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Scaling laws for rotating Rayleigh-Bénard convection
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Numerical simulations of large aspect ratio, three-dimensional rotating Rayleigh-Bénard convection for
no-slip boundary conditions have been performed in both cylinders and periodic boxes. We have focused near
the threshold for the supercritical bifurcation from the conducting state to a convecting state exhibiting domain
chaos. A detailed analysis of these simulations has been carried out and is compared with experimental results,
as well as predictions from multiple scale perturbation theory. We find that the time scaling law agrees with the
theoretical prediction, which is in contradiction to experimental results. We also have looked at the scaling of
defect lengths and defect glide velocities. We find a separation of scales in defect diameters perpendicular and
parallel to the rolls as expected, but the scaling laws for the two different lengths are in contradiction to theory.
The defect velocity scaling law agrees with our theoretical prediction from multiple scale perturbation theory.
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I. INTRODUCTION

Rayleigh-Bénard convection is a paradigmatic system for
studying pattern formation [1]. This system exhibits weak
turbulence, otherwise known as spatiotemporal chaos. If the
bifurcation to chaos is smooth, then we can study the scaling
laws near such a transition.

In Rayleigh-Benard convection, a fluid cell bounded by
horizontal parallel plates is kept at a constant temperature
difference AT. This leads to a buoyancy-driven instability as
AT increases past a critical value. In nonrotating Rayleigh-
Bénard convection, the conducting state bifurcates to a con-
vection state consisting of straight, parallel rolls. Then if the
aspect ratio is large, or if AT is increased further, these states
can bifurcate to spatiotemporally chaotic states. The param-
eter regime where parallel rolls are stable is well modeled
theoretically near threshold by a stability analysis of the non-
linear state [2,3].

In rotating convection, the entire cell is rotated about a
vertical axis with a constant rotation rate (), which breaks
the reflection symmetry. For a certain range of parameters, a
chaotic state known as domain chaos has been found to exist,
as shown in Fig. 1. This state consists of domains of parallel
rolls, each of whose particular location and size vary chaoti-
cally. A perturbation expansion of the equations which model
rotating Rayleigh-Bénard convection [4,5] predicted this su-
percritical bifurcation from a conducting state to an unstable
convection state. A supercritical bifurcation is particularly
useful to study since the new state evolves continuously out
of the old state. A control parameter € [Eq. (4)] can charac-
terize this transition. This control parameter measures the
strength of the driving above the onset of convection, and is
linear in the temperature difference.

In the original work by Kiippers and Lortz [4], the con-
vection state consisted of straight parallel rolls which were
unstable to rolls at a different, distinct orientation. For large
Prandtl number (>10), this orientational angle is about 60°
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with respect to the original. This is known as the Kiippers-
Lortz instability, and can be seen in Fig. 2, where the domi-
nant roll orientation is plotted as a function of time for simu-
lations in a periodic geometry. After about 400 vertical
diffusion times (enough to allow the transients to relax), the
orientation of the rolls switches discretely. However, one can
see that the time between switches gets longer and longer.1
This is completely consistent with the predictions of Busse
and Heikes [6], who noted that the time between roll
switches should increase as the perturbation which causes the
instability decays.

However, in experimental systems, one typically sees a
more constant switching frequency such as that seen in Fig.
3, which is for the same system as Fig. 2, but for larger e.
Busse and Heikes suggested thermal or other extrinsic noise
would cause the roll switches to occur at a relatively constant
rate. Laveder et al. [7] demonstrated that a noise floor would
also have a significant effect on the scaling laws for correla-
tion lengths. However, Oh and Ahlers showed [8] that the
experimental noise in Rayleigh-Bénard convection systems
is very small. It is practically insignificant in the parameter
range investigated by the experiments of Hu, ef al. Cross and
Tu [9] showed that in realistic systems the chaotic fluctua-
tions from a complex spatial structure are important, leading
to roll switches occurring at a relatively constant rate.

