. �12� in which ve is replaced by vi in
Eq. �3�. This replacement leads to significant differences for
the thinner foils, when Ufield is not negligible, and for two-
temperature electron distribution functions. On the other
hand, we have verified that our results agree with the pub-
lished results of a particle-in-cell code �13� within 1%.

If the electron temperature was maintained constant by an
external source of energy, it would take a time tL=L /2cs0,
where cs0 is the initial ion-acoustic velocity, for the rarefac-
tion wave to reach the center of the foil, and thus tL is the
relevant characteristic expansion time of the foil. Actually,
for t� tL, the expansion is not significantly different from the
isothermal semi-infinite case. For 0
 t� tL, the cooling pro-
gressively occurs as evidenced in Ref. �13�. For t� tL, the
electron cooling is fully effective and the velocity becomes
progressively frozen, with v�x , t��x / t, as can be seen in Fig.
1, which shows at time �pit=50 �i.e., t=5tL�, the ion velocity
and the ion and electron densities as functions of space, for
L=20�D0 and Te0=1 MeV, where �D0 is the Debye length in
the unperturbed plasma, �D0= ��0kBTe0 /ne0e2�1/2, and Te0 is
the initial electron temperature. At that time, the electron
temperature is only 4% of its initial value. Also shown in
Fig. 1 in dotted line is the best-fitted Gaussian density which
corresponds to the self-similar solutions of Ref. �11�. For t
� tL, the density profile becomes self-similar, with n�x , t�
= f�x / t� / t, and the characteristic length le�x , t�
= �� ln ne /�x�−1 becomes a linear function of time, when con-

sidered as a function of the Lagrangian position, except for
the ion front for which the local Debye length is the relevant
characteristic length. Note that here the self-similar character
is only acquired in the limit t� tL in contrast to the self-
similar character of the solutions of Ref. �11�, which is true
for any time due to the specific initial conditions and the
quasineutral assumption. The asymptotic behavior of the
electron temperature can be obtained from �3� with ve�x / t,
giving dTe /dt=−Te /g���t, and thus Te� t−2 for g�1/2, as
observed in Fig. 2, which shows the time dependence of the
electron temperature for the parameters of Fig. 1. Also
shown for comparison are, on one hand, the nonrelativistic
case Te0=1 keV, which corresponds to a faster cooling, due
to a smaller initial value of � and thus of g���, and, on the
other hand, the ultrarelativistic case Te0=100 MeV, which
corresponds to g�1, giving dTe /dt=−Te / t and thus Te� t−1.
Note that the nonrelativistic asymptotic Te� t−2 scaling is a
general law which is verified by all the previous studies of
one-dimensional �1D� adiabatic expansion into a vacuum of
a collisionless plasma �11,12,14�.

Figure 3 shows the time dependence of the velocity of the
fastest ions for the parameters of Fig. 1. Also shown in dot-
ted line is the prediction of Eq. �1�. It is interesting to note
that, at time t= tL, the electron temperature is approximately
47% of its initial value, while the fastest ions have gained
50% of their final energy.

FIG. 1. Ion and electron densities and ion velocity as functions
of x for L=20�D0 and Te0=1 MeV, at time �pit=50 �i.e., t=5tL�.
Also shown in dotted line is the best-fitted Gaussian density. Typi-
cal physical parameters for the hot electrons driving the expansion
are ne0=1019 cm−3, corresponding to �pi

−1=240 fs �for protons� and
�D0=2.35 �m, in which case the above parameters correspond to
L=47 �m and t=12 ps.

FIG. 2. Electron temperature as a function of time for L
=20�D0 and Te0=1 keV, 1 MeV, and 100 MeV.

