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When water evaporates at high rates, recent studies indicate thermal conduction to the interface does not
provide enough energy to evaporate water at the observed rate and that it is perhaps thermocapillary convection
that transports the remaining energy. This possibility is examined by applying the Gibbs dividing-surface
approximation to develop an expression for the energy transported along the interface. When this energy
transport rate is compared with that required to evaporate the liquid at the observed rate, it is found that a Gibbs
excess property, the “surface-thermal capacity,” can be evaluated. A series of 19 evaporation experiments has
been conducted under conditions for which there was no buoyancy-driven convection and for which the
evaporation rate was progressively increased. For Marangoni numbers, �Ma� less than �100, the interface was
quiescent and thermal conduction �the Stefan condition� correctly predicted the energy transport rate to the
surface. For experiments with 100�Ma�22,000, thermocapillary convection was present and the thermal
conduction did not fully account for the energy transport. However, if the surface-thermal capacity is assigned
a value of 30.6±0.8 kJ/ �m2 K�, then energy transport by thermocapillary convection and conduction provides
the energy transport required to evaporate the liquid at the observed rate. For experiments with Ma
�22,000, the interfacial flow was turbulent and viscous dissipation became important.
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I. INTRODUCTION

A recent study �1� of the energy transport to the interface
during steady-state water evaporation indicated that the en-
ergy transport by thermal conduction, under some condi-
tions, accounts for as little as �50% of the energy required
to evaporate water at the measured rate. It was suggested that
thermocapillary convection was responsible for the remain-
der of the energy transport. Although certain aspects of ther-
mocapillary convection have been thoroughly studied
�2–10�, a quantitative method to predict the contribution of
thermocapillary convection to the energy transport has not
been established. The objective of this work is to use the
Gibbs dividing-surface approximation �11� at a nonequilib-
rium interface and to evaluate experimentally the excess
quantity that appears in the expression for the energy trans-
port by thermocapillary convection and to determine if this
excess quantity can be viewed as a property of a liquid-vapor
interface.

The Gibbs description of a single-component, equilibrium
system containing two fluid phases separated by a curved
surface defines an excess number of moles, NLV, and an ex-
cess internal energy ULV and places the position of the divid-
ing surface so the interface acts as a surface in tension �11�.
For a nonequilibrium system, we define a local surface molar
density nLV �excess moles per unit surface area�, surface in-
ternal energy uLV �excess energy per excess mole�, and spe-
cific heat of the excess energy, cLV:

cLV � � �uLV

�TLV�
nLV

, �1�

where TLV is the temperature of surface phase �12�. The
surface-thermal capacity is defined as nLVcLV and is denoted
by c�.

When the principles of energy and molar conservation are
applied at a spherical liquid-vapor interface, where evapora-
tion is taking place at a steady rate, we find a relation for the
surface-thermal capacity and show that, provided thermocap-
illary convection is present and viscous dissipation is negli-
gible, this excess quantity can be determined by measuring
the rate of evaporation and the temperature profiles in the
liquid and vapor phases. Its value is determined in each of
nine experiments in which the evaporation flux is changed by
a factor of �34, and it is found to have the same value in
each of the experiments. This suggests that the surface-
thermal capacity is a surface property of the water-vapor
interface that can be used when the Gibbs dividing-surface
approximation is adopted to describe energy transport during
phase change �13,14�. Physically, this property represents the
capacity of the excess moles to store thermal energy.

II. EXPERIMENTAL APPARATUS AND PROCEDURE

The same experimental apparatus and procedures were
used in this study as in �1�. Briefly, water was de-ionized,
distilled, nanofiltered, and degassed �giving water with a re-
sistivity of 18.2 M� -cm and a surface tension within 1% of
the documented value�. The prepared water was transferred
directly into a syringe mounted in a syringe pump. The outlet
of the syringe was connected by a stainless-steel tube to the
throat of a stainless steel, conical funnel with a circular
mouth that was enclosed in a vacuum chamber and con-
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nected to two pumping systems: a turbomolecular pump
and its backing pump and a separate mechanical pump. The
chamber could be monitored with a mass spectrometer.

Before an experiment, the chamber and syringe were
evacuated for 12 h to a pressure of about 10−5 Pa. The pre-
pared water was then admitted to the syringe and pumped up
to the funnel mouth. The funnel mouth was visible from
outside the chamber, and the height of the water-vapor inter-
face could be monitored with two cathetometers that had a
viewing angle between them of 90°. To prevent subsequent
bubble formation, with water filling the funnel, the chamber
was pressurized with N2 to 42.0 kPa for 6 h. Afterwards,
�2 ml of the water in the syringe was flushed out and into
the chamber. The chamber was then evacuated with the me-
chanical vacuum pump until dry. Water was pumped into the
funnel until the maximum height of the water-vapor interface
above the funnel mouth was approximately 1 mm. A cooling
system allowed the water at the funnel throat to be main-
tained at �3.6 °C �see Table I�.

The temperature in the vapor and liquid phases could be
measured with a calibrated thermocouple �type K� that had
been formed into a U shape. The bottom of the U shape was
1 mm in length with the junction in the middle. The thermo-
couple wire was 25.4 �m in diameter and mounted on a
three-dimensional positioner. Two cathetometers, separated
by an angle of 90°, were used with the positioner to deter-
mine the horizontal and vertical locations of the thermo-
couple bead with an accuracy of ±10 �m. The temperature
was measured in one horizontal direction at 0.0, 0.7, 1.4, 2.1,
2.8, and 3.15 mm from the center line of the funnel, and at
each horizontal position, the thermocouple was placed at
several vertical positions. Near the interface, the distance be-
tween two measurements in the vertical direction was 10 �m
in the vapor phase and 20 �m in the liquid phase. At each
position, the thermocouple reading was recorded each

second for a period of 1 min �by a Labview program using a
34970A HP data acquisition/switch unit� and the mean and
standard deviations of the temperature at each position cal-
culated. The pressure in the vapor phase was measured ap-
proximately 20 cm above the funnel mouth with a Hg ma-
nometer.