This led to theoretical modeling of rotating Rayleigh-
Bénard convection via three coupled Ginzburg-Landau equa-
tions [9-11], which confirmed the presence of a supercritical
bifurcation from the conducting state to a domain chaotic
state as the temperature difference is increased at fixed rota-
tion rate (but above some critical rotation rate). The patterns
switched at a constant rate and looked similar to those seen
in experiments. The theory uses periodic boundary condi-
tions and assumes that the dynamics is dominated by domain
wall motion. When one set of rolls is replaced by another, the
region containing the new, growing set of rolls spreads by

"This slowing down is seen for the duration of our simulation. It is
possible that if the simulation is run out for longer the switching
time will become constant.
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FIG. 1. Snapshot of temperature deviation @ at the midplane, for
a domain chaos state with the following parameters: 1'=40, o
=0.93, 1=17.6, €=0.068, t=4307,. Lateral temperature boundary
conditions are conducting. The gray denotes the conduction value
(6=0), and the lighter and darker shades give the values above and
below this, which range from #=-0.15 to 0.15.

the motion of a front, i.e., the boundary between the two
different regions of roll orientation. Except for the special
case of a front perpendicular to the rolls, the velocity of
propagation of the front scales as €2 [12], and the pertinent
length scale varies as € /2. This leads to the time scale for
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FIG. 2. A density plot of F(®,7) as a function of orientation
angle ® and time ¢. Black corresponds to the largest value, and
white to the smallest. Because the angle of the rolls is a director
field, only angles from —#/2 to m/2 are shown. Note that —7/2
maps on to 7/2. The following parameters were used: I'=40, o
=0.93, (1=17.6, €=0.007, periodic boundaries. We cannot measure
an f. for this € because the slope of the line through successive
maxima increases with time.

PHYSICAL REVIEW E 72, 056315 (2005)

Y e .
el o N
" -l
800} J— g | ]
- W

-

I | L , .
v | 4l o

T e

1000

~ 600 e L s

-y VN
2001 'l R
r ) ) - - ¥ I—--I ‘“.‘ T"'— ﬂ
-15 -1 -0.5 0 0.5 1 1.5
(€]

FIG. 3. The same type of plot as in Fig. 2 except €=0.045. The
inverse of the slope of the dark line made from the dominant © as
a function of time gives the precession frequency, which is
0.0126 rad per vertical diffusion time in this case.

perturbations to grow, which scales as € !. These scaling
predictions are some of the first quantitative, theoretical pre-
dictions for a spatiotemporally chaotic state.

Extensive experiments were done on cylindrical rotating
Rayleigh-Bénard cells for aspect ratios 20 and 40 [13-16].
The scaling laws for characteristic lengths and times were
found to differ from the theoretical predictions. Experiment-
ers measured the scaling exponent for lengths to be —0.2 and
times to be —0.6, if they assumed that the length and time
quantities diverged at onset [14]. However, the data could
also be fitted by assuming no divergence at onset.

Our numerical code enables us to simulate periodic
boundary conditions, as shown in Fig. 4, which more closely
resemble the theoretical model. We can also simulate bound-
aries, as shown in Fig. 1, which closely resemble the experi-
ment. By analyzing both types of geometries, we can deter-
mine the effect, if any, of realistic boundaries. Numerical
analysis of a model equation had already indicated that real-
istic boundaries may play a role in the discrepancy between
theory and experiment [17]. These boundaries should give
rise to more complex spatial structure than periodic bound-
aries. This may have a stronger effect on the dynamics near
onset.

II. BOUSSINESQ EQUATIONS

The system is modeled by the Boussinesq equations aug-
mented by a Coriolis force [1]. The Boussinesq equations
consist of a modified Navier-Stokes equation (1), the heat
equation (2), and incompressibility (3). The equations are

o O+ - V)ii=-VP+Vii+ 6 +20ui X 2, (1)
(9, +1i-V)0=V20+ Rw, 2)

V.i=0. (3)
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FIG. 4. Snapshot of temperature deviation 6 at the midplane, for
a domain chaos state with the following parameters: 1'=40, o
=0.93, 0=17.6, €=0.045, r=2147,. Lateral temperature boundary
conditions are periodic. The gray denotes the conduction value (6
=0), and the lighter and darker shades give the values above and
below this, which range from 6#=-0.12 to 0.12. A representative
dislocation is circled.

