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For a chaotic, dynamical system, a typical noisy trajectory diverges exponentially from the true trajectory
with the same initial conditions. Nonetheless, the noisy trajectory, as representative of the dynamical system,
may have credibility if there exists a true trajectory, corresponding to a slightly different initial condition, that
stays close to the noisy trajectory for long periods of time. For finding such shadowing trajectories, a synchro-
nization based method is presented. We call it the synchronize-and-pullback algorithm. Several numerical
examples are shown illustrating the method. Finally, an application of the proposed shadowing technique for
noise filtration in the context of communication is presented.
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I. INTRODUCTION

A wide class of physical systems of interest may be de-
scribed by deterministic, dynamical systems. Although the
equations describing the evolution of these dynamical sys-
tems may be available, often these equations cannot be
solved analytically. Under such circumstances, one must re-
sort to numerical means in order to generate the trajectories
and study them. Such computer generated numerical trajec-
tories are never exact since errors due to discretization and
finite-precision arithmetic are introduced at every step of it-
eration. However, if these errors are kept small, then it may
be reasonable to expect the error in the final solution to be
small as well. Thus as long as the errors at every step remain
adequately small, the computer generated numerical trajecto-
ries may be acceptable.

Unfortunately, the situation deteriorates dramatically
when the dynamical system of interest happens to be chaotic.
Trajectories corresponding to chaotic, dynamical systems, al-
though bounded in phase space, exhibit extreme sensitivity
to initial conditions. Consequently, when generating such tra-
jectories numerically on the computer, the inaccuracies
caused by the small numerical errors �due to discretization
and finite-precision arithmetic� at every step, grow exponen-
tially in time, thereby leading to very large errors in rela-
tively short times. This effect calls into question the very
relevance of numerically generated solutions of such sys-
tems. In some cases, however, it is possible to demonstrate
that although the numerically generated trajectory diverges
rapidly from the true �noiseless� trajectory, there exists a cer-
tain true trajectory corresponding to a slightly different ini-
tial condition, that shadows, i.e., remains close �step by step�
to, the numerically generated trajectory for all time �1,2�.
This property lends credence to computer-generated results.
It has been shown, for example, that all hyperbolic systems
are shadowable �3,4�. Even for systems that are unshadow-
able, it is often possible to demonstrate finite-time shadow-
ing. For such systems, although it may not be typically pos-
sible to find a true trajectory that remains close to the

numerically generated trajectory for all time, it may still be
possible to divide the numerical trajectory into sections of
finite duration, separated by glitches, such that each section
is shadowed by some true trajectory �also of finite duration�.
If the time intervals between consecutive glitches is suffi-
ciently long, then such finite time shadowing may still be
useful for practical purposes.

In many situations, it is desirable to determine the
shadowing orbit numerically �5,6�. For example, when trying
to model a chaotic, physical system for which certain ob-
served time series data are available, a convincing test of any
candidate model would be whether there exist trajectories in
the model system that shadow all typical trajectories experi-
mentally observed in the physical system. An algorithm that
generates shadowing orbits may prove invaluable in such
situations.

Another application of recent interest is in the field of
communication using chaos �7–16�. In such a situation, the
transmitter and the receiver are usually identical chaotic sys-
tems. A signal sent from the transmitter to the receiver is
employed to synchronize the receiver to the transmitter
�11,17–31�. Only then can the message of interest be recov-
ered. The quality of message recovery is typically limited
both by the quality of the signal received and by the method
of synchronization used. A noisy receiver orbit usually leads
to noisy message recovery. An algorithm that finds shadow-
ing orbits numerically may be used in these cases to find the
true orbit corresponding to the noisy receiver orbit, which is,
presumably, the transmitter orbit. The message of interest
may then be recovered easily. Thus finding a shadowing tra-
jectory effectively achieves noise reduction in such chaos-
based communication systems �32–34�.

II. NUMERICAL SHADOWING PROBLEM

The problem addressed in this paper is as follows. There

exists a chaotic, dynamical system S. If X� i represents
its time-i state vector, then its evolution may be described as

X� i=M�X� i−1�, where M is some mixing, chaotic map �37�
with just one Lyapunov exponent positive, and the rest
negative �38�. There exists a T-long numerical orbit*Electronic address: dutta@math.unh.edu
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FIG. 1. The evolution of an �
disk of initial conditions B cen-

tered at the point P� on the attrac-
tor A, corresponding to the Ikeda
map with a=1, b=0.9, �=0.4, and
�=6.0. This map has only one
positive Lyapunov exponent and
no zero Lyapunov exponents. The

+ symbol represents P� and its im-
ages. The background shows the
chaotic attractor A.

FIG. 2. Illustration of the synchronize-and-pullback algorithm. The + symbol represents the W� i points corresponding to the noisy W� orbit.

