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A lattice Boltzmann method is developed for gaseous slip flow at the pore scale in microscale porous
geometries. Flow characteristics through various porous structures are studied for different Knudsen numbers
and inlet to outlet pressure ratios. It is found that the gas permeability is larger than the absolute permeability
of porous media due to the gas slippage effect. Furthermore, the rarefaction influence on the gas permeability
is more evident for porous structures with low porosity. The Klinkenberg equation is confirmed for the
simulated porous structures. However, the second-order term of the Knudsen number �Kn2� cannot be ne-
glected for gaseous flow with relatively high Knudsen numbers. A model for predicting the pressure drop of the
flow through microscale porous media is presented based on the Ergun equation and the Carman-Kozeny
equation by taking into account the effects of gas rarefaction and compressibility.
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I. INTRODUCTION

The study of the physics of flow through porous media
has become basic to many applied scientific and engineering
fields. Such diversified fields as soil mechanics, groundwater
hydrology, petroleum engineering, water purification, indus-
trial filtration, ceramic engineering, powder metallurgy, and
the study of gas marks all rely heavily on it as fundamental
to their individual problems �1�.

Porous flow problems are usually treated by volume-
averaged approaches. For the case of a single viscous fluid
flowing through porous media, Darcy’s flow is often used for
calculating the volume rate per unit area in these structures.
Darcy’s law is valid for flows with Reynolds numbers less
than one, in which the convective term in the Navier-Stokes
equation is negligible. For higher Reynolds numbers, the Er-
gun equation based on experimental data is often used �2�.
With these approaches, one can obtain macroscopic proper-
ties of flow in porous media. Because of the very compli-
cated boundaries in pore structures, a macroscopic frame-
work cannot provide exact solutions of flow through porous
media and diffusion in pores. Lattice gas automata and lattice
Boltzmann methods �LBM� have been shown to have the
capability of solving these problems. The main advantage of
the lattice Boltzmann method is that the method has strong
flexibility for complex geometries.

However, to the authors’ knowledge, the existing LBM
models for porous media are all based on the continuum
assumption. Rothman �3�, one of the first researchers, used
the lattice gas automata to simulate two-dimensional flow
through porous media. Chen et al. �4� and Cancelliere et al.
�5� used the lattice gas automata for two- and three-
dimensional simulations. Adrover and Giona �6�, and Ko-
ponen et al. �7,8� used the LBM for two-dimensional porous
structures. Succi et al. �9�, Heijs and Lowe �10�, Maier et al.
�11�, and Inamuro et al. �12� simulated three-dimensional

porous structures with the LBM. The reliability of the LBM
in modeling fluid flow in porous media was confirmed in
these studies. Recent researches on continuum single-phase
flow in simple or complicated porous media can see Refs.
�13–19�. Guo and Zhao �20� also studied the porous media
flow at the representative elementary volume scale with the
LBM. But for microscale and nanoscale pores encountered in
many applications, the pore size is so small that the gaseous
flow through these structures may fall into slip or transition
regime. In fact, gas slippage effect on the permeability of
tight sands �21–25� and nanostructures �26� has been ob-
served in experiments. Thus, it is quite necessary to develop
a lattice Boltzmann model for microscale porous applica-
tions. This paper presents such a work for simulating gas
flow in porous media at the microscale level. This paper is
organized as follows. Section II derives the permeability ex-
pression for gas flow in ideal cases consisting of parallel
microtube bundle. Section III introduces the LBM model for
microscale porous media. Section IV presents typical nu-
merical results of velocity vector, volume flow rate, perme-
ability, and pressure drop in microscale porous media using
the presented D2Q9 lattice BGK model. Section V concludes
the paper.