III. EXPERIMENTAL RESULTS

A summary of the conditions under which the experi-
ments were conducted is presented in Table I, and for com-
parison, the conditions under which the experiments reported
in �1� were performed are listed in Table II. The basic differ-
ence between these two sets of experiments is only the
evaporation rate, but this gave rise to significant changes in
the mechanism of energy transport.

The experiments can be parametrized in terms of the
Marangoni and Rayleigh numbers. If the surface tension is
denoted by �LV, the temperature of the water at the funnel
throat by Tt

L, the temperature on the center line at the
liquid-vapor interface by T0I

L , the thermal diffusivity of the
liquid by �L, the dynamic viscosity by �, and the distance on
the center line from the throat thermocouple to the liquid-
vapor interface by D, the Marangoni number can be ex-
pressed

Ma = � ��LV

�T
�

I

�T0I
L − Tt

L�D
�L�

. �2�

If the expansivity of water is denoted as 	, the gravitational
acceleration by g, and the density by nL, then the Rayleigh
number may be written

TABLE I. Thermal conditions measured in liquid and vapor-phases during steady-state evaporation.

Experiment EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10

Vap.-Ph.
Press. �Pa�

797.2
±13.3

795.7
±13.3

786.8
±13.3

791.9
±13.3

787.9
±13.3

786.6
±13.3

783.9
±13.3

777.3
±13.3

770.1
±13.3

765.3
±13.3

Intf. Ht.a

�mm�
0.98

±0.01
1.00

±0.01
0.98

±0.01
0.99

±0.01
1.01

±0.01
1.03

±0.01
0.97

±0.01
1.00

±0.01
0.97

±0.01
1.00

±0.01

Avg. Evap.
Flux �g/m2s�

0.027
±0.001

0.034
±0.001

0.044
±0.001

0.050
±0.001

0.057
±0.001

0.063
±0.001

0.070
±0.001

0.100
±0.001

0.134
±0.002

0.200
±0.002

Throat
temp. �°C�

3.52
±0.03

3.60
±0.03

3.54
±0.03

3.56
±0.03

3.56
±0.03

3.57
±0.03

3.53
±0.03

3.53
±0.03

3.48
±0.03

3.57
±0.04

TI
V �°C�a 4.95

±0.02
4.88

±0.02
4.62

±0.02
4.65

±0.02
4.68

±0.02
4.62

±0.02
4.56

±0.02
4.46

±0.02
4.35

±0.02
4.20

±0.02

TI
L �°C�a 3.70

±0.02
3.76

±0.02
3.52

±0.02
3.57

±0.02
3.56

±0.02
3.56

±0.02
3.47

±0.02
3.35

±0.02
3.26

±0.02
3.11

±0.02

Unif.-temp.
layera �mm�

0.80
±0.02

0.63
±0.02

0.43
±0.02

Max. tangential
speed �mm/s�

0.00
±0.00

0.00
±0.00

0.00
±0.00

0.00
±0.00

0.00
±0.00

0.00
±0.00

0.22
±0.00

0.26
±0.00

0.31
±0.01

Marangoni No., Ma −474 −443 38 3 5 10 127 447 641 1,198

aOn the center line.
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Ra =
gnL	�T0I

L − Tt
L�D3

�L�
. �3�

The calculated value of Ma for each experiment is listed in
Tables I and II.

The type of results obtained when Ma�100 �Table I� is
illustrated in Fig. 1 where the measurements of experiment
EV5 are shown. Since the conditions under which the evapo-
ration took place from the circular funnel mouth were ap-

proximately axisymmetric, we have only presented the mea-
surements made at six horizontal positions in one direction.
Note that as a function of depth, the temperature in the liquid
was uniform at each horizontal position, but there was a
temperature gradient in the vapor phase, indicating that the
liquid was being heated from above �by the surroundings�.
These characteristics were shared by six experiments �EV1–
EV6, Table I�. For example, the temperature measured tan-
gential to the interface in EV5 is shown in Fig. 2. There was
no measurable gradient in the interfacial liquid temperature

TABLE II. Thermal conditions measured in liquid and vapor-phases during steady-state evaporation �1�.