FIG. 3. Fastest ions velocity as a function of time for L
=20�D0 and Te0=1 MeV. Also shown in dotted line is the predic-
tion of Eq. �1�. The final value of vmax is 5.40.
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Figure 4 shows the electric field E=kBTe /ele�x , t� as a
function of x for the same parameters as Fig. 1. One observes
three regions in the expansion. First, the electric field in-
creases linearly as predicted by the fully self-similar solution
of Ref. �11�. This linear behavior also corresponds to the
Gaussian density fit plotted in dotted line in Fig. 1. Second,
in a plateau region, the electric field is almost homogeneous.
As Te� t−2 and le�x , t�� t, one has E� t−3 in the plateau re-
gion. Finally, the ion front is characterized by a peak of the
electric field Efront=�2kBTe /e�D� t−2. In the ultrarelativistic
regime, the scalings would be E� t−2 in the plateau region
and Efront� t−3/2. Contrary to the isothermal semi-infinite
plasma case, the Debye length at the ion front is not increas-
ing indefinitely with time, but saturates to a value which is of
the order of a fraction of the initial width L �when L��D0�.

The ratio Efront /Eplateau which is equal to 2 in the isother-
mal semi-infinite model is now increasing linearly with time,
so that the double layer staying at the ion front becomes the

dominant feature of the electric field structure at late times.
Recent experimental results of probing of high-energy pro-
tons accelerating fields in short-pulse laser solid interaction
have evidenced the existence of such a double layer �15�.

Figure 5 shows the ion velocity spectrum at �pit=200,
which can be considered as almost final, as Te has fallen
down to Te0 /400. Also shown in dashed line is the spectrum
deduced from the semi-infinite isothermal model and corre-
sponding to the same total kinetic energy of the ions, i.e.,
corresponding to �pit=10.52, which is approximately t� tL.
Note that the fastest part of the spectrum extends to a cutoff
which is approximately 20% larger in the adiabatic case than
in the isothermal case. The dotted line is the Maxwellian
spectrum corresponding to the fully self-similar solution.

Figure 6 shows the final velocity as a function of the
target thickness for Te0 ranging from 1 keV �nonrelativistic
limit� to 100 MeV �ultrarelativistic limit�. For L�20�D0, a
logarithmic fit conveniently represents the results. In the
nonrelativistic limit, one has

v final � 2cs0 ln�0.32L/�D0 + 4.2� . �4�

The numerical values appearing in the argument in Eq. �4�
are slight functions of Te0, because of relativistic effects. For

FIG. 5. Velocity spectrum per unit surface at �pit=200. Velocity
is normalized to cs0, and the number of ions per unit surface and
unit velocity is normalized to ni0�D0 /cs0. Also shown in dashed line
is the spectrum deduced from the semi-infinite isothermal model
and corresponding to the same total kinetic energy of the ions, i.e.,
where the velocities are frozen at time �pit=10.52. The dotted line
is the Maxwellian spectrum corresponding to the fully self-similar
solution of Ref. �11�.

FIG. 6. Final velocity as a function of the target thickness for
Te0 ranging from 1 keV �nonrelativistic limit� to 100 MeV �ul-
trarelativistic limit�.

FIG. 7. Ion, total electron and hot electron densities, and ion
velocity as functions of x in the two-temperature case, for L
=20�D0, Th0=0.88 MeV, Tc0=1 keV, and Nc /Nh=200, at time
�piht=50. The total energy is identical to the case of Figs. 1–5. The
normalizations are the same as in Figs. 1–5.

FIG. 4. Electric field as a function of x for L=20�D0 and Te0

=1 MeV, at time �pit=50. E is normalized to E0

= �ne0kBTe0 /�0�1/2. The dotted line is the electric field corresponding
to the best-fitted Gaussian density of Fig. 1.
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instance, for Te0=1 MeV, the respective values are 0.49 and
5.3 and for Te0=100 MeV, the respective values are 0.80 and
8.17. It is important to make two remarks. First, when
L /�D0�1, Eq. �4� is similar to Eq. �1� with t� tL. Second,
the L dependence of v final is given for constant values of the
parameters Te0 and ne0, which corresponds to a situation
where the number of electrons Ne and the total initial elec-
tron energy Ue are also linearly increasing with L �ideally it
corresponds to a laser pulse energy which also increases with
L�. In an experiment where the target width is varied for a
fixed laser pulse, ne0 is normally a strongly decreasing func-
tion of the width �2�, and the Debye length �D0 increases
strongly with L, so that L /�D0 in fact decreases when L
increases, and the curve of Fig. 6 is explored backwards.
When L goes to 0, v /cs0 goes to a finite value. The fact that
v /cs0 initially decreases when L increases is due to the fact
that the available energy per ion is decreasing, since the ratio
of the electrostatic energy to the total energy in the initial
condition goes from 1/ �1+g� when L=0 to 0 when L goes to

.