II. GAS PERMEABILITY IN MICROCHANNELS AND
MICROTUBES

First, let us review some knowledge of the rarefied gas
dynamics. The Knudsen number, which is defined as Kn
=� /H �27�, provides a direct means of validating the con-
tinuum approach as it compares the mean free path, �, to the
characteristic height, H. A flow is considered as a continuum
for Kn�0.001. For Kn�10 the system can be considered as
a free molecular flow and the direct simulation of Monte
Carlo method is usually used for simulating such flows. The
intermediate values of 0.1�Kn�10 are associated with a
transition flow regime while those within the range of
0.001�Kn�0.1 are representative of a slip flow regime.
Navier-Stokes equation with slip velocity boundary may be*Email address: ghtang@mail.xjtu.edu.cn
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applied to flows within the slip regime or marginally transi-
tion regime.

Consider two-dimensional isothermal gas flow between
parallel plates. The channel with the height of H extends
from y=0 to y=H. If the Reynolds number is relatively low,
the inertial terms in the Navier-Stokes equation are neglected
and the momentum equation takes the following form for
fully developed flow:

d2u

dy2 =
1

�

dp

dx
, �1�

where � is the dynamic viscosity of the fluid. The boundary
conditions are

u = ± C1�
�u

�y
− C2�2�2u

�y2 , �2�

where C1 and C2 are coefficients denoting the first-order
term and second-order term, respectively. The values of C1
and C2 �28–34� are summarized in Table I. Then, we can
obtain the following streamwise velocity profile in the chan-
nel with a second-order slip velocity boundary condition

u�y� = −
H2

2�

dp

dx
� y

H
−

y2

H2 + C1Kn + 2C2Kn2� . �3�

Integration in y-coordinate results in an expression for the
average velocity in the channel

q = uA = −
H2

2�

dp

dx
�1

6
+ C1Kn + 2C2Kn2� . �4�

As all known, in one-dimensional system, Darcy’s law is
given by the following equation

q = −
k

�

dp

dx
, �5�

where q is the volume flow rate per unit area, k is the per-
meability of the porous structure, and dp /dx is the applied
pressure gradient. In comparison with Eq. �5�, the following
formula can be derived from Eq. �4�

k =
H2

12
�1 + 6C1Kn + 12C2Kn2� . �6�

Thus, for rarefied gaseous flow in a parallel channel, the
permeability is dependent not only on the channel character-
istic height but also on the Knudsen number. For continuum

flow at Kn=0, we have k=H2 /12 and the permeability only
depends on the characteristic height. Similarly, for rarefied
gaseous flow in a microtube with diameter D, we can obtain
the following permeability expression:

k =
1

32
D2�1 + 8C1Kn + 16C2Kn2� . �7�

Considering an ideal porous media composed of a bundle of
straight and parallel circular tubes of equal diameters D and
N tubes per unit cross-sectional area of the porous media, the
permeability velocity is calculated as

q = N
�D2

4
uA = −

N�D4

128�

dp

dx
�1 + 8C1Kn + 16C2Kn2� . �8�

The mean free path � is defined �27�

� =
�

p̄
��RT

2
, �9�

where R is the gas constant, T is the temperature, and p̄ is the
mean pressure of the channel inlet and outlet. Thus we can
obtain

q = −
N�D4

128�

dp

dx
�1 +

8�

D
��RT

2
C1

1

p̄
+

8�RT�2

D2 C2
1

p̄2� .

�10�

Thus the gas permeability can be written as

kg = k��1 +
A

p̄
+

B

p̄2� , �11�

where k� is the absolute permeability, or permeability unaf-
fected by the gas slippage

k� =
N�D4

128
, �12a�

A =
8�

D
��RT

2
C1, �12b�

B =
8�RT�2

D2 C2. �12c�

For a real porous structure, different coefficients should be
added before the above three terms. According to Klinken-
berg, gas permeability at a finite pressure is given by �35�

kg = k��1 +
A

p̄
� . �13�

Note that the second-order correction in Eq. �11�, B / p̄2, has
the same action with the first-order term if C2 is positive.
Indeed, C2 is positive for most of the second-order slip
boundary models �see Table I�. The effect of the second-
order term can account for the deviation from a straight line
for the curve relating kg and 1/ p̄ observed in the core sample
experiment �36�. The gas permeability with different experi-
ment pressure is plotted in Fig. 1. The second-order term

TABLE I. Coefficients for various second-order slip models.