Experiment EV11 EV12 EV13 EV14 EV15 EV16 EV17 EV18 EV19

Vap.-Ph.
Press. �Pa�

745.3
±13.3

665.3
±13.3

591.9
±13.3

505.3
±13.3

398.6
±13.3

301.3
±13.3

285.3
±13.3

264.0
±13.3

258.6
±13.3

Intf. Ht.a

�mm�
1.00

±0.01
1.05

±0.01
1.01

±0.01
0.96

±0.01
1.00

±0.01
1.01

±0.01
1.00

±0.01
0.99

±0.01
1.00

±0.01

Avg. Evap.
Flux �g/m2s�

0.407
±0.006

1.002
±0.011

1.371
±0.015

1.788
±0.018

2.544
±0.025

3.378
±0.031

3.026
±0.028

3.421
±0.032

4.242
±0.039

Throat
temp �°C�

3.52
±0.05

3.51
±0.05

3.59
±0.04

3.56
±0.03

3.60
±0.04

3.54
±0.03

3.59
±0.05

3.57
±0.03

3.59
±0.10

TI
V �°C�a 4.73

±0.02
3.37

±0.02
1.84

±0.05
−0.20
±0.05

−2.65
±0.05

−5.66
±0.02

−7.19
±0.04

−7.31
±0.08

−7.59
±0.06

TI
L �°C�a 2.73

±0.03
1.11

±0.02
−0.53
±0.03

−2.82
±0.03

−6.04
±0.03

−9.67
±0.03

−11.61
±0.03

−11.86
±0.03

−12.06
±0.04

Unif.-temp.
layera �mm�

0.35
±0.01

0.17
±0.01

0.13
±0.01

0.09
±0.01

0.07
±0.01

0.07
±0.01

0.05
±0.01

0.05
±0.01

0.05
±0.01

Max. tangential
speed �mm/s�

0.24
±0.01

0.44
±0.01

0.51
±0.02

0.50
±0.01

0.59
±0.01

0.65
±0.01

1.15
±0.04

0.94
±0.02

0.91
±0.03

Marangoni No., Ma 2,155 6,018 9,601 13,533 18,208 21,472 22,410 22,462 22,596

aOn the center line.

FIG. 1. Temperature measured across the phase boundary at six
horizontal positions as water evaporates under steady-state condi-
tions at an average flux of 0.057 g/ �s m2�, Table I, EV5.

FIG. 2. The interfacial liquid temperature measured as a func-
tion of distance from the center line of the funnel in three different
experiments. The conditions in each experiment are listed in Tables
I and II. For EV5, Ma�100; for EV8, Ma�100; and for EV19,
Ma�22,000. The evaporation flux of each experiment is indicated.
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and no uniform-temperature layer immediately below the in-
terface �1,15�, and the gradient in the liquid temperature with
depth was small. Note that for EV1 and EV2, the tempera-
ture at the funnel throat was slightly less than that on the
center line at the liquid-vapor interface, giving a negative
value for Ma. In both of these experiments, there was evapo-
ration, but the heating by the surroundings at the interface
overcame the effect of evaporative cooling. The value of the
Rayleigh number for EV1 and EV2 was 2.3 and 1.7, respec-
tively, values that are far below the critical value for
buoyancy-driven convection ��1,100�.

The evaporation rate was progressively increased for ex-
periments EV7–EV16, and Ma increased so that it was in the
range 100�Ma�22,000, but there was no buoyancy-driven
convection in any experiment. The temperature at the inter-
face was less than that at the funnel throat, and the latter was
less than 4 °C. Since water has it maximum density at 4 °C
and its density decreases monotonically as the temperature
decreases below 4 °C, the lighter liquid was at the top of the
funnel �Ra�0� and there could not have been any buoyancy-
driven convection. Similarly, in the vapor, the coldest vapor
was in contact with the liquid and therefore at the bottom of
the vapor phase. Thus there could not have been any
buoyancy-driven convection in this phase either. A tempera-
ture discontinuity was found to be present at the interface in
which the interfacial vapor temperature was greater than that
of the liquid phase. Similar discontinuities have been previ-
ously reported �13–20�.

As indicated in Table I, when Ma was 447 or higher, a
uniform-temperature layer of measurable thickness was
present immediately below the interface. The thickness of
this layer decreased as the evaporation rate was increased
�15�. This relation between the evaporation rate and the
thickness of the uniform-temperature layer has been ob-
served previously �1,15�. As may be seen in Fig. 2, a steady-
state gradient in the interfacial liquid temperature did exist
for the experiments with Marangoni numbers in this range.
The temperature at the funnel throat was controlled at a tem-
perature near but below 4 °C; thus, thermal energy would
have been conducted through the stainless steel funnel to the
funnel rim where it would have gone into heating the liquid.
As will be seen, this energy was distributed along the inter-
face by thermocapillary convection.

For experiments EV17–EV19, Ma was greater than
22,000 and there was also a strong gradient in the interfacial
liquid temperature. Evidence is discussed in �1� that indicates
the interfacial flow for these experiments was turbulent �see
below�.

IV. DATA ANALYSIS

In the experiments described in Tables I and II, the liquid-
vapor interface had a maximum height above the funnel
mouth of �1 mm and the measured height of the interface
was within 1% of the calculated spherical height; thus, to
describe the interface, we will use spherical coordinates �r, 
,
�, where � is the azimuthal angle about the axis 
=0�.

We adopt the Gibbs dividing-surface approximation to de-
scribe the interfacial region, take the position of the dividing

surface to have a radius R0, and consider an element of the
surface. The excess internal energy ULV of the surface ele-
ment is assumed to have as its independent variables the
excess entropy SLV, the surface area ALV, and the excess
number of moles, NLV, of the element and is required to be a
first-order homogeneous function. Then,

dULV = TLVdSLV + �LVdALV + �LVdNLV, �4�

where the definitions of the temperature and surface tension
are given by

�LV � � �ULV

�ALV �
SLV,NLV

, TLV � � �ULV

�SLV �
ALV,NLV

,

�LV � � �ULV

NLV �
SLV,ALV

.