The variables are nondimensionalized by specifying the
length in terms of the cell height d, the temperature in terms
of AT, and the time in units of the vertical thermal diffusion
time 7,=d*/k, where « is the thermal diffusivity. The vari-
able u(7,t) is the velocity field, P(7,t) is the pressure, and
6(7,t) is the temperature deviation from the linear conduc-
tion profile. The symbol J, indicates time differentiation, and
Z is a unit vector in the vertical direction. The Prandtl num-
ber o=v/k, where v is the kinematic viscosity. The Rayleigh
number R=agATd3/KV, where « is the thermal expansion
coefficient and g is the acceleration of gravity. The variable
Q is the dimensionless rotation rate (= ,d?/v). The cen-
trifugal force has been neglected because it is assumed to be
small relative to the gravitational force (Q7r/g<1) for our
rotation rates.”

The aspect ratio I' is defined as the ratio of radius to depth
for cylindrical regions and as the ratio of width to depth for
periodic regions. The control parameter € is defined as

- (4)

where R, is the critical Rayleigh number at which conduction
gives way to convection.

There is recent evidence, both numerically and experimentally,
that the centrifugal force may play a larger role than previously
thought. This work is currently in preparation.
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Along the top and bottom plates we use no-slip velocity
boundary conditions and constant values for the temperature
boundary conditions:

u=0,

0=1/2 atz=0,

>

i=0, 0=-1/2 atz=1. (5)

For realistic boundary conditions on the sidewalls we use
no-slip velocity boundary conditions and conducting thermal
boundaries:

U= 6, 0=1/2-z atr=I" (conducting boundaries).

(6)

We will also use periodic (for square regions only, of course)
boundary conditions on the sidewalls:

u(x+Ty)=u(x,y), 60x+T,y)=0(x,y),

u(x,y +I) =u(x,y),

O(x,y +I') = 6(x,y), (periodic boundaries). (7)

To solve the Boussinesq equations with rotation, we have
used the code NEK5000, a highly efficient, parallel, spectral
element code developed to solve the Navier-Stokes equation.
The details of the code are described elsewhere [18]. A fast
code was essential because we ran our simulations out to 800
vertical diffusion times or longer for each e, in order to ob-
tain good accuracy. As a result, our raw data are accurate to
1% or better. We used a spatial resolution of 0.1 and a time
step of 0.005. We used straight, parallel rolls as initial con-
ditions for our simulations with conducting boundary condi-
tions, and straight parallel rolls with a dislocation pair for our
simulations with periodic boundary conditions. We used the
dislocation pair to study the motion of defects in the periodic
systems in more detail.

In order to determine scaling laws, the critical point, i.e.,
the point where e— 0, must be determined precisely. In the
spirit of experiments, we used our heat transport measure-
ments to determine the critical Rayleigh number R.. The
Nusselt number is defined as the ratio of the total heat trans-
ported across the cell divided by the heat transported via
conduction only. Hence if the Nusselt number is 1, there is
only conduction, and if the Nusselt number is greater than
one, there is convection as well. To allow for a simpler com-
parison, the reduced Nusselt number is studied: this is the
Nusselt number minus 1, which goes through zero at the
onset of convection.

We determined the average reduced Nusselt number ver-
sus R for our simulations of both periodic and conducting
boundaries. From the quadratic fits shown we find R, (i.e.,
the x intercept) to be 2246 for the periodic case and 2247 for
the conducting case (see Fig. 5). If we instead perform a
linear extrapolation through the first two data points, we find
R, is 2248 for both cases. Our own results from linear sta-
bility analysis, along with Chandrasehkar’s results [19] give
a critical Rayleigh number of 2248. Since we would expect
the effect of finite size to increase the critical Rayleigh num-
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FIG. 5. Reduced Nusselt number versus Rayleigh number (R)
for both conducting and periodic boundaries. The following param-
eters were used in both cases: I'=40, 0=0.93, ()=17.6. The solid
line is a quadratic fit to the conducting boundary data and the
dashed line is a quadratic fit to the periodic boundary data.

ber, we choose to use our linear extrapolation results of R,
=2248. We find if we use the values from our quadratic fits
instead, our scaling exponents change by at most 5%.