The dotted line represents the � balls centered at the W� i points within which the shadowing solution is sought. The solid lines represent the

local, unstable manifolds Li. The triangles represent the Y� i points, the empty circles represent the Z� i� points, and the solid circles represent

the Z� i points. Notice how, at the very last iterate, the solid circle coincides with the triangle. At the preceding iterates, the solid circles
coincide with the empty circles when the latter lie within the � balls. If the empty circles lie outside the � balls but the triangles lie within,
then the solid circles coincide with the triangles. Otherwise, the solid circles coincide with the + symbols.
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W� 0-W� 1-W� 2-¯ -W� T—henceforth referred to as the W� orbit—
that is noisy in the sense that the stepwise dynamic error,

�i= �W� i−M�W� i−1��, is appreciable. The objective is to

find a true orbit Z�0-Z�1-Z�2-¯ -Z�T—henceforth refered to as

the Z� orbit—that shadows the W� orbit. That is, for all

i=0,1 ,…T , �i��W� i−Z� i���, where � is small. Given that
the exercise is to be implemented on a digital computer with
finite precision, it will not, in general, be possible to find a

truly accurate Z� orbit. Therefore a Z� orbit will be deemed
as an acceptable shadowing orbit if the dynamic error asso-
ciated with it is typically no larger than the typical stepwise
error associated with an iteration of M on the computer.

When such a Z� orbit that shadows the W� orbit for its entire
length cannot be found, a piecewise shadowing solution is

found in the form of a Z� orbit characterized by typically long
stretches of small dynamic error, punctuated by short bursts
of large dynamic error viz. glitches. Such piecewise shadow-
ing solutions are expected for finite-time shadowable
systems.

III. SYNCHRONIZE-AND-PULLBACK ALGORITHM

The method presented in this paper obtains the shadowing

Z� orbit from the noisy W� orbit in two steps. First, a particular
scheme of synchronization is used to obtain an intermediate

Y� orbit �also noisy� from the W� orbit. Then, by a process we

call pullback, the Z� orbit is computed from the Y� orbit.
Therefore we call our method synchronize and pullback �30�.

A. Local, unstable manifold

The synchronization scheme central to the shadowing al-
gorithm presented in this paper is a variation of the slide-
and-match algorithm presented in Refs. �30,31�. However,
for the sake of completeness, the scheme is presented here in
its entirety. The algorithm is predicated on an interesting
property peculiar to the dynamical system S, when M, the
map governing its dynamics, is a chaotic map with just one

Lyapunov exponent positive, and the rest negative. As a con-
crete example, let S be the Ikeda system �35�. Then the map
M may be described as follows:

xi = a + b�xi−1 cos��i−1� − yi−1 sin��i−1�� , �1�

yi = b�xi−1 sin��i−1� + yi−1 cos��i−1�� , �2�

where �i−1=�−� / �1+xi−1
2 +yi−1

2 � and X� i��xi ,yi�T. We pick
parameter values a=1, b=0.9, �=0.4, and �=6.0. Let A
represent the fractal attractor corresponding to M.

Now consider a small, circular disk of initial conditions B
centered at some point P� on the attractor A. Since only one
of the Lyapunov exponents of M is positive, and the rest are
all negative, the images of B �under iteration by M� stretch
along one direction only, while shrinking along all the others.
After a sufficient number of iterates the image of B looks
like an essentially one-dimensional curve L lying in A, with

the corresponding image of P� contained within it. Figure 1
provides an illustration of the process. Although the pre-
sented example corresponds to the two-dimensional Ikeda
system, the property holds true for higher dimensional cha-
otic systems as well, when B is a small ball rather than a
disk, just as long as the map M has only one positive
Lyapunov exponent, and the rest negative.

Under further iteration by M, the images of L continue to
stretch and fold, eventually growing to cover the entire at-
tractor A. Therefore, at every iterate, the ends of the image
of L are truncated so that they never grow beyond a preset
length. Then, at some much later iterate i , Li �the image of

L� is called the local unstable manifold at X� i �the time-i

image of P� � corresponding to the essentially semi-infinite

orbit ¯X� i−2X� i−1X� i �39�. An interesting property of the dy-
namics near Li is that under iteration by M, points close to it
converge onto it, although they diverge from one another
along Li.

FIG. 3. Illustration of a 50 segment,
piecewise-linear approximation of the local, un-
stable manifold corresponding to the Ikeda map
with a=1, b=0.9, �=0.4, and �=6.0. �a� The +

symbol represents W� i, the large circle represents

M�Y� i−1�, the solid line represents M�L̃i−1�, and
the small circles represent its vertices. The back-
ground shows the chaotic attractor A. �b� The +

symbol represents W� i, the large circle represents

Y� i, the solid line represents L̃i, and the small
circles represent its vertices. The background
shows the chaotic attractor A.