The first-order homogeneous-function property of ULV and
the definition of the intensive properties lead to an Euler-type
relation for the surface phase,

ULV − TLVSLV − �LVALV = �LVNLV, �5�

and allows the intensive surface energy uLV, the internal en-
ergy per excess mole, to be written in terms of the intensive
surface entropy �LV �entropy per excess mole� and intensive
surface area �LV �surface area per excess mole—i.e., 1 /nLV�:

uLV = uLV��LV,�LV� . �6�

Then one can show that

duLV = TLVd�LV + �LVd�LV, �7�

and that

d�LV = − �LVdTLV − �LVd�LV. �8�

Equations �7� and �8� are applied below.
Since under steady-state conditions there are no net

changes in the number of moles in a surface element, the
moles transported into the surface element must be equal to
those transported out. If the velocity in bulk phase k �L or V�
evaluated at the surface is denoted as �I

k and those of the
excess number of moles by �


LVi
 and ��
LVi�, then

nL�I
L · ir = nV�I

V · ir + ��nLV�

LV� · i
 + ��nLV��

LV� · i�, �9�

where the subscript I on a quantity indicates it is to be evalu-
ated at the interface. We shall assume the local evaporation
flux jev may be expressed as

jev = nI
L�I

L · ir = nI
V�I

V · ir. �10�

This ensures that there is not any change in the molar storage
in the surface phase as the evaporation continues. Then Eq.
�9� reduces to

��nLV�

LV� · i
 + ��nLV��

LV� · i� = 0. �11�

The conservation of energy principle applied in the
steady-state circumstance requires that the energy transport
into the surface element must equal the sum of that leaving
and that being dissipated by viscosity in the surface, 
I
�J /m2�:
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�nLhL�L − �L � TL�I · ir = �nVhV�V − �V � TV�I · ir + 
I

+ �nLV�

LV��uLV�I

+ uLV � �nLV�

LV�I� · i


+ �nLV��
LV��uLV�I

+ uLV���nLV��
LV��I� · i�. �12�

After making use of Eqs. �10� and �11�, one finds

jev�hV − hL�I = ��V � TV − �L � TL�I · ir −
nLV�


LV

R0
� �uLV

�

�

�

−
nLV��

LV

R0 sin 

� �uLV

��
�




− 
I. �13�

We note that the term on the left of Eq. �13� is the local
energy transport required to evaporate the liquid, the first
term on the right is the energy transported locally to the
interface by thermal conduction, and the second and third
terms are the local transport of energy by thermocapillary
convection and the local energy dissipation.

A. Evaporation when Ma�100

If there were no thermocapillary convection, �

LV, ��

LV, and

I would vanish and the energy to evaporate the liquid could
be supplied only by thermal conduction. Equation �13� then
reduces to the conventional Stefan condition

je��hV − hL�I = ��V � TV − �L � TL�I · ir. �14�

To determine the conditions under which thermocapillary
convection may be neglected, we compare the rate of energy
transport required to evaporate the liquid at the measured

rate, Ėe�, with the net rate of the thermal conduction to the

surface, Q̇N. The former is given by

Ėe� = 2�	
0


m

jev„h
V�TI

V� − hL�TI
L�…R0

2 sin 
 d
 , �15�

where 
m is the maximum value of the polar angle. Since the
radius of the cone mouth is 3.5 mm,


m = arcsin�3.5 mm/R0� ,

and the thermal conduction to the surface, Q̇N, may be ex-
pressed as

Q̇N = 2�	
0


m

���V � TV − �L � TL�I · ir�R0
2 sin 
 d
 .

�16�

The variation in (hV�TI
V�−hL�TI

L�) along the interface in any
particular experiment was less than 1.0%, but this quantity
varies from one experiment to another because of the change
in temperature at the interface. Thus Eq. �15� gives, for a
particular experiment,

Ėe� = Je�„h
V�TI

V� − hL�TI
L�… . �17�

where Jev is the measured rate of evaporation. The tempera-
ture was measured in the vertical direction at different posi-

tions along the interface �Fig. 1�. From it, the thermal flux
normal to the interface may be written in terms of spherical
coordinates at these points:


�V� �TV

�r
�

I
− �L� �TL

�r
�

I
� =

1

cos 


�V� �TV

�z
�

I
− �L� �TL

�z
�

I
� .

�18�

The measured value of the conductive flux normal to the
interface at each interfacial position obtained from Eq. �18�
for each experiment was assumed to be expressible in terms
of a polynomial in cos 
:


�V� �TV

�r
�

I
− �L� �TL

�r
�

I
� = c0 + c1 cos 
 + c2 cos2 


+ c3 cos3 
 . �19�

The values of cj �0� j�3� were determined from the mea-
sured temperature gradient for each experiment. The mea-
sured thermal fluxes normal to the interface in each of the 19
experiments may be compared with that calculated from Eq.
�19� in Fig. 3. The thermocouple could not be placed at the
full diameter of the funnel mouth. The extrapolated portion
of the calculated thermal flux normal to the interface is
shown as a dashed line for each experiment in this figure.

Once the values of cj have been established, the value of

the net, total conductive flux normal to the interface, Q̇N, is
given by

Q̇N = 2�R0
2	

0


m

�c0 + c1 cos 
 + c2 cos2 
 + c3 cos3 
�sin 
 d
 .

�20�

In Fig. 4, the calculated values of Q̇N are compared with Ėev
for 16 of the experiments described in Tables I and II. As

FIG. 3. Calculated net thermal conduction flux to the interface
for experiments EV1–EV19. The experimental conditions are listed
in Table I.
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may be seen there, for EV1–EV6 almost complete agreement

exists between Q̇N and Ėe�. For these six experiments, Ma
�100 and the results suggest that the thermocapillary con-
vection was negligible or nonexistent. Thus, when there is no
thermocapillary convection, these results indicate that the
conventional Stefan condition gives a valid description of the
energy transport required to evaporate the liquid.