Author�s� C1 C2

Schamberg �28� 1.0 5� /12

Cercignani �29� 1.1466 0.9756

Deissler �30� 1.0 9/8

Sreekanth �31� 1.1466 0.14

Hisa and Domoto �32� 1.0 0.5

Mitsuya �33� 1.0 2/9

Beskok et al. �34� 1.0 −0.5
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effect will be significant especially for very small pores or
large Knudsen numbers.

III. LATTICE BOLTZMANN METHOD FOR MICROSCALE
POROUS MEDIA

The lattice Boltzmann method, which was developed
from the lattice gas automata, simulates fluid flows by track-
ing the evolution of fluid particles taken on a few discrete
speeds in discrete space at discrete time steps. The LBM
method has been mainly applied to the continuum flow since
its birth. Very recently, the LBM has been successfully de-
veloped to simulate microflows �37–41�. In this paper, we
applied the LBM model developed in our recent work �39� to
investigate the transport characteristics in microscale porous
media.

The kinetic evolution of the lattice Boltzmann equation
with the BGK collision approximation is �42�

f i�r + ci�t,t + �t� = f i�r,t� −
1

	
�f i�r,t� − f i

eq�r,t�� , �14�

where 	 is the dimensionless relaxation time. For the D2Q9
lattice model, the discrete velocities are given by c0=0, and
ci= (cos��i−1�� /2� , sin��i−1�� /2�)c for i=1,2 ,3 ,4, and ci

=�2(cos��i−5�� /2+� /4� , sin��i−5�� /2+� /4�)c for i
=5,6 ,7 ,8. The streaming speed, c, is defined as �x /�t,
where �x and �t are the lattice spacing and time step, re-
spectively.

The equilibrium distribution function f i
eq for the D2Q9

model is

f i
eq = 
�i�1 +

3�ci · u�
c2 +

9�ci · u�2

2c4 −
3�u · u�

2c2 	 , �15�

where �0=4/9, �i=1/9 for i=1,2 ,3 ,4, and �i=1/36 for i
=5,6 ,7 ,8. The macroscopic variables for the fluid mass den-
sity, fluid momentum, and pressure are defined by 
=
i f i,

u=
i f ici, and p=
c2 /3. The term 	 in Eq. �14� is replaced
by 	� to take into account the gas compressibility �39�,

	� =
1

2
+


ref



�	 −

1

2
� , �16�

where 
ref is a referenced density and 	 is linked with the
channel outlet Knudsen number Kno via the following equa-
tion �39�

	 =

oNyKno


ref
��/6

+
1

2
, �17�

where 
o is the outlet gas density and Ny is the characteristic
lattice number. In this modified lattice Boltzmann model, we
can obtain the fluid dynamic viscosity � independent of the
density as the following expression �39�:

� =
�	 − 0.5��t
refc

2

3
. �18�

The slip velocities on all the solid block surfaces and the
plate wall boundaries are implemented by combining the
bounce-back with the specular reflection �39�.

IV. SIMULATION RESULTS

The simulated 2D porous media is like the structure
shown in Fig. 2. Disordered solid blocks are packed between
two parallel plates. Porosity � represents the fraction void
volume in the porous structure and it is defined as �= �V
−Vs� /V, where V is the total volume, and Vs is the volume of
the solid blocks. Isothermal gaseous flows in such microscale
porous structures are simulated with the presented lattice
Boltzmann method. The height of the simulated channels is
H=1.2 �m and the ratio of the channel length, L, to the
height is 2.5. The channel outlet is fixed at atmospheric con-
dition. The working fluids of carbon dioxide �CO2�, nitrogen
�N2�, hydrogen �H2�, and helium �He� are simulated, and the
corresponding outlet Knudsen numbers are 0.0236, 0.055,
0.1, and 0.16, respectively. In the simulations, we maintain a
pressure difference by holding a fixed density at the inlet and
outlet.