FAST HIGH-QUALITY NUMERICAL SHADOWING OF … PHYSICAL REVIEW E 72, 056214 �2005�

056214-3



FIG. 4. For the Ikeda system with parameter values a=1, b=0.9, �=0.4, and �=6.0, a noisy W� orbit was generated using dynamical

noise and observational noise of amplitudes 1�10−5 and 1�10−3, respectively, along each axis. Several Z� �k� orbits were obtained by

repeated synchronize-and-pullback refinement passes. �a� The stepwise dynamic error, �W� i−M�W� i−1��, vs the iterate i. �b� The stepwise

dynamic error, �Z� i
�1�−M�Z� i−1

�1� ��, vs the iterate i. �c� The stepwise dynamic error, �Z� i
�2�−M�Z� i−1

�2� ��, vs the iterate i. �d� The stepwise dynamic

error, �Z� i
�3�−M�Z� i−1

�3� ��, vs the iterate i. �e� The stepwise dynamic error, �Z� i
�4�−M�Z� i−1

�4� ��, vs the iterate i. �f� The stepwise dynamic error,

�Z� i
�5�−M�Z� i−1

�5� ��, vs the iterate i. �g� The final stepwise dynamic error, �Z� i
�6�−M�Z� i−1

�6� ��, vs the iterate i. �h� The final stepwise shadowing

distance, �Z� i
�6�−W� i�, vs the iterate i. Values lower than 1�10−20 have been plotted as 1�10−20.
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B. Synchronization: W� orbit to Y� orbit

The process of synchronization used to generate the Y�

orbit from the W� orbit begins with the choice of Y� 0. For this,
we must first decide upon a value for �, the upper bound for

the stepwise shadowing distance, �i��W� i−Z� i�. Any point on

the attractor A within a distance of � from W� 0 may be cho-

sen. Let L0 be the local, unstable manifold containing Y� 0. At

all subsequent time steps, Y� i is chosen as that point on

M�Li−1� that is closest to W� i. And Li is taken to be a subset

of M�Li−1� containing Y� i, with length no more than a preset

limit. In some sense then, Y� i is obtained from Y� i−1 by an
iteration under M followed by an appropriate slide along
M�Li−1�.

C. Pullback: Y� orbit to Z� orbit

Although the Y� orbit itself is not a true orbit, the manner

in which it was generated allows us to find a true Z� orbit that

stays close to it at every step. We begin by identifying Z�T

with Y� T. Then, for every i=0,1 ,… ,T−1, we pick Z� i� as that

point on Li whose forward image is the closest to Z� i+1. In

fact, when Z� i+1�Li+1, it is possible to find a Z� i� whose

forward image is actually Z� i. This is because by construction
Li+1�M�Li�, for all i=0,1 ,… ,T−1. Note that this does

not require the map M to be invertible, since if M�a��=b� ,
then even if M is noninvertible, there typically exist neigh-

borhoods Na� of a� and Nb� of b� such that M�Na��=Nb�, and each

point of Nb� has an inverse in Na� that is unique. If �Z� i�−W� i�
��, then Z� i� is picked as Z� i. Otherwise, if �Y� i−W� i���, then

Y� i is picked as Z� i. Otherwise, Z� i is identified with W� i. Figure
2 provides an illustration of this process of synchronization
followed by pullback.

D. Approximating the local, unstable manifold

The crucial component in the successful implementation
of the described algorithm is the accuracy of the local, un-
stable manifold approximation. Thus a numerical scheme
that is both reliable and computationally efficient is called
for. A relatively simple yet highly accurate method would be
to approximate Li by a cloud of points clustered around Y� i.
Under iteration by M, the images of these points tend to
diverge. To preserve finiteness therefore the points lying far

away from Y� i are deleted, while new points are added close

to Y� i Although straightforward to implement, this approach is
computationally very expensive. Another possible approach

would be to simply approximate Li by its tangent at Y� i.
While extremely efficient from a computational perspective,
the quality of such an approximation would render it fragile
under even very modest levels of noise.

As in Refs. �30,31�, the time-i local, unstable manifold Li
is approximated in this paper by a piecewise-straight line

with its middle vertex at Y� i. Given that the quality of this
approximation is central to the quality of the final shadow-
ing, a few details about the method ought to be mentioned.