B. Evaporation when 100�Ma�22,000

For experiments EV8–EV16, as indicated in Fig. 4, the
energy transported to the interface by thermal conduction is
less than that required to evaporate the liquid at the observed
rate, and as the evaporation rate is progressively increased,
the deficit progressively increases. The results in Figs. 4 and
5 suggest that the critical Ma for the transition from a quies-
cent interface to one where thermocapillary convection is
present is in the range 38�MaCr�127.

When Ma�127, the results in Fig. 4 indicate that ther-
mocapillary convection cannot be neglected. Nonetheless,
the measured temperature profile showed no dependence on
�, indicating that the thermocapillary convection in the i�

direction was negligible. The expression for �

LV was deter-

mined in �1� by equating the gradient in the surface tension
in the i
 direction, ��LV · i
, to the viscous stress in that di-
rection, �r
�R0 ,
�. This gave a differential equation that
could be approximately integrated to give

�

LV�R0,
� = −

1

�
�d�LV

dTL �
I
� �TI

L

�

�

�

ln�1 −
�u

R0
� , �21�

where �u is the thickness of the uniform-temperature layer
and � is the viscosity of the liquid phase. The validity of this

expression for the thermocapillary flow was examined by
comparing the value predicted from Eq. �21� with the value
inferred from flow probe measurements �1�. The probe was a
12.7-�m-diam cylinder. One end was mounted as a cantile-
ver, and the other end was inserted 40 �m into the liquid as
it evaporated under steady-state conditions. From the mea-
sured deflection, the drag force resulting from the ther-
mocapillary flow could be determined, and using an analyti-
cal expression for the drag, the thermocapillary flow speed
was determined. The comparison indicated that the flow
speed calculated from Eq. �21� agreed reasonably with that
obtained from the probe-deflection measurements. But we
emphasize that the speed calculated from Eq. �21� is the
mean fluid speed. The probe measurements clearly indicated
that there were fluctuations in the flow speed: immediately
upon touching the evaporating liquid, the probe deflected,
but then it oscillated about the deflected position. These flow
fluctuations are important in determining the properties of
the surface phase �see below�.

For the experiments in the range of Marangoni numbers
being considered, a uniform-temperature layer existed below
the interface �Tables I and II� and had an extent of 0.07
��u�0.80 mm depending on the distance from the center
line and the evaporation rate. Following �1� we take the ex-
pression for �u to be

�u = b0 + b1 sin2 
 + b2 sin4 
 �22�

and determine the values of bi �0� i�2� numerically. We
take the temperature measured in the uniform-temperature
layer to be the temperature of the surface phase, TLV, and of
the liquid at the interface, TI

L �12�:

FIG. 4. Comparison of the rate of energy transport to the inter-
face by thermal conduction with that required to evaporate the liq-
uid at the measured rate. There is complete agreement between the
two rates for experiments EV1–EV6, but for EV7 and those with a
higher evaporation rate, thermal conduction does not provide
enough energy to evaporate the liquid at the measured rate. When
energy transport by both thermal conduction and by thermocapillary
convection are taken into account, the energy conservation principle
is completely satisfied.

FIG. 5. The results in Fig. 4 and in this figure indicate the
critical Marangoni number MaCr for the transition from a quiescent
interface to one with thermocapillary convection is in the range
38�MaCr�127. Experiment EV7 is the experiment with the low-
est Ma for which the thermal conduction does not provide enough
energy to evaporate the liquid at the observed rate.
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TI
L = a0 + a1 sin2 
 . �23�

The measured values of this temperature at each interfacial
position of each experiment were used to determine the val-
ues of a0 and a1.

An estimate of the magnitude of the terms in Eq. �13�
indicates that the viscous dissipation 
I can be neglected.
We proceed by neglecting this term and consider this as-
sumption again in view of the results obtained. Hence Eq.
�13� reduces to

��V � TV − �L � TL�I · ir = je��hV − hL� +
nLV�


LV

R0
� �uLV

�

�

�

.

�24�

From Eq. �7�, one finds

� �uLV

�

�

�

= cLV� �TI
L

�

�

�

+ 
�LV + TI
L� ��LV

��LV��� ��LV

�

�

�

,

�25�

where the cLV is defined in Eq. �1�. Recall that �LV is the area
available in the surface phase per excess mole and is equal to
1/nLV. For the steady-state circumstances, we shall neglect
any changes in �LV with position on the interface. Then Eq.
�24� may be written

��V � TV − �L � TL�I · ir = jev�hV − hL�I +
nLV�


LVcLV

R0
� �TLV

�

�

�

.

�26�

The product nLVcLV has been defined as the surface-thermal
capacity c�. We investigate its value by first assuming that
this quantity is constant. After integrating Eq. �26� and mak-
ing use of Eqs. �19� and �20�, one finds

c� =
Q̇V − Ėe�

2�	
0


m

�

LV� �TLV

�

�R0 sin 
 d


. �27�

The values of the surface-thermal capacity for experiments
EV8–EV16 are shown in Fig. 6.

As may be seen there, although Ma changed by a factor of
�5 and the evaporation flux by a factor of �34, the value of
the surface-thermal capacity was not measurably different in
any of these nine experiments. The mean surface-thermal
capacity for these experiments was 30.6 kJ/ �m2 K� when the
interfacial temperature was in the range −10 °C�TLV

�3.5 °C. The possible error in c� is discussed below. In
determining the value of c� from EV8–EV16, the assump-
tion was made that the viscous dissipation was negligible.
Since the same value of c� was obtained from each of the
these experiments and, as indicated in Table I, the maximum
thermocapillary speed increased by a factor �3, the results
seem consistent with this assumption.