III. PRECESSION FREQUENCY

One finds that the orientation of the rolls precesses (not
necessarily smoothly) with time, in a counterclockwise di-
rection for positive (), as observed in the rotating frame. The
precession frequency provides us with a good diagnostic
quantity for time scaling. The precession frequency f. is
measured by first determining the dominant orientation angle
O as a function of time. To obtain this quantity we first find
the square of the modulus of the Fourier transform of the
midplane temperature field F (k) as a function of wave num-
ber k at one instant in time . A radial average of this quantity
gives us F(O), i.e., the Fourier power as a function of orien-
tation angle. Then we can find this quantity for each time
slice to give us F(0,r). Angle-time plots from representative
cases are shown in Figs. 2 and 3. The rate of change of the
orientation angle of the maximum in F(®,r) with respect to
time gives the precession frequency.

Another quantity that can be measured is the domain
switching frequency, rgslw. According to the theory for rotat-
ing Rayleigh-Bénard convection [9], domains of straight par-
allel rolls become unstable to rolls at a different orientation.
At threshold (e=0), there is one distinct orientation and for
€>0 there exists a band of orientation angles. This instabil-
ity will cause the rolls to precess in a discrete manner. We
can see this switching in Figs. 2 and 3, by noticing that the
upwards sloping trend of the maximal value of F(0,¢) often
has discrete jumps. One can measure how long it takes for
one set of rolls to become unstable to another set of rolls.
The inverse of this transition time is known as the domain
switching frequency. We find TESIW by first taking the autocor-
relation function of the angle-time plot (see Fig. 6). Then the
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FIG. 6. The two-dimensional autocorrelation function of the
angle-time plot shown in Fig. 3 (where the first 1007, were re-
moved before taking the autocorrelation, to allow the transients to
die out). The time between successive peaks is 55.57,; hence fyq, is
0.018. The switching angle 6, is the difference in angle between
successive peaks, and is 0.7+0.05 for this case.

inverse of the time difference between the first peak (on ei-
ther side) and the central peak gives the domain switching
frequency. We can also find the domain switching angle 6,
by finding the difference in angle between the first peak and
the central peak. We can then convert to the same units as

fore by multiplying 731, by 6,:

fdsw = TESIWHSW' (8)

The two precession frequencies f,. and fy,,, should agree if
the dominant method of precession is due to domain switch-
ing.

The domain switching angle 6, is plotted as a function of
€ for both periodic and realistic boundary conditions in Fig.
7. The theoretical value for the maximum growth rate for this
Prandtl number (o= 1) is about 0.7 rad [20]. Our results are
in good agreement with this value. Note however, that this is
in disagreement with the experiments [14], which measured
a switching angle of about 1.0 rad, and found a slight de-
crease in angle with e.

The quantities f,. and fy,, are plotted versus € in Fig. 8
on a log-log scale for periodic and conducting boundaries.
The slope of these lines gives the scaling of these frequency
quantities with e. The scaling for both periodic and conduct-
ing boundary conditions does agree reasonably well with the
theoretical results of timelike quantities scaling as € !. The
average of all the slopes is 1.12. We find that we can obtain
a closer agreement with theory by noting that 6, also has a
slight € dependence, as can be seen in Fig. 7. Hence if we
instead look at inverse transition times by dividing each of
our fy by its corresponding 6, we can remove this slight
bias:

@é=%ﬁ. (9)

SW
This is done in Fig. 9. Now we find that the average of all the
slopes is 1.06. The theory [9] predicts that the dominant
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FIG. 7. Domain switching angle 6, versus € for both periodic
and conducting boundaries for the same parameters as in Fig. 8.
Note the slight € dependence of 6. The error bars (dashed for
conducting and solid for periodic) are included to indicate the
spread in angle on the autocorrelation plot (see Fig. 6 for an
example).

method for precession is due to domain switching events. We
see that our T;rle and 7, very nearly coincide and that our
scaling is consistent with theory. Hence one can conclude
that predictions of the theoretical model for domain switch-
ing are consistent with the numerics, which are simulations
of a realistic ideal Rayleigh-Bénard convection experiment.