For ease of discussion, let us use the symbol L̃i to represent
the piecewise-linear approximation to Li. In order to obtain

L̃i from L̃i−1, we first generate M�L̃i−1�, the piecewise-
straight line defined by the vertex points which are the im-

ages of the vertices of L̃i−1 under M. Clearly, M�L̃i−1� cannot

be accepted as L̃i without any modification, since such a
process of evolution will quickly render any approximation
invalid owing to the tendency of the unstable manifold to
stretch and fold under evolution. Therefore we first deter-

mine Y� i as that point on M�L̃i−1� that is closest to W� i. We

then consider Y� i as the central vertex of L̃i. A quadratic

spline is then passed through Y� i and the vertices of M�L̃i−1�.
The new vertices defining L̃i are then chosen as points on the
aforementioned spline, keeping the following points in mind:

�i� No segment may be longer than a certain, preset maxi-
mum. While almost any choice of a maximum allowed length

for every segment will prevent the L̃i’s from growing beyond
bound, a judicious choice is necessary in order to maintain
the quality of the approximation. As long as the segments are
not so short that the finite precision arithmetic of the com-
puter is an issue, the shorter the segment lengths, the better is
the quality of the approximation. In fact, to leading order, the
approximation error is a quadratic function of the segment
length.

�ii� No two adjacent segments may form an angle smaller
than a certain, preset value. As mentioned earlier, the un-
stable manifold tends to both stretch and fold under evolu-

tion. While the previous precaution guards the L̃i’s from
growing beyond bound, the precaution of imposing a lower
bound on the angle between two adjacent segments prevents

the L̃i’s from folding back upon themselves with segments
overlapping one another.

�iii� The total length of L̃i must be sufficiently large com-

pared to the distance between Y� i and M�Y� i−1� along M�L̃i−1�.

FIG. 5. Illustration of a 50 segment, piecewise-linear approxi-
mation of the local, unstable manifold corresponding to the Henon
map with parameter values a=1.4 and b=0.3. The large circle rep-

resents Y� i, the solid line represents L̃i, and the small circles repre-
sent its vertices. The background shows the chaotic attractor.
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FIG. 6. For the Henon system with parameter values a=1.4 and b=0.3, a noisy W� orbit was generated using dynamical noise and

observational noise of amplitudes 1�10−5 and 1�10−3, respectively, along each axis. Several Z� �k� orbits were obtained by repeated

synchronize-and-pullback refinement passes. �a� The stepwise dynamic error, �W� i−M�W� i−1��, vs the iterate i. �b� The stepwise dynamic error,

�Z� i
�1�−M�Z� i−1

�1� ��, vs the iterate i. �c� The stepwise dynamic error, �Z� i
�2�−M�Z� i−1

�2� ��, vs the iterate i. �d� The stepwise dynamic error, �Z� i
�3�

−M�Z� i−1
�3� ��, vs the iterate i. �e� The stepwise dynamic error, �Z� i

�4�−M�Z� i−1
�4� ��, vs the iterate i. �f� The stepwise dynamic error, �Z� i

�5�

−M�Z� i−1
�5� ��, vs the iterate i. �g� The final stepwise dynamic error, �Z� i

�6�−M�Z� i−1
�6� ��, vs the iterate i. �h� The final stepwise shadowing distance,

�Z� i
�6�−W� i�, vs the iterate i. Values lower than 1�10−20 have been plotted as 1�10−20.
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This is clearly necessary in order for the L̃i’s to be useful for
synchronization.

�iv� The typical length of L̃i should be based on the typi-

cal value of the distance between Y� i and M�Y� i−1� along

M�L̃i−1�. While we need the L̃i’s to be sufficiently longer

than the distances between the Y� i’s and the M�Y� i−1�’s along

the M�L̃i−1�’s, they should not be much longer. There are two

reasons for this. First, the longer the L̃i’s, the longer will the
individual segments be, thereby leading to reduced quality.

Second, if any L̃i is too long, then multiple folds of it may all

come close to the corresponding W� i. This increases the risk

of picking an incorrect Y� i, thereby causing an unnecessary
glitch in the shadowing orbit.

When L̃i is obtained from L̃i−1 in the manner outlined above,

we call L̃i the normalized image of L̃i−1.

In order to generate the Y� orbit from the W� orbit, we first

pick any point P� on the attractor A. We then pick a set of 2N
nearby points �not necessarily on A� such that these 2N+1

points �including P� � lie on a short, straight line segment with

P� in the center. Treating this as our very first L̃, we evolve it

along with P� in the manner described previously. After a

sufficient number of iterates, the normalized image of L̃ con-
verges to the local unstable manifold of the corresponding

image of P� . The system is further evolved until L̃�, the nor-

malized image of L̃, comes to within � of W� 0. Y� 0 is then

chosen as the point on L̃� that lies closest to W� 0. Y� 0 serves as

the central vertex point for L̃0. The other 2N vertex points
are then chosen in the manner described previously. Thus we

obtain Y� 0 and L̃0, in order to begin the process of the gen-

eration of the Y� orbit from the W� orbit by synchronization.
Figure 3 provides an illustration of this process of evolution

of the L̃’s.