FIG. 1. Plot of experimental gas permeability and reciprocal
mean pressure.

FIG. 2. Velocity vectors in the porous structure of �=0.825 at
pi / po=1.1. �a� Kno=0.055. �b� Kno=0.16.
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A. Velocity profiles

The calculated results of velocity vectors for different val-
ues of porosity at pressure ratio of the inlet to outlet pi / po
=1.1 are shown in Figs. 2 and 3, where the length of the
vectors stands for the magnitude of the velocity. It is seen
that at a higher Knudsen number, Kno=0.16, the slip veloci-
ties on the bottom and top plates are much larger than those
at Kno=0.055. Conversely, the velocities away from the
plates are lower. Moreover, due to the reduced friction drag
on the plates at larger Knudsen number, the flow rate gets
higher near plates and lower among the disordered blocks,
which makes flow separations behind the blocks unlikely to
occur. In other words, if the Reynolds number increases, the
vortices behind the disordered blocks are more inclined to
occur at relatively low Knudsen numbers. Thus the pressure
drag acting on the solid blocks increases and the fluid flows
away from the blocks into open spaces near flat plates with
smaller pressure drags. Seen from Fig. 3, as the porosity
decreases, the flow resistance increases and the flow velocity
through the porous structure decreases obviously.

B. Volume flow rate and permeability

A plot of volume flow rate per unit area as a function of
the pressure difference between the inlet and outlet for six
values of porosity �=0.887, 0.869, 0.825, 0.769, 0.719, and
0.675 is shown in Figs. 4�a� and 4�b�. The results can be well
fitted by a series of straight lines. The Knudsen number has
significant influence on the flow rate. As seen from the fig-
ures, at the same pressure gradient, the volume flow rate
increases with the increase of Knudsen number, implying the
reduction in friction drags on the walls and blocks. The flow
rate decreases steeply with the increasing porosity. However,
for porous structures with relatively small porosity, the flow
rate is affected to a less degree than those having higher
levels of porosity. For example, as shown in Figs. 4�a� and
4�b�, the flow rate discrepancy is relatively small between
�=0.719 and �=0.675.

The average gas permeability is evaluated from pressure
and flow data using a non-Klinkenberg gas flow solution of
compressible gas �1�

kg =
2�Lqopo

pi
2 − po

2 , �19�

where pi, po, and qo are the inlet pressure, outlet pressure,
and outlet velocity, respectively.

The gas permeability is shown in Fig. 5 as a function of
the reciprocal mean pressure, 1 / p̄. From the figure we can
see that the gas permeability decreases evidently as the mean
pressure increases, especially for relatively high Knudsen
numbers. However, the influence is weak for a small Knud-
sen number, that is, for a near continuum flow. Note that the
rarefaction effect is expected to decrease with the increasing
pressure because the mean free path � of the gas is inversely
proportional to the pressure p. The Knudsen number in-
creases from the inlet to outlet as the pressure decreases in
the streamwise direction, reaching a maximum at the outlet
of the channel. In our simulation the outlet condition is fixed
at atmosphere. Thus, as the mean pressure increases, the inlet
pressure increases and the degree of the whole rarefaction
level in the porous structure decreases, which results in rela-
tively large flow resistance and consequently low gas perme-
ability.

FIG. 3. Velocity vectors in the porous structure of �=0.719 at
pi / po=1.1. �a� Kno=0.055. �b� Kno=0.16.

FIG. 4. The volume flow rate q as a function of the pressure
gradient for various porosities and Knudsen numbers. �a� Kno

=0.055. �b� Kno=0.16.
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Because of the gas slippage on the solid boundaries, the
friction drag reduces and thus the permeability increases
with the increasing Knudsen number. Similar experimental
results for H2, N2, and CO2 flows through a porous medium
are presented in Ref. �43�. One can also see Ref. �44� for
details. The simulated results from the presented LBM
method are consistent with the experimental data qualita-
tively.