However, the experimental results do not agree as seen in
Fig. 10. We only plot f., and in units of rad per vertical
diffusion time, to compare with the experimental results [14].
Note that the experimental results are for exactly the same
parameters as the numerics for conducting boundaries, so it
is somewhat surprising to find the precession frequencies dif-
fer significantly in magnitude. One also sees that scaling

10

f( rad/tv)

10°F

107 107
€

FIG. 8. Frequencies fp. and fyq, (in units of rad per vertical
diffusion time) versus control parameter e. Legend: Conducting
boundaries, O=f.., slope=1.15, X=f,, slope=1.08. Periodic
boundaries, *=fy., slope=1.13, +=fq, slope=1.13. The follow-
ing parameters were used: I'=40, 0=0.93, )=17.6.

PHYSICAL REVIEW E 72, 056315 (2005)

107" 107
£

FIG. 9. Frequencies 7.

pre and Taslw (in units of inverse vertical
diffusion times) versus control parameter e for the same parameters
as in Fig. 8. Legend: Conducting boundaries, O=7'[—,1 slope=1.10,

re’
X = TESIW, slope=1.04. Periodic boundaries, *= Tl;rle, slope=1.06, +
= THSIW, slope=1.03.

laws differ: the experiments find a slope of 0.58 whereas the
theoretical slopes average to 1.1. However, if one looks only
at the latter data points for the numerical conducting bound-
ary case, one finds a slope of 0.68, which is in better agree-
ment with the experiment. This leads us to surmise that the
experiments may not be measuring the theoretically pre-
dicted precession via domain switching, which should domi-
nate for small enough e.

In addition, we have verified that there is another mecha-
nism for precession, namely that of the gliding motion of
defects (see Sec. V). This phenomenon can be explained by
looking at a multiple scales perturbation expansion of the
Swift-Hohenberg equation with rotation (see the Appendix).
The new term due to the Coriolis force (A6) will cause dis-

107 107
€

FIG. 10. Frequencies f (in units of rad per vertical diffusion
time) versus control parameter € for the same parameters as in Fig.
8. Legend: O=conducting boundaries, slope for early data points
=1.22, slope for latter data points=0.68 (dashed line), *=periodic
boundaries, slope=1.13, ¢ =experimental results, slope=0.58 [14].
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location pairs which are stationary in a nonrotating system to
glide in a rotating system, perpendicular to the rolls and in
opposite directions. Their gliding path will cause an overall
orientation change of the rolls due to the roll pinch off that
occurs as they glide [21,22]. If one pair of dislocations is
created in the center of a periodic cell, by the time they
transverse the system, they will have caused the rolls to re-
orient by two roll diameters divided by the box length.

Even more generally, precession will occur whenever
there is a gradient in the amplitude in the direction parallel to
the rolls [23]. The precession will cause straight parallel rolls
(whose amplitude goes to zero at a lateral boundary, for ex-
ample) to bend and curve, ultimately creating dislocation
pairs to release the stress. Dislocations will also appear if a
domain switching event does not cleanly switch between one
set of parallel rolls and another. This happens more often for
higher €, where domains are smaller. This always happens
for conducting boundaries, where the rolls can never fit per-
fectly. Dislocations can also be injected from sidewalls, and
be created in regions of high curvature resulting from mean
flows.

We expect the glide-induced precession frequency to scale
differently with € than precession via domain switching. We
predict the glide-induced precession frequency fyige Will
scale as

Satide © PV glide (10)

where p, is the linear density of defects and v, is the glide
velocity. We have found (see Sec. V again) the glide velocity
to scale as €’*. If the density of defects remains relatively
constant, then the glide-induced precession frequency should
also scale with an exponent of 0.75. This agrees better with
the experimental slope of 0.58 and our own conducting
boundary slope at larger € of 0.68.

As support for our reasoning, note that Busse and Heikes
also performed measurements on rotating Rayleigh-Bénard
convection [6,24]. They used water as the fluid, and mea-
sured the transition time, i.e., the time between domain
switches. They found this transition time scaled with an ex-
ponent of —0.75. They were further from threshold than the
experiments of Hu et al. [14], but this scaling law supports
our hypothesis of glide-induced precession being the domi-
nant mode of precession at larger e.