When the surface thermal capacity is taken to have the
value 30.6 kJ/ �m2 K�, the energy required to evaporate the
liquid at the measured rate can be compared with that calcu-

lated from thermal conduction and thermocapillary convec-
tion. After introducing the definition of c� into Eq. �26�, one
finds

je��hV − hL�I = ��V � TV − �L � TL�I · ir − � c��

LV

R0
�� �TLV

�

�

�

.

�28�

The first term on the right of Eq. �28� represents the thermal
energy conducted to the interface from the liquid and vapor
phases. As seen in Fig. 4, for experiments EV1–EV6, ther-
mal conduction alone provides the energy required to evapo-
rate the liquid at the measured rate, but as the evaporation
rate was progressively increased in EV8–EV16, thermal con-
duction provided a progressively smaller portion of the en-
ergy, reaching only �60% of the total in EV16.

The second term on the right of Eq. �28� indicates the
thermal energy transported along the interface by thermocap-
illary convection. After making use of Eq. �21�, one finds

− � c��

LV

R0
�� �TLV

�

�

I
= � c�

�R0
��d�LV

dTLV�
I
� �TLV

�

�2

ln�1 −
�u

R0
� .

�29�

Since the surface tension of water decreases with increasing
temperature and

0 �
�u

R0
� 1,

the second term in Eq. �29� is positive and the energy trans-
port by thermocapillary convection adds to that carried by
conduction. The thermal energy carried by the thermocapil-
lary flow comes from heating the funnel throat. The thermal
conductivity of stainless steel is more than 20 times that of
water, and the throat of the funnel was maintained at �4 °C,

FIG. 6. The “surface thermal capacity” for experiments EV8–
EV16 is shown as a function of the Marangoni number. For these
experiments, there was thermocapillary convection, but the inter-
face was not turbulent �Tables I and II�. Between EV8 and EV16,
the evaporation rate increased by a factor of �34.
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the highest temperature in the system. Physically, thermal
energy is transported from the funnel throat to the funnel rim
through the stainless steel funnel, heating the liquid to give
the interfacial temperature profile indicated in Fig. 2. The
resulting thermocapillary convection distributes the energy
along the interface. As seen in Fig. 4, when the energy trans-
port by both thermocapillary convection—using c� equal to
30.6 kJ/ �m2 K�—and by thermal conduction are taken into
account conservation of energy is completely satisfied.

The uncertainty in the value of the surface-thermal capac-
ity for each experiment is determined by the possible error in

the thermal conduction to the interface, ��Q̇N�; in the total
energy transport required to evaporate the liquid at the ob-

served rate, ��Ėev�; in the thermocapillary speed ���

LV�; and

in the measured temperature gradient ���TLV /�
�. We take
the estimated error in the surface-thermal capacity, ��c��, for
each experiment to be �21,22�

��c�� = ����Q̇N��2 + ���Ėe���2 + ����

LV��2 + ����TLV/�
��2.

�30�

The value of this estimated error for each of the nine experi-
ments is less than ±2.5%. The error bars in Fig. 6 reflect this
relative error. Thus the value of c� determined from these
experiments is 30.6±0.8 kJ/ �m2 K�.

C. Evaporation when Ma�22,000

For experiments EV17, EV18, and EV19, it was pointed
out in �1� that the variables such as the evaporation rate and
the vapor-phase pressures bifurcate, although these variables
had a one-to-one relation at lower evaporation rates. Also,
when Ma is plotted against the average evaporation flux, Fig.
7, the graph indicates a change in flow character for experi-
ments with Ma greater than 22,000, and these experiments
correspond to those in which the variables bifurcate. Further,

when Ma exceeds 22,000, the power spectrum of the inter-
facial flow was noted to undergo a change in character �1�.
Compared with the experiments having smaller Marangoni
numbers, the power spectrum indicated that the frequencies
of the flow oscillations formed a continuum and contained
new and dominate frequencies. The frequency continuum
suggests the presence of eddies in the interfacial flow of new
sizes. When the flow is turbulent, it is generally expected the
smaller-sized eddies are responsible for the dissipation of
energy �23�; thus, the fluid speed in both the i� and i
 direc-
tions would be important in determining the energy dissi-
pated. Since the measurements indicate that the interfacial
temperature profile was axisymmetric �1�, we approximate
the turbulent interfacial flow as having no significant mean
flow in the i� direction. We take the expression for �


LV given
in Eq. �21� to define the mean flow in the i
 direction and
then determine the mean viscous dissipation. Since �LV has
been assumed to be unchanging along the interface, one finds
from Eqs. �13� and �25� that

��V � TV − �L � TL�I · ir = jev�hV − hL�I +
�̄


LVc�

R0
� �TI

L

�

� + 
I.

�31�

Since the surface-thermal capacity is indicated not to change
significantly over the range of experimental conditions cor-
responding to 38�Ma�22,000, we assume it has the same
value even when the interfacial flow becomes turbulent and
over a slightly expanded temperature range −12 °C�TLV

�3.5 °C. The average value of the local dissipation can be
calculated by integrating Eq. �31� over the surface:


I =
Q̇N − Ėe� − Ė�

2�R0
2�1 − cos 
m�

, �32�

where Ė�, the energy transported by thermocapillary convec-
tion, is given by

Ė� = 2�c�	
0


m

�̄

LV� �TL

�

�

I
R0 sin 
 d
 . �33�

After again making use of Eqs. �22� and �23�, Eqs. �15�, �16�,
and �33� may be applied and the results used in Eq. �32� to

determine the value of 
̄I for experiments EV17, EV18, and
EV19.