On the whole, the simulation results can be quite well
fitted by a series of straight lines. The slop of the straight line
relating the gas permeability to reciprocal mean pressure de-
creases with the increasing Knudsen numbers. Nevertheless,
by careful inspection of the results, it can be observed that
the predicted gas permeability slightly deviates from the

straight line for helium flow shown in Fig. 5�b�. This devia-
tion is attributed to the effect of the second-order term of
Knudsen number.

The calculated results of gas permeability for the porous
structures with �=0.825 and �=0.675 at p̄=1.05
105 Pa
are listed in Table II. The gas permeability for the porous
structure with �=1.0 �no solid blocks between the two par-
allel plates� is also listed in Table II. We find that as the
porosity decreases, the Knudsen number influence on the gas
permeability becomes more evident. For example, for the
porous structure with �=1.0, the permeability of helium flow
�Kno=0.16� is 1.9 times larger than that of carbon dioxide
flow �Kno=0.0236�, while it is 5.4 times larger for the po-
rous structure with �=0.825 and 7.8 times larger for the po-
rous structure with �=0.675, respectively. This simulation
result is consistent with the experimental data in Refs.
�21,22,25�. This characteristic can be explained as follows:
as the porosity decreases, generally the total surface area of
the solid blocks increases and the slippage effect on the solid
surfaces becomes more dominant, which results in a lower
flow resistance through the porous structure. This result
means that the neglect of gas rarefaction effect would bring
forth large deviation from the true transport characteristics,
especially for the porous media with low porosity.

C. Pressure drops

Finally, we compare the calculated results of pressure
drops with the following empirical equations based on ex-
perimental data, the Ergun correlation of Eq. �20� �2� and the
Carman-Kozeny correlation of Eq. �21� �45�

�p

L

Dp


u2

�3

1 − �
= 150

��1 − ��

uDp

+ 1.75, �20�

�p

L

Dp


u2

�3

1 − �
= 180

��1 − ��

uDp

. �21�

Figure 6 shows the dimensionless pressure drops versus the
Reynolds numbers multiplied by 1/ �1−�� for the porous
structure of �=0.675, where 
̄i and ūi represent the inlet
mean density and velocity, respectively. First, we tried to
determine the value of the equivalent diameter of the body,
Dp, by comparing the calculated pressure drop with the
Carman-Kozeny equation and the Ergun equation. We simu-
lated the flow at Kno=0.001 since it can be considered as a
continuum flow. We found that a good agreement is obtained
with Dp=0.16 �m by comparing the calculated results with
the above two empirical equations. The dimensionless pres-

FIG. 5. The Knudsen number influence on gas permeability. �a�
�=0.825. �b� �=0.675.

TABLE II. The gas permeability for various Knudsen numbers and porosities at p̄=1.05
105 Pa.

�=1.0 �=0.825 �=0.675

Kno=0.0236 1.21
10−13 m2 3.26
10−15 m2 1.14
10−15 m2

Kno=0.055 1.48
10−13 m2 6.52
10−15 m2 2.5
10−15 m2

Kno=0.1 1.8
10−13 m2 10.97
10−15 m2 4.95
10−15 m2

Kno=0.16 2.3
10−13 m2 17.84
10−15 m2 8.94
10−15 m2
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sure drops are lower than the Ergun equation for the other
four Knudsen numbers at lower Reynolds numbers in Fig. 6.
However, the discrepancies between the four gases get lower
and eventually the dimensionless pressure drops exceed the
Ergun equation at larger Reynolds numbers. As previously
mentioned, as the Reynolds number increases, the inlet pres-
sure increases and the mean Knudsen number of the inlet and
the outlet decreases. That is, the mean Knudsen number dis-
crepancies are small between the four gas flows at higher
inlet pressures, which results in the quite close pressure
drops. However, it is difficult to explain that the pressure
drops exceed the continuum Ergun equation. We recall that
the Ergun equation and the Carman-Kozeny equation are
limited to near incompressible flow. Thus, considering the
gas compressibility and comparing Eq. �5� with Eq. �19�, we
rewrite the ordinate as shown in Fig. 7. From Fig. 7 we can
see that the pressure drops are always below the continuum
Ergun equation. To fit the data for different Knudsen num-
bers with a single straight line, we rewrite the ordinate again
by multiplying �1+A Kn� as shown in Fig. 8. Here Kn is the
mean Knudsen number of the inlet and outlet and A is a