IV. CORRELATION LENGTH

For completeness, we have measured correlation lengths
in the usual manner [25], even though recent work by Becker
and Ahlers [26] have shown that this method is somewhat
problematic. The basic idea is to measure the decay length of
the azimuthally averaged autocorrelation function of the tem-
perature field. This decay length gives the size over which
domains are correlated, hence it is known as the correlation
length. We accomplish this measurement by taking the
Fourier transform of the midplane temperature field, finding
the square of the modulus of this data, and then performing
an azimuthal average. This is known as the structure func-
tion, S(k), which is a measure of the wave-number distribu-
tion. We then average this structure factor over all of our
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FIG. 11. Correlation length ¢ versus control parameter € for
conducting boundaries for the same parameters as in Fig. 8. The fit
is to the last six data points, whose slope is —0.39.

time slices from 100 vertical diffusion times and up. Next we
fit the peak in this averaged structure function to a squared
Lorentzian function. The inverse of the half-width is the cor-
relation length & It turns out that this procedure is rather
sensitive to the fitting function: a Gaussian can yield differ-
ent values, as does a simpler calculation of the second mo-
ment of the structure function. However, we find that the
squared Lorentzian best models the data.

The results are shown in Fig. 11. Due to the finite size of
the conducting cell, one is unable to measure a diverging
correlation length for very small e. Eventually the rolls fill
almost the entire cell, and the correlation length is deter-
mined by the aspect ratio, hence it levels off. As a result, our
fit is only to the region where the correlation length begins to
drop; which is the last six data points. For the periodic case,
the correlation length is too large to measure accurately at
any of our control parameters, so we do not show these re-
sults. The exponent in the conducting case of —0.39 is a bit
smaller than the theoretical prediction of lengths scaling as
€2, but is still in better agreement with the theory than the
experiment. The experimental results find an exponent of
-0.2.

V. DISLOCATIONS

Dislocations are present in our simulations. An example is
circled in Fig. 4. Dislocations that are stationary in a nonro-
tating system will glide in a direction perpendicular to the
rolls (parallel to the roll wave vector) in the rotating system.
An extensive analysis of defect velocities indicates that the
dominant defect motion is perpendicular to the rolls for both
our periodic and our realistic systems. The results can be
seen for the periodic case in Fig. 12 and for the conducting
case in Fig. 13. The dominant orientation angle of the rolls,
0, is plotted versus the angle of the velocity of the defects,
0,. We determined the dominant ® by finding the ® value
corresponding to the maximum value of F(®) (such as in
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FIG. 12. Angle of the rolls, ®, versus angle of the velocity of
defects, 6,, for periodic boundaries and the same parameters as in
Fig. 8. The slope of the line is 1.01, indicating that the defects
mainly glide in a direction perpendicular to the rolls.

Fig. 3) at the instant in time when a defect is moving at its
measured velocity. In both figures, the data is scattered
about, but close to a line with unit slope passing through the
origin. This does indeed prove that the dominant motion of
our defects is glide, i.e., motion perpendicular to the rolls.
Our recently developed theoretical analysis has led to an
understanding of the scaling of glide velocities with € [23]. A
brief derivation is given in the Appendix. One finds that

Vglide X € (11)

This is in excellent agreement with the numerical results in
Fig. 14 for both the conducting and the periodic boundaries.

1.5

0.5

FIG. 13. The same type of plot as Fig. 12 but for conducting
boundaries. The slope of the line is 0.98, indicating that the defects
mainly glide in a direction perpendicular to the rolls in the conduct-
ing case too. There is, however, more scatter than for the periodic
case.
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FIG. 14. Glide velocity of defects versus € for the same param-
eters as in Fig. 8. Legend: O=conducting boundaries, slope=0.71,
x=periodic boundaries, slope=0.75. Approximately 150 defects
were tracked, half for the conducting case, and half for the periodic
case.