In Fig. 8, the calculated values of 
̄I for each of these
experiments is plotted against the maximum value of the
mean speed, �̄
M

LV . As may be seen there, the average energy
dissipation increased almost linearly with increasing �̄
M

LV .
This supports the suggestion in �1� that the interfacial flow
induced by the evaporation becomes turbulent at the higher
evaporation rates. Also, the effect of the viscous dissipation
on evaporation when the interfacial flow becomes turbulent
may be seen from Eq. �31� to decrease the evaporation rate.
Energy that is transferred into a surface element by thermal
conduction and thermocapillary convection goes either into
phase change or viscous dissipation. Thus the thermocapil-
lary convection plays a conflicted role: it transports energy
that can enhance evaporation, but if Ma exceeds 22,000, not

FIG. 7. The Marangoni number plotted against the average
evaporation flux indicates two interfacial flow transitions: the first
from a quiescent interface to one with thermocapillary convection
�see Fig. 5� and the second to turbulent interfacial flow.
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all of the energy transported goes into evaporation. Some
goes into turbulent fluid motion. The fraction of the energy

transported by thermocapillary convection, Ė�, that goes into

viscous dissipation 
̄I increases as the thermocapillary flow

velocity increases. The ratio of 
̄I / Ė� reaches 0.57 in EV19.

Thus only 43% of Ė� goes into enhancing the evaporation in
this turbulent flow circumstance.

V. DISCUSSION AND CONCLUSION

As indicated in Fig. 4, for Ma less than �100, the inter-
face is apparently quiescent and thermal conduction provides
the energy transport required to evaporate the liquid at the
measured rate. As Ma and the evaporation rate became pro-
gressively larger, in nine independent experiments with Ma
reaching 22,000 and the evaporation flux increasing by a
factor of �34, thermal conduction was found to account for
a progressively smaller portion of the total energy trans-
ported to the interface. Thermal conduction was reduced to
approximately 60% before the interfacial flow became turbu-
lent.

In these nine experiments �100�Ma�22,000�, the ther-
mal conductivity of water became a limiting factor. The tem-
perature of the water at the funnel throat was less than 4 °C,
and as a result of evaporative cooling, the temperature was
lower still at the liquid-vapor interface. Since water has its
maximum density at 4 °C and its density decreases mono-
tonically below 4 °C, the temperature field ensured that
there was no buoyancy-driven convection. When both ther-
mocapillary and buoyancy-driven convection are possible,
the coupling between them gives rises to convection in the
liquid phase �5�, but since in our experiments buoyancy-
driven convection is not present, the type of convection,
sometimes called Marangoni-Bénard, was not present. The
fluid velocity in the bulk liquid, �L, is simply that produced
by the syringe pump.

The convection that did exist below the uniform-
temperature layer was completely taken into account by the
energy flux vector: �nLhL�L−�L�TL�I �see Eq. �12��, but
since there was no buoyancy-driven convection and the Rey-
nolds number in the bulk was small �Re�0.01�, the tempera-
ture profile in the bulk liquid was very nearly linear �see Fig.
4 of �1��. Thus the energy transport to the bottom of the
uniform-temperature layer could be determined by measur-
ing the temperature gradient. The transport across the uni-
form temperature layer is discussed below.

Since the thermal conductivity of stainless steel is more
than 20 times that of water, thermal conduction from the
funnel throat to the funnel rim maintained the temperature
there at a value greater than that of the water on the center
line. This gave rise to the parabolic interfacial temperature
profiles, as indicated in Fig. 2. The resulting surface tension
gradient produced thermocapillary convection from the fun-
nel rim toward the center line. It was shown in �1� that the
mean thermocapillary speed calculated from Eq. �21� was in
agreement with that determined by measuring the deflection
of a cantilevered flow probe. The fluctuation in the ther-
mocapillary flow is discussed below. The maximum calcu-
lated value of the mean thermocapillary speed, �
M

LV , for the
experiments with Ma in the indicated range is listed in Tables
I and II. Note that for Ma equal to 127, the thermocapillary
speed was too small to be measured.

When the thermocapillary speed was large enough to be
measured, a uniform-temperature layer was observed to be
present in the liquid phase immediately below the interface.
The average radial speed toward the interface, �Ir

�i.e.,
�I

L · ir�, may be determined from the measured total rate of
evaporation, Jev, the area of the interface, AI, and the density
nI

L:

�Ir
=

Jev

AInI
L .

The ratio of the fluid speed parallel and perpendicular to the
interface �i.e., �
M

LV /�Ir
� for the experiments with 127�Ma

�22,000, ranged from �200 to �2,000. Thus the interfacial
temperature gradient produced a thermocapillary flow from
the funnel rim toward the center line, but because the ther-
mocapillary flow rate is so much larger than the radial flow
rate, there was a return flow from the center line toward the
funnel rim. Since the liquid on the interface was cooler, and
therefore lighter than that below, the penetration of the ther-
mocapillary flow into the bulk would have been resisted by
buoyancy and the return flow would have been forced toward
the interface. The mixing produced by these two oppositely
directed flow streams is suggested to be the cause of the
uniform-temperature layer. Also, in the energy and mass bal-
ance at the interface, we assumed the energy transported to
the bottom of the uniform-temperature layer was transported
across this layer to the interface by the mixing in the
uniform-temperature layer �see Eqs. �28� and �29��. In the
steady-state circumstance of our experiments, this amounts
to assuming that there was no storage of thermal energy in
the uniform-temperature layer.