Up to now, we have ignored the presence of cold electrons
in the foil and all our discussion was based on a single popu-
lation of �hot� electrons. The model has been completed by
cold electrons which are assumed to satisfy a Boltzmann
equation corresponding to a cold temperature Tc, while Th

now refers to the hot electrons �16�. Let Nc and Nh be the
corresponding number of electrons. In the following, to fa-
cilitate the comparison with the previous one-temperature
case, all the normalizations are based upon the hot electrons
component, i.e., the electron densities are normalized to ne0

=Nh /L, the ion density is normalized to ni0=ne0 /Z, and we
define a partial ion plasma frequency �pih

= �NhZe2 /mi�0L�1/2, while cs0 corresponds to a 1 MeV tem-
perature and �D0=cs0 /�pih. The evolution of the cold tem-
perature is determined by Eq. �3� while the evolution of the
hot temperature can be determined by Eq. �3� or alternatively
by Eq. �2�. The physical values of Th0 /Tc0 and Nc /Nh are
very large but are still tractable in our numerical model. We
have chosen the values Th0 /Tc0=880 and Nc /Nh=200, which

are in the regime where the electron pressure is dominated by
the hot electrons and where the ratio Th /Tc is well above the
critical value 5+�24�9.9 for which the quasineutral fluid
theory of the expansion of a semi-infinite plasma predicts a
rarefaction shock separating two regions in the expansion,
dominated respectively by cold and hot electrons �17�. The
choice Th0=0.88 MeV is such that the total energy in the foil
is the same as in the previous one-temperature case.

Figure 7 shows the ion and electron densities and the ion
velocity as functions of x at time �piht=50. First, the expan-
sion is clearly divided into two regions, corresponding re-
spectively to cold-dominated and hot-dominated parts. Sec-
ond, the low density, high velocity part is almost identical to
what it was in the one-temperature case �see Fig. 1�. Note
that the rarefaction wave, which is mainly governed by the
cold electrons, has not yet reached the center of the foil at
that time.

Figure 8 shows the two electron temperatures as functions
of time. Note that the hot temperature decays almost as in the
one-temperature case �compare with Fig. 2� while the cold
temperature decays slower, at least initially.

Figure 9 shows the ion velocity spectrum �full line�,
which is almost identical to what it was in the one-
temperature case �see Fig. 5� in its high velocity part. Thus,
as expected, the fast ion expansion is mainly determined by
the hot electrons component. Also shown in dashed line is
the two-temperature case corresponding to a semi-infinite
plasma, i.e., with no time variation of Th and Tc, and where
the velocities have been frozen at time �piht=8.25, for which
the total energy in the ion spectrum is the same. Note that the
dip, which is present at low velocity in the semi-infinite
plasma two-temperature case, is almost absent in the thin
foil, time-dependent two-temperature case.

Finally, the relevance of the isothermal model and of the
present adiabatic model to experiments is now briefly dis-
cussed. An essential parameter is the ratio of the pulse dura-
tion tl to the time it takes to the hot electrons created at the
front surface to completely fill the foil, i.e., te=2L /c �for L
=47 �m, te=320 fs�. When tl� te, the hot electrons’ burst
interacts only once with the rear target and the isothermal

FIG. 8. Electron temperatures as functions of time in the two-
temperature case.

FIG. 9. Velocity spectrum per unit surface at �piht=200 in the
two-temperature case. Also shown in dashed line is the spectrum
deduced from the semi-infinite two-temperature isothermal model
and corresponding to the same total kinetic energy of the ions, i.e.,
where the velocities are frozen at time �piht=8.25.
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model applies with t= tl. On the other hand, when tl� te, the
hot electrons completely fill the target and the adiabatic
model applies. When tl	 te, the adiabatic model applies as a
first approximation, but can be improved by adding a source

�heating� term on the right-hand side of Eqs. �2� and �3�.
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