E. Refinement

Had the true local, unstable manifolds, the L’s, been

available, the Z� orbit obtained using the above-described al-
gorithm would have been the desired “true” orbit that shad-

ows the noisy W� orbit. Since the L̃’s are but approximations

to the L’s, errors are introduced into the Z� orbit. Therefore
the synchronize-and-pullback algorithm must be applied re-
peatedly in a process of successive refinement.

Let the notation, Z� �k� orbit, represent the Z� orbit obtained

after the kth refinement pass. The Z� �0� orbit may be identified

with the W� orbit. Then, at the kth refinement pass, the Y� �k�

orbit is obtained by synchronization from the Z� �k−1� orbit as

described in Sec III B �the Z� �k−1� orbit plays the role of the W�

orbit while the Y� �k� orbit plays the role of the Y� orbit�. The

Z� �k� orbit is obtained subsequently from the Y� �k� orbit by the
process of pullback as described in Sec. III C. The reason
this process of successive refinement works is that our
method of approximating the local, unstable manifolds is
self-adjusting. As mentioned in Sec. III D, the typical length

of the L̃’s is based on the sliding adjustments along the L̃’s

required for the generation of the Y� orbit. Now, after the very
first refinement pass, the dynamic error associated with the

Z� �1� orbit is significantly lower than that associated with the

Z� �0� orbit �i.e., the W� orbit�. Therefore, at the second refine-
ment pass, the sliding adjustments required to generate the

Y� �2� orbit are smaller than the corresponding adjustments at
the first refinement pass. Consequently, the typical length of

the L̃�2�’s is smaller than that of the L̃�1�’s. Since the number

of segments used for the L̃’s is always the same, a smaller

length for the L̃�2�’s implies a smaller length for the indi-

vidual segments that compose the L̃�2�’s. Given that the L̃’s
are piecewise linear approximations to the L’s, the approxi-
mation errors must, to leading order, scale as the squares of

FIG. 7. The forced, damped, double pendulum.

FIG. 8. Illustration of a 50 segment, piecewise-linear approxi-
mation of the local, unstable manifold corresponding to the
Poincaré return map for the forced, damped, double pendulum with
parameter values l=1, m=0.5, �1=0.25, �2=0.125, 	=0.375, and


=�. The large circle represents Y� i, the solid line represents L̃i,
and the small circles represent its vertices. The background shows
the chaotic attractor. While the true system is four dimensional, the
figure shows a two-dimensional projection onto the �−� plane. The
angles � and � are plotted in radians.
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FIG. 9. For the forced, damped, double pendulum with parameter values l=1, m=0.5, �1=0.25, �2=0.125, 	=0.375, and 
=�, a noisy

W� orbit was generated using dynamical noise and observational noise of amplitudes 1�10−5 and 1�10−3, respectively, along each axis.

Several Z� �k� orbits were obtained by repeated synchronize-and-pullback refinement passes. �a� The stepwise dynamic error, �W� i−M�W� i−1��,
vs the iterate i. �b� The stepwise dynamic error, �Z� i

�1�−M�Z� i−1
�1� ��, vs the iterate i. �c� The stepwise dynamic error, �Z� i

�2�−M�Z� i−1
�2� ��, vs the iterate

i. �d� The stepwise dynamic error, �Z� i
�3�−M�Z� i−1

�3� ��, vs the iterate i. �e� The stepwise dynamic error, �Z� i
�4�−M�Z� i−1

�4� ��, vs the iterate i. �f� The

stepwise dynamic error, �Z� i
�5�−M�Z� i−1

�5� ��, vs the iterate i. �g� The final stepwise dynamic error, �Z� i
�6�−M�Z� i−1

�6� ��, vs the iterate i. �h� The final

stepwise shadowing distance, �Z� i
�6�−W� i�, vs the iterate i. Values lower than 1�10−20 have been plotted as 1�10−20.
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the lengths of the individual segments. Therefore the dy-

namic error associated with the Z� �2� orbit obtained by pull-

back from the Y� �2� orbit must be much smaller than the dy-

namic error associated with the Z� �1� orbit. Thus, with every

refinement pass, the dynamic error in the Z� orbit decreases
until it reaches the limit imposed by the machine precision.
There may be short transients of higher error both at the

beginning and at the end of the computed Z� orbit. The pro-

cess of generating the Y� orbit from the W� orbit contributes to
the former transient, while the latter transient is related to the

process of generating the Z� orbit from the Y� orbit.

IV. EXAMPLES OF NUMERICAL SHADOWING

Three numerical experiments were conducted to demon-
strate the shadowing algorithm proposed in this paper. Re-
sults from those experiments are presented here as examples.

