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The variance of the number of levels in an energy interval around a level with large quantum numbers
�semiclassical quantization� is studied for a particle in a rectangular box. Sampling involves changing the ratio
of the rectangle’s sides while keeping the area constant. For sufficiently narrow intervals, one finds the usual
linear growth with the width of the interval. For wider intervals, the variance undergoes large, nondecaying
oscillations around what is expected to be the saturation value. These oscillations can be explained as a
superposition of just a few harmonics that correspond to the shortest periodic orbits in the rectangle. The
analytical and numerical results are in excellent agreement.
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I. INTRODUCTION

Two decades ago Casati, Chirikov, and Guarneri �1� and
Berry �2� made numerical and analytical studies of the level
statistics in rectangular billiards for large quantum numbers
�semiclassical quantization�. Casati et al. �1� demonstrated
numerically that the distribution function of the nearest-
neighbor energy level spacings is exponential �obeys the
Poisson law �3��, which is generally the case for classically
integrable systems and is well understood theoretically �4�.
Further, they studied the behavior of the level rigidity �3� in
the spectral staircase and showed that, following the initial
linear growth with the width of the interval, the rigidity satu-
rates to a constant value. This behavior was explained by
Berry �2� who argued that the width of the interval at which
the saturation occurs corresponds to the shortest periodic or-
bit in the billiard and that the saturation value of the rigidity
can be obtained as a sum over the periodic orbits. Subse-
quently, the results of �1� were reproduced with high numeri-
cal precision in Refs. �5,6�.

In previous work �7�, we interpreted this result in terms of
global level rigidity and proposed an ansatz for the level
density correlation function which described the transition
from linear to saturation behavior and which is similar, aside
from the energy scale, to counterparts in Gaussian ensembles
corresponding to classically chaotic systems �3,4�. The an-
satz suggested that the level number variance should exhibit
decaying oscillations as the interval increases, approaching a
saturation value which according to the integral relation be-
tween rigidity and variance �3�—see below—should differ
by a factor of 2.

In the present paper, we report numerical calculations
which show, surprisingly, that, as the width of the energy
interval increases, the variance in level number oscillates
without decay—and it is understanding this feature which
motivates this work. Excellent agreement with the numerical
results is obtained with a level density correlation function
derived from the periodic orbits of a semiclassical formula-
tion of the level density �2,4�. In the Appendix A is given a
quantum derivation of essentially the same result, which,
however, applies to the statistics of energy levels of any
separable Hamiltonian.

In contrast with Refs. �5,6�, the numerical results pre-
sented here are ensemble averages, as opposed to averages
over an energy interval for a particular rectangular billiard,
the ensemble being a fairly large set of rectangles of the
same area but a range of ratios L1 /L2 of the sides. This
eliminates sample-specific “noise” as well as other artifacts
like the high degeneracies of a square billiard. The impor-
tance of the ensemble average is underscored by the fact that
the onset of saturation, that is, the width of the energy inter-
val at which the saturation develops and the saturation value
itself both depend critically on the position of the interval in
the spectrum �2�, scaling as the square root of the central
energy of the interval. These statistical features are effec-
tively smeared out by averaging over intervals of a single
spectrum as in Refs. �5,6�. For instance, while the plot of
variance in �5� shows oscillations, they appear to be decay-
ing and irregular and were not recognized as an intrinsic
feature.

II. DEFINITIONS OF ENSEMBLE AND
STATISTICAL MEASURES:

COMPARISON WITH GAUSSIAN ENSEMBLES

We will consider intervals ��−E /2 ,�+E /2�, E��, where
the states with energies near � have large quantum numbers
and can be described semiclassically. Denote by N��� the
cumulative number of levels �or spectral staircase� �4�

N��� = �
k

��� − �k� �1�

where � is the unit step function and k labels the energy
eigenstates. A “universal” representation of the ladder data is
obtained by rescaling the energy variable so as to eliminate
the particular shape of the average �N���� from the ladder
�4�. To do this, define the new scaled dimensionless energy
variable �� by

� → ����� � �N���� . �2�

Here � � denotes the ensemble average. In particular, to a
computed eigenvalue �k the value �k�= �N��k�� is assigned.
Since �� is a monotone function of �
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�N������ = �N���� = ��, �3�

so that the mean level density is unity in the scaled variable

������ = 	�
k

���� − �k��
 = 1. �4�

Since �N���� is used as the scaled energy axis variable in
order to give the ladders an approximately 45° slope, it is
important to have a fair idea of its functional form for pre-
senting the numerical data.