FIG. 8. When the Marangoni number exceeded �22 000, the
interfacial flow was turbulent �1�. This condition was reached in
experiments EV17, EV18, and EV19 �Table II�. Note that the value
of the viscous dissipation correlates with the maximum fluid speed
generated by the Marangoni effect.
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The thermocapillary flow carries thermal energy from the
warmer funnel rim and distributes it along the interface. If
this convected energy is taken into account, the conservation
of energy principle is fully satisfied, provided the surface-
thermal capacity c� is assigned a value of
30.6±0.8 kJ/ �m2 K� �see Fig. 4� for each of the nine experi-
ments with 127�Ma�22,000. Thus the surface-thermal ca-
pacity acts like a property of the water-vapor interface that
does not change significantly even though other properties
undergo changes �see below�.

The molecular interaction that would give rise to c� re-
mains to be established. Its value is larger than would be
expected for an equilibrium interface. The volumetric spe-
cific heat for bulk water at 0 °C is 4.23�103 kJ/ �m3 K�.
The value this would imply for the surface phase is not
clear because �1� the molecular bonding is different in the
surface phase than in the bulk, �2� the value of nLV is
unknown—recall that c�=nLVcLV �see Eq. �1��—and �3� the
surface phase that we consider is in disequilibrium with a
temperature gradient that causes a surface tension gradient.
This gradient gives rise to the observed thermocapillary
speed.

The surface-thermal capacity plays a role in the energy
transport only if there is thermocapillary convection. Energy
transport by this mechanism vanishes if �


LV vanishes �see
Eq. �26��. A recent analysis of the energy transport to the
interface of an evaporating liquid, based on classical kinetic
theory, has been reported by Bond and Struchtrup �24�. As
the authors point out, they neglected surface tension effects;
thus, their analysis does not shed light on a molecular inter-
pretation of c�.

Analyses of the molecular sources of surface tension have
limited themselves to equilibrium circumstances. The mo-
lecular interactions that give rise to surface tension, even
under equilibrium conditions, are still under discussion. One
approach considered is based on the “random network
model” of water �25,26�. It has been applied to account for
the temperature dependence of surface tension �27�. This
model treats water as a continuous network of hydrogen
bonds that, on a suitable time scale, can be viewed as a
distorted, icelike structure that includes all the molecules in
the configuration as members of the network. Energy is
viewed as arising from two principal contributions: lattice
vibrations of the water molecules about their quasiequilib-
rium positions and from the deformation of the hydrogen
bonds that help determine the quasiequilibrium positions of
the molecules. Although a number of assumptions and ap-
proximations are required, this approach has been shown to
give numerical values of the surface tension over a tempera-
ture range between 0 and 30 °C that are within �10% of the
measurements.

The random network model of water can be used to sug-
gest a molecular explanation for the value of c�, but first we
note the lack of correlations between c� and other properties.
One of the remarkable characteristics of c� is its constancy
�see Fig. 6�, although during the series of nine experiments,
the Marangoni number changed by a factor of 5, the evapo-
ration flux changed by a factor of 34, the temperature dis-

continuity by a factor of 3.6, and the vapor-phase pressure
was reduced from 777 to 301 Pa, and in �13� it is shown that
c� for water is not sensitive to interface curvature. Thus it
would not appear that any of these parameters are controlling
in the determination of c�. However, as noted in an earlier
section, flow fluctuations were observed when a flow probe
was used to measure the thermocapillary-generated interfa-
cial speed �1�. In the series of experiments conducted to ex-
amine the analytical expression for this speed, Eq. �21�, the
vapor-phase pressure ranged from 599 to 300 Pa, a range
that is similar to that in the nine experiments used to measure
c�. The fluctuations in the flow speed ranged from
±0.2 to ±0.3 mm/s, and the fluctuations in the flow speed
were of the same order as the flow speed itself in each ex-
periment. Thus, although the flow fluctuations are large, their
magnitude did not change during the course of these experi-
ments, a characteristic that is similar to c�. If the random
network model of water is valid, one can imagine that the
vibrations in a hydrogen-bonded water molecule, about its
quasiequilibrium position, would be much larger than under
equilibrium conditions, as indicated by the fluctuation to
flow probe, when the thermocapillary force pulled the water
molecule from one quasiequilibrium position to another. Un-
der near-equilibrium conditions, at a vapor-phase pressure
of 820 Pa, no deflection of the flow probe could be
measured �1�.

When Ma is less than 22,000, the viscous dissipation ap-
pears to be negligible, and Eqs. �21� and �28� indicate that
thermocapillary convection enhances the rate of evaporation,
independently of the sign of ��TI

L /�
�. Evaporation experi-
ments of organic liquids have been recently reported �28� in
which the liquid phase was outside the surface of curvature
and for which ��TI

L /�
� was negative. It was found that the
effect of thermocapillary convection was to enhance the
evaporation rate. For the experiments we report, the liquid
phase was inside the surface of curvature and ��TI

L /�
� was
positive �see Fig. 2�. As indicated in Fig. 4, the effect of the
thermocapillary convection was to enhance the rate of water
evaporation.

When Ma exceeds 22,000, a transition in the thermocap-
illary convection occurs �Fig. 7�. This transition was also
studied with the cantilevered flow probe. The power spec-
trum of the oscillations indicated a continuum of probe fre-
quencies appeared following this transition, supporting other
indications that the interfacial flow became turbulent. Using
the inferred value of the surface-thermal capacity, the aver-
age value of the viscous dissipation is found to increase al-
most linearly with the maximum interfacial speed �see Fig.
8�. Although thermocapillary convection enhances the
evaporation rate for Ma�22,000, once the flow becomes
turbulent, the fraction of the energy associated with ther-
mocapillary convection that goes into phase change is re-
duced. The remainder goes into viscous dissipation.
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