All three examples share a common format. The noisy W�

orbits span 1001 iterates �corresponding to T=1000�, and
were generated using both dynamical noise and observa-
tional noise. Thus:

X� i = M�X� i−1� + �� i
D, �3�

FIG. 10. Communication by
synchronization of Ikeda maps:
�a� The message stream mi plotted
as a function of the iterate i. �b�
The signal stream si, plotted as a
function of the iterate i. �c� The
recovered message stream m̃i,
plotted as a function of the iterate
i. �d� The message recovery error,
�m̃i−mi�, plotted as a function of
the iterate i.

FIG. 11. The dynamic error corresponding to

the X� R orbit, �X� i
R−M�X� i−1

R ��, plotted as a function
of the iterate i.
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W� i = X� i + �� i
O. �4�

Equation �3� holds for all i=1–1000 while Eq. �4� holds for

all i=0–1000. X� 0 was chosen to be a point on the attractor A,
corresponding to the chaotic map M. �� i

D and �� i
O represent

the dynamical noise and the observational noise, respec-

tively. �� i
D is a vector of random numbers with a uniform

distribution in a cube of side 2�10−5 while �� i
O is a similar

vector with a uniform distribution in a cube of side
2�10−3. The synchronize-and-pullback procedure was then

repeatedly applied to the W� orbits thereby generating a se-

quence of Z� orbits in a process of successive refinement.

FIG. 12. Results after one
synchronize-and-pullback refine-
ment pass. �a� The dynamic error

corresponding to the Z� �1� orbit,

obtained after cleaning the X� R or-
bit with a single refinement pass,
plotted as a function of the iterate
i. �b� m̃i

�1�, the cleaned, recovered
message corresponding to the

Z� �1� orbit, plotted as a function
of the iterate i. �c� The corre-
sponding message recovery error,
�m̃i

�1�−mi�, plotted as a function of
the iterate i.

FIG. 13. Results after two
synchronize-and-pullback refine-
ment passes. �a� The dynamic er-

ror corresponding to the Z� �2� orbit,

obtained after cleaning the X� R or-
bit with two refinement passes,
plotted as a function of the iterate
i. �b� m̃i

�2�, the cleaned, recovered
message corresponding to the

Z� �2� orbit, plotted as a function
of the iterate i. �c� The corre-
sponding message recovery error,
�m̃i

�2�−mi�, plotted as a function of
the iterate i.
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A. Ikeda map

The first example involves the Ikeda system. The map M,
in this case, is defined by Eqs. �1� and �2�. We pick parameter
values a=1, b=0.9, �=0.4, and �=6.0. Figure 3 shows the
corresponding chaotic attractor, as well as a piecewise-linear
approximation of a typical, local, unstable manifold. A noisy

W� orbit was generated in the manner described before using
dynamical noise and observational noise of amplitudes
1�10−5 and 1�10−3, respectively, along each axis. Figure 4

shows the stepwise dynamic error, �Z� i
�k�−M�Z� i−1

�k� ��, corre-

sponding to the Z� �k� orbits obtained by the repeated applica-
tion of the synchronize-and-pullback procedure. As shown in
Fig. 4�g�, at the end of the sixth refinement pass, the stepwise
dynamic error is down to the typical stepwise error associ-
ated with the evolution of the Ikeda system on the computer.
At the same time, the corresponding stepwise shadowing dis-
tances shown in Fig. 4�h� are of the order of 1�10−3, as
should be expected given the noise levels used in generating

the W� orbit. Thus the Z� �6� orbit meets the requirements for an
acceptable shadowing orbit.

B. Henon map

The second example involves the Henon system �36�. The
map M, in this case, is defined by the following equations:

xi = a − xi−1
2 + byi−1, �5�

yi = xi−1. �6�

We pick parameter values a=1.4 and b=0.3. Figure 5 shows
the corresponding chaotic attractor, as well as a piecewise-

linear approximation of a typical, local, unstable manifold. A

noisy W� orbit was generated in the manner described before
using dynamical noise and observational noise of amplitudes
1�10−5 and 1�10−3 respectively, along each axis. Figure 6

shows the stepwise dynamic error, �Z� i
�k�−M�Z� i−1

�k� ��, corre-

sponding to the Z� �k� orbits obtained by the repeated applica-
tion of the synchronize-and-pullback procedure. As shown in
Fig. 6�g�, at the end of the sixth refinement pass, except for a
short initial transient, the stepwise dynamic error is down to
the typical stepwise error associated with the evolution of the
Henon system on the computer. At the same time, the corre-
sponding stepwise shadowing distances shown in Fig. 6�h�,
are of the order of 1�10−3, as should be expected given the

noise levels used in generating the W� orbit. Thus the Z� �6�

orbit meets the requirements for an acceptable shadowing
orbit.