The asymptotic cumulative spectrum �N���� of eigenval-
ues of the wave equation in a region with finite boundaries
and various boundary conditions �Dirichlet, Neumann, or
mixed� is given in several places �8–10�. In particular, for a
two-dimensional �2D� simply connected region, the form for
the Dirichlet case �u=0 on the boundary� is

�N���� =
�

�
−

f

2�	
� �

�
1/2

+ c + o�1� �5�

where

� =
2	
2

mA
, f =

S

A1/2 , �6�

with S the length of the perimeter and A the area. For a
rectangle with L1=�−1/4L and L2=�1/4L, so that A=L2 and
f =2� :�= ��1/4+�−1/4�. For a smooth boundary c=1/6,
while, for a rectangle, c=1/4. Formula �5� is cited in the
references above but the derivation of c=1/4 for the rect-
angle is not easily extracted from them. At the risk of pos-
sible repetition, we give a derivation in the Appendix
A—which also clarifies the link between the semiclassical
and quantum descriptions of the persistent oscillations of the
density correlation function observed in the numerical stud-
ies reported here. Extension to other integrable �separable�
systems is immediate.

Although formula �5�, the “Weyl formula,” for the aver-
age level density at large N is almost the same for smooth
and rectangular boundaries, other features of the spectra are
substantially different. The classical motion in a billiard with
smooth boundary is in general chaotic and the corresponding
quantum Hamiltonian is nonseparable while the classical
motion in a rectangular billiard is integrable and the quantum
Hamiltonian is separable.

For a rectangle, the energy eigenvalues are

�n1n2
=

	2
2

2m
� n1

2

L1
2 +

n2
2

L2
2 . �7�

As stated earlier, eigenvalue distributions were calculated
for rectangles of the same area A=L1L2=L2 in an ensemble
with different values of the ratio �=L2

2 /L1
2. Numerically, we

use algebraic numbers for � to reduce accidental level de-
generacies. �We do not use transcendental numbers because
they are “too close” to rational �4�.�

Since the present work concentrates on the rigidity of the
spectrum of the eigenvalues, we will not discuss the distri-
bution of nearest-neighbor level spacings, except to state that
our computations �11� are congruent with those of �1,5,6�.
For the statistics of large numbers of levels, the following

standard measures will be used. The first is the level rigidity
�3, defined in �2,3� as the best linear fit to the spectral stair-
case in the interval ��−E /2 ,�+E /2�,

�3��;E� =	min
�A,B�

1

E
�

�−E/2

�+E/2

d��N��� − A − B��2
 , �8�

the explicit form of which is

	 1

E
�

�−E/2

�+E/2

d� N2��� −
1

E2��
�−E/2

�+E/2

d� N���2

−
12

E4��
�−E/2

�+E/2

d� �N���2
 . �9�

Figure 1 shows an example of such a fit. In this and subse-
quent figures the scaled energy variable �2� is the x-axis co-
ordinate but the prime is omitted.

For the number of levels N on the interval ��−E /2 ,�
+E /2�

N��;E� = N�� +
E

2
 − N�� −

E

2
 �10�

the variance

��;E� = Š�N − �N��2
‹ �11�

is another measure of the fluctuations.
We note in passing that even for an ensemble that is large

enough to define smooth averages, the mean level density ���
and the mean level spacing are not numerical inverses be-
cause of the fluctuations �11�. Consider an interval E small
enough so that N�� ;E��E and �� ;E��E. Then, with

������ = 	N

E

 =

1

E
�N� �12�

and

������ = 	E

N

 = E	 1

N

 , �13�

we have �11�

������ = 1 +
1

�N�
+ O� 1

�N�2 . �14�

For classically integrable billiards the last equation holds for
E������−1 �see below�, so that we can neglect the differ-
ence between ��� and ���−1 only for sufficiently large inter-
vals �N��1. The global mean level spacing is taken as

� = ���−1 �or
2	
2

mA
in the original units . �15�

We also note that because �� ;E��E up to the scale of
�����−1, the “differential” level density ������= ��k���
−�k�� is not well defined numerically. In other words, due to
the large fluctuations in the number of levels for a small
interval E, it can take a prohibitively large number of en-
semble samples to evaluate ������ via Eq. �12� with a rea-
sonable precision �11�.