In the periodic case, one can separate out two different
types of defect motion. One is the motion of isolated defect
pairs and the other is the motion of defects during a domain
switching event. As mentioned earlier, in a domain switching
event, one set of rolls is replaced by another through the
motion of a front. On the boundary between the two sets of
rolls there is a superposition of both sets. This superposition
creates a line of minima and maxima along the front. It is the
motion of these minima that we track and call “domain
switching defects.”

We have plotted both types of defect motion in Fig. 15.
(Note that the glide velocities shown in Fig. 14 for periodic
boundaries are the isolated defects.) We find the domain
switching defects lead to larger glide velocities, but they

O domain switching
* isolated defects

€

FIG. 15. Comparison of glide velocities from isolated defects
and domain switching defects for the same parameters as in Fig. 8,
but for periodic boundaries only. Legend: O=domain switching
defects, slope=0.55, *=isolated defects, slope=0.75.
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defect length

107° 107 107"

FIG. 16. Lengths of defects versus € for the same parameters as
in Fig. 8. Legend: Conducting boundaries, O=Ilength of long axis,
slope=—-0.35, X=length of short axis, slope=-0.13. Periodic
boundaries, *=long axis, slope=-0.37, +=short axis, slope
=-0.17.

have an e scaling exponent that is smaller (0.55) than the
exponent for the isolated defects (0.75). We expect the ve-
locity of the front to scale as €, which is in agreement with
the results in Fig. 15. We could not clearly differentiate be-
tween these two types of defects in the conducting case, so
the conducting data in Fig. 14 most likely contain both types
of defects. This may explain the slightly smaller slope.

One can also measure the diameters of the axes of the
defects, as shown in Fig. 16. Defects have a long and a short
axis, and both were measured as a function of e for periodic
as well as conducting boundaries. The method of finding
defect lengths is as follows. First we demodulated the mid-
plane temperature field data, removing the underlying roll
structure and only revealing the amplitude. Then we found
the full width at half the height in the depression of the
amplitude at the defect for both the long axis and the short
axis of the defect. The multiple scale expansion (A2) predicts
the long axis, perpendicular to the rolls, to scale as €2 and
the short axis, parallel to the rolls, to scale as € 4. In both
the periodic and conducting cases, we find the long and short
axes to scale with somewhat smaller exponents: the long axis
scales with an average exponent of —0.36, and the short axis
with an average exponent of —0.15. It is possible that we are
unable to determine the correct scaling for the short axis,
since we are measuring lengths smaller than a roll size. How-
ever, the long axis data should be correct. The long axis
scaling does agree quite well with our correlation length
scaling for conducting boundaries (see Fig. 11).

Next we turn to the scaling of defect areas. The theory
predicts defect areas to scale as € ¥4, If we compute defect
areas by using the formula area=7r(long axis)(short axis)/4,
our areas will scale as € *3'. We mention this since our nu-
merical results do agree slightly better with preliminary ex-
perimental results [27]. It is unclear how to explain the dis-
crepancy with theory.
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VI. CONCLUSIONS

Our numerical results for both periodic and conducting
lateral temperature boundary conditions are in excellent
agreement with the theoretical scaling laws for time as €.
We measured the precession frequency to scale with € with
an average exponent of 1.1 for periodic and conducting
boundaries. Hence we find that time scales as € !'!. This is in
disagreement with the experiments using the same param-
eters: they find that time scales as €. It is possible that
glide-induced precession may account for this discrepancy,
since the theory assumes the precession of the roll orienta-
tion is entirely due to domain-switching events. The hypoth-
esis of glide-induced precession with a constant dislocation
density predicts precession frequencies to scale as €7,
which does agree better with the experiments.

We were unable to use correlation lengths to conclusively
determine the length scaling for our numerical simulations
with periodic boundary conditions, since the domains were
simply too large. For our conducting boundary conditions we
found correlation lengths to scale as € %3° which is smaller
than the theoretical prediction of €%, but is in worse dis-
agreement with the experimental results of € 2.

We did not chose to study the dependence of the scaling
exponents on aspect ratio, since significantly larger aspect
ratios are prohibitively expensive and one does not expect
good scaling for the smaller ones. Earlier simulations on
model equations [17] found little effect on correlation times
for aspect ratios comparable to the ones we use, although the
correlation length was significantly affected.