C. Forced, damped, double pendulum

The third example involves the forced, damped, double
pendulum. As described in Refs. �30,31�, this is a mechanical
device consisting of a uniform rod suspended by a hinge
from a second rod which is, in turn, suspended from a sup-
port by a second hinge �see Fig. 7�. The rods �pendula� are
free to swing in a vertical plane. � and � represent the de-
viations of the inner and the outer pendula from the vertical,
while m1, m2 and l1 , l2 represent their masses and lengths,
respectively. Viscous dissipation is provided by linear
friction at the hinges with �1 and �2 as the coefficients of
friction �viscosity�. An external forcing mechanism vertically
oscillates the top support sinusoidally with amplitude 	
and frequency 
. Without loss of generality, we set

FIG. 14. Results after three
synchronize-and-pullback refine-
ment passes. �a� The dynamic er-

ror corresponding to the Z� �3� orbit,

obtained after cleaning the X� R

orbit with three refinement passes,
plotted as a function of the iterate
i. �b� m̃i

�3�, the cleaned, recovered
message corresponding to the

Z� �3� orbit, plotted as a function
of the iterate i. �c� The corre-
sponding message recovery error,
�m̃i

�3�−mi�, plotted as a function of
the iterate i.
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m1= l1=g=1 �g is the acceleration due to gravity�, and drop
the subscripts from m2 and l2 to obtain

�̇ = u , �7�

�̇ = v , �8�

u̇ =
1

D
�	 l2

6

F1 − 	ml cos�� − ��

4

F2� , �9�

v̇ =
1

D
�	− l cos�� − ��

4

F1 + 	3m + 1

6

F2� , �10�

where

F1 = − mlv2 sin�� − �� − g̃�2m + 1�sin��� − 2�1u

+ 2�2�v − u� , �11�

F2 = lu2 sin�� − �� − g̃l sin��� − 2�2�v − u�/m , �12�

D = l2�3m + 1�/9 − ml2 cos�� − ��2/4, �13�

g̃ = 1 − 	
2 sin�
t� . �14�

The time-�2� /
� strobed Poincaré section reduces this five-
dimensional system to a map with a four-dimensional state

vector X� ��� ,� ,u ,v�, where all the quantities are measured
at the beginning of every forcing cycle. We pick parameter
values l=1, m=0.5, �1=0.25, �2=0.125, 	=0.375, and

=�. The corresponding chaotic attractor and the piecewise
linear approximation to a typical, local unstable manifold are
shown in Fig. 8.

A noisy W� orbit was generated in the manner described
before using dynamical noise and observational noise of am-
plitudes 1�10−5 and 1�10−3, respectively, along each axis.

Figure 9 shows the stepwise dynamic error, �Z� i
�k�−M�Z� i−1

�k� ��,
corresponding to the Z� �k� orbits obtained by the repeated ap-
plication of the synchronize-and-pullback procedure. As
shown in Fig. 9�g�, at the end of the sixth refinement pass,
except for a short transient at the very end, the stepwise
dynamic error is down to the typical stepwise error associ-
ated with the evolution of the forced, damped, double pen-
dulum system on the computer. At the same time, the corre-
sponding stepwise shadowing distances shown in Fig. 9�h�
are of the order of 1�10−3, as should be expected given the

noise levels used in generating the W� orbit. Thus the Z� �6�

orbit meets the requirements for an acceptable shadowing
orbit.

V. NOISE FILTRATION IN CHAOTIC COMMUNICATION

It was mentioned earlier that finding shadowing solutions
to chaotic orbits has applications in the context of noise fil-
tration in chaotic communications. A concrete example is
provided in this section as demonstration.

Many methods exist in the literature that achieve commu-
nication using the synchronization of chaotic systems �7–16�.
The basic idea behind the method adopted here is as follows.
There is a system S, whose dynamics is governed by a cha-
otic map M. For concreteness, we pick S to be the Ikeda
system described previously. We have two identical copies of
S that we call T �for transmitter� and R �for receiver�
whose state vectors are represented by X� i

T��xi
T ,yi

T�T and

X� i
R��xi

R ,yi
R�T, respectively. System T is allowed to evolve

FIG. 15. Results after four
synchronize-and-pullback refine-
ment passes. �a� The dynamic er-

ror corresponding to the Z� �4� orbit,

obtained after cleaning the X� R

orbit with four refinement passes,
plotted as a function of the iterate
i. �b� m̃i

�4�, the cleaned, recovered
message corresponding to the

Z� �4� orbit, plotted as a function
of the iterate i. �c� The corre-
sponding message recovery error,
�m̃i