constant. The data are in good agreement with the Ergun
equation and the Carman-Kozeny equation if A is set to be
90. However, at lower Reynolds numbers for helium flow,
corresponding to lower inlet pressures, a slight lower devia-
tion can still be observed due to the larger mean Knudsen
number. Namely, the second-order term of Knudsen number
cannot be neglected at larger Knudsen numbers. If one still
adopts a first-order correlation to fit the data, one must in-
crease the value of factor A, which means that the factor A
would not be expected to be a constant in the whole Knudsen
number regime even for the same porous structure. In other
words, the factor A depends on the porous properties, as well
as, to a lesser degree, on the nature of the gas used. Similarly,
by comparing the pressure drops at Kno=0.001 with the Er-
gun equation and the Carman-Kozeny equation, we deter-
mined the values of Dp to be 0.12, 0.14, and 0.14 for the
porous structures of �=0.825, �=0.769, and �=0.719, re-
spectively. Using the first-order correlation, we determined
the value of constant A to be 55, 60, and 80, respectively. It
can be seen that the value of constant A increases as the
porosity decreases. The results are presented in Fig. 9 for
CO2, N2, H2, and He flows in the four porous structures of
�=0.825, 0.769, 0.719, and 0.675. The four solid lines rep-
resent the results at Kno=0.001 �continuum flow� and they
accord with each other perfectly. We can see that the dots
and the solid lines are in good agreement except at very low
Reynolds numbers, where the second order of Knudsen num-
ber effect is evident.

V. CONCLUSIONS

Analytical solution for gas permeability through an ideal
porous structure consisting of a bundle of microtubes is pre-
sented, which provides a supplement for Klinkenberg equa-
tion by introducing a second-order correction, B / p̄2. A lattice
Boltzmann model is presented which can take into account
the influence of gas rarefaction. The transport characteristics
in relatively simple porous structures are studied with the

FIG. 6. Pressure drops versus Reynolds numbers in the porous
structure of �=0.675. The ordinate is ��p / �
̄iūi

2���Dp /L���3 / �1
−���.

FIG. 7. Pressure drops considering the compressibility versus
Reynolds numbers in the porous structure of �=0.675. The ordinate
is ��pi

2− po
2� / �2pi
̄iūi

2���Dp /L���3 / �1−���.

FIG. 8. Pressure drops considering the compressibility and rar-
efaction versus Reynolds numbers in the porous structure of �
=0.675. The ordinate is ��pi

2− po
2� / �2pi
̄iūi

2���Dp /L���3 / �1−����1
+A Kn¯ �.
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presented LBM method. The results show that the Knudsen
number has significant influence on the gas permeability. For
the same porous structure, the permeability increases with
the increase of Knudsen number. A qualitatively good agree-
ment is obtained between the simulated results and the ex-
perimental data.

Considering the compressibility and the rarefaction, a
model for the pressure drop is presented based on the Ergun
equation and the Carman-Kozeny equation. By introducing a
correlation about the first-order Knudsen number, the Ergun
equation is still applicable for moderate Knudsen number
range. However, the second-order Knudsen number effect
cannot be neglected for high Knudsen number flows.

The gaseous rarefaction effect on the gas permeability is
more evident for the porous structure with low porosity. The
conventional continuum models for transport characteristics
study in microscale porous media are not valid or at least
should be modified. The lattice Boltzmann method can re-
veal not only the local behavior but also integral quantities
like the pressure drop. It is demonstrated to be an effective
method for simulating complicated phenomena of gas flow
through porous media.

Finally, note that the pore size is different in the whole
porous media and thus the local Knudsen number varies
from pore to pore. Further developments of the present work
should include the effect of the variation of the local Knud-
sen number.
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