Our theoretical model for the motion of defects predicts
that glide velocities will scale as €. Our numerical results
confirm this. It is also interesting to note that for the con-
ducting case, our length and time scales give a consistent
velocity scaling: lengths (as € %) divided by times (as € ')
gives velocities to scale as €”7'. It would be very interesting
for experimenters to also look at the scaling of velocities.

From our numerical results, we determined that defect
areas scale on average as € *>! for conducting boundaries
and for periodic boundaries. This is in disagreement with the
theory which predicts defect areas should scale as €*7°. In
addition we looked at how the different axes in the defects
scaled, and found the axis perpendicular to the rolls scaled as
€93 and the axis parallel to the rolls scaled as € !5, which
clearly indicates there is a separation of scales in rotating
Rayleigh-Bénard convection. However, the separation of
scales is smaller than the predicted scaling of €% and €%,
respectively.
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APPENDIX: DERIVATION OF GLIDE VELOCITY

For pedagogical reasons, we will discuss a multiple scale
expansion of the Swift-Hohenberg equation with rotation
[10], instead of the Boussinesq equations with rotation. The
Swift-Hohenberg equation with rotation is

dip= €= (V2 +q0) - g1 + 822 - V X (V) V ¢]
+8:V - [(V§)* V . (A1)
The order parameter is ¢, g, is the wave number of the rolls,
g, and g5 are coefficients of the nonlinear terms, and g, is the
coefficient of the term due to the Coriolis force, which is
proportional to the rotation rate.
We will separate out fast (x,z) and slow (X,Y,T,T')
scales in the following manner:
9, — o+ €0, d,— Moy, 9— edr+ .
(A2)
We will also expand ¢ in the small parameter e:

U= 61/2'7/10'*' f3/4l/f1 + e + 65/4% + 63/2'/’44‘ 57/4¢/f5~
(A3)
We will assume z/f:Aeiqﬂ", where the amplitude A describes
the overall modulation of the roll structure and hence it only
depends on the slow variables X,Y,T,T’. To second order,
A=€e"Ap+ A,

This leads to the usual terms in the amplitude equation at
order €%

[— ar+ 1 = (2igody + 3y)* = 3(qogs + £1)|A0|* 1A =0,
(A4)

or in shorthand notation,
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A[Ao] =0. (AS)

New rotation terms in enter into the amplitude equation at

order €*:

LAI = aTrAO + 4lq8g2(A0ay|A0|2) . (A6)

where

L&Ag= A[Ag+ 8401 - A[Ay] + O(8A)) (A7)

is the next order perturbation solution, and A is the solution
to Eq. (A5).

One can compute the glide velocity vgjq. from Eq. (A6),
following [28-33]. First we assume Ay=A, is a stationary
defect solution to Eq. (A5). Then we transform into a frame
moving with the glide velocity, vglidef(. This implies
AyX,Y)—=A(X~vgig.T",Y), and we find that Eq. (A6) be-
comes

LA, = 4iqg2(A10y|A %) = v gigedxAg- (A8)

In order to solve this equation, we need to find the zero
eigenvalue mode of L, the adjoint of L. Since L is self-
adjoint, we can use the zero eigenvalue mode dyA,; of L,
which corresponds to the translational symmetry of the dis-
location perpendicular to the stripes. Hence the right-hand

side of Eq. (A8) must be orthogonal to dyA
(A 1. 4i9382(Ag0y|A ) = VgriaedxAg) =0, (A9)

where

(u,v) = J ulvdXdy. (A10)

This yields the following relationship for the glide velocity:

- 4igiga{dAaAddy |AL*)
ehde (9xA 4 IxA ) .

(A11)

We can actually find a numerical value for v;4. for a given
A, solution. However, we are interested in the scaling here.
Reverting back to unscaled variables using Egs. (A2) and
(A3) gives

Vglige * €. (A12)

Note that our glide velocity scaling with €/ disagrees with
the velocity scaling derived in [21]. They found the glide
velocity to scale linearly with e for small (). However, they
did not use the separation of scales (A2).
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