�4�−mi�, plotted as a function of
the iterate i.
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without any perturbation. The values of its x component xi
T

are transmitted to R after superimposing a scaled-down, low
amplitude version of the message stream mi. The receiver R
uses this incoming signal si to synchronize �approximately�
itself to T by the method of direct substitution. The differ-
ence between xi

T and si, after appropriate scaling, is the re-
covered message stream m̃i. The set of equations describing
the entire process follows:

�i−1
T = � − �/�1 + xi−1

T 2 + yi−1
T 2� , �15�

xi
T = a + b�xi−1

T cos��i−1
T � − yi−1

T sin��i−1
T �� , �16�

yi
T = b�xi−1

T sin��i−1
T � + yi−1

T cos��i−1
T �� , �17�

si = xi
T + 	 � mi, �18�

�i−1
R = � − �/�1 + si−1

2 + yi−1
R 2� , �19�

xi
R = a + b�si−1 cos��i−1

R � − yi−1
R sin��i−1

R �� , �20�

yi
R = b�si−1 sin��i−1

R � + yi−1
R cos��i−1

R �� , �21�

m̃i = �si − xi
R�/	 . �22�

A numerical experiment was performed using 	=0.0001 and
the rest of the parameter values as in Sec. III A: a=1,
b=0.9, �=0.4, and �=6.0. The results of the numerical ex-
periment are illustrated in Fig. 10. The performance is evi-
dently rather poor. In fact, the typical magnitude of the mes-
sage recovery error, m̃i−mi, is an order of magnitude greater
than the typical magnitude of the message of interest, thus
rendering the message undecipherable.

The situation may be improved dramatically by the use of
shadowing. According to the notation used so far in this pa-

per, the X� R orbit followed by the receiver R is regarded as

the W� orbit. Figure 11 shows the dynamic error associated

with this X� R orbit. This orbit is then “cleaned” using
synchronize-and-pullback refinement passes. It is hoped that,

at least for small 	, the sequence of Z� �k� orbits converges to

the original X� T orbit. Hence the corresponding m̃i
�k�’s must

converge to the authentic mi as well �40�. This process of
noise filtration by shadowing is illustrated in Figs. 12–15. By
the conclusion of the fourth refinement pass, the message
recovery error, except for short transients at the beginning
and at the end, is down to the limits imposed by machine
precision. Thus the noise is effectively filtered.

It may appear that the entire recovered message stream m̃i
must be available before the shadowing-based, noise filtra-

tion algorithm described here can be applied. This would
appear to reduce the appeal of the method in situations where
real-time, noise filtration is necessary. However, this is not
necessary. An inspection of Fig. 15 will reveal that the tran-
sient at the end is approximately 50 segments long �in fact,
the slope of the logarithm of the filtered message recovery
error as a function of the iterate is roughly equal to the posi-
tive Lyapunov exponent associated with the chaotic map�.
Therefore only a few future iterates are necessary in order for
the algorithm to work. Thus in a situation where real time
filtration is necessary, the shadowing-based method pre-
sented here may still be used to provide a filtered message
stream in real time, albeit with a short delay.

VI. CONCLUSION

The primary advantage of the synchronize-and-pullback
method for computing shadowing orbits is that irrespective
of the system dimension, it reduces the computing of shad-
owing orbits to an essentially one-dimensional problem, as
long as the dynamics is described by a chaotic map with a
single positive Lyapunov exponent, and all the other
Lyapunov exponents negative. This is a significant simplifi-
cation for high-dimensional systems. Second, unlike several
shadowing algorithms in the literature �5,6�, the synchronize-
and-pullback method does not require the map M to be in-
vertible. Third, since the local, unstable manifold was ap-
proximated by a piecewise-linear curve of positive length,
rather than by a tangent vector, the method works for higher
levels of noise than linear methods. Furthermore, the quality
of this approximation is directly related to the number of
segments used. Thus, depending on the computational re-
sources available, the effectiveness of the algorithm is ad-
justable.

Summing up, a different method with several interesting
advantages has been presented that generates high-quality
shadowing orbits for noisy orbits corresponding to chaotic
maps with a single, positive Lyapunov exponent �and the rest
of the exponents negative�. It is expected that the method
may be extended to systems described by chaotic maps with
multiple, positive Lyapunov exponents. For such systems,
the computational complexity of our shadowing algorithm is
expected to depend only on the number of positive Lyapunov
exponents rather than on the total system dimension. Unfor-
tunately, an effective numerical approximation for a multidi-
mensional manifold is complicated, and the programming
effort involved is considerable. Extending the synchronize-
and-pullback method to such cases of chaotic maps with
multiple, positive Lyapunov exponents will be the subject of
future work.
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