WICKRAMASINGHE, GOODMAN, AND SEROTA PHYSICAL REVIEW E 72, 056209 �2005�

056209-2



The fluctuation measures  and �3 can be expressed in
terms of the correlation function of the density of levels �3�,

K��1,�2� = �����1�����2�� , �16�

����� = ���� − ������ , �17�

regardless of the form of K��1 ,�2�; for instance,

��;E� = �
�−E/2

�+E/2 �
�−E/2

�+E/2

K��1,�2�d�1d�2. �18�

Using these relationships one can further show that  super-
sedes �3 via an integral relationship �3�

�3��;E� =
2

E4�
0

E

dx�E3 − 2xE2 + x3���,x� . �19�

For Gaussian ensembles, corresponding to classically cha-
otic ergodic systems, the functional form of the level corre-
lation function K��1 ,�2� is well understood �3�. Denoting

� =
�1 + �2

2
, � = �2 − �1, �20�

it can be written, in most general terms, as

K��1,�2� = K��� = �−2����

�
 − K��

�
� �21�

where

�
−�

�

K�x�dx = 1 �22�

so that

�
−�

�

K���d� = 0. �23�

The interpretation of these formulas is as follows. The
�-function term in Eq. �21� describes the correlation of a
given level with itself irrespective of other levels. The K
function describes “level repulsion” and has a range of order
�. The integrals �22� and �23� converge to their values on the
scale of ��� and reflect the fact that an overall “level ri-
gidity” develops on the scale of �.

Indeed, by definition of �����,

� �����d� = 0 �24�

and thus

� K��1,�2�d�1 =� K��1,�2�d�2 = 0, �25�

where integration is over the entire energy spectrum. The
integral can be converted to the form �23� when, given a
position in the spectrum of the interval center �, the scale on
which the level rigidity �24� develops is much smaller than �.
This behavior is reflected in the forms of ,

��;E� = �
E

�
, E � � ,

C ln�E

�
 , E � � ,� �26�

�27�

where the constant C depends on the specific Gaussian en-
semble �3�. The behavior of �3,

FIG. 1. �Color online� Top straight line and top staircase: best linear fit �unaveraged, single �=20/1093/5�1.198 32, as per inside of � �
in Eq. �8�� of the spectral staircase in the interval E� �49 900,50 000�. �We have omitted the primes on � and E which are understood as,
respectively, the renormalized energy variable �� �2�, and the difference between the upper and lower values of ��.� Bottom straight line and
bottom staircase: the 45° slope �3� and the staircase obtained by averaging over 200 staircases corresponding to 200 algebraic � in the �1,2�
interval are also presented �notice that these are quite close even for such a small energy interval E; for wider intervals they become
indistinguishable to the eye�.
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�3��;E� = � 1

15
E
� , E � � ,

C
2 ln� E

�� , E � � ,
� �28�

�29�

follows from �19�. Notice that the linear behavior in Eqs.
�26� and �28� originates in the �-function term in Eq. �21�
�uncorrelated levels�.

By comparison, for a rectangular box the semiclassical
approach describes ����� as an oscillatory function in
terms of a sum over all periodic orbits �4�. Berry �2� used
this approach to obtain the following limiting behaviors of
the statistic �3�� ;E� for the levels of a single rectangle with
ratio �:

�3��;E� =
1

15

E

�
, E � Emax = �	�1/2���1/2, �30�

�3��;E� =
1

	5/2� �

�
1/2

�
M1=0

�

�
M2=0

�
�M

�M1
2�1/2 + M2

2�−1/2�3/2 ,

E � Emax, �31�

→0.0947� �

�
for � � 1. �32�

Equation �31� gives the saturation rigidity �3
�, where M1 and

M2 are the “winding numbers” of the classical periodic orbits
�2� and the factor �M, defined by

�M = �0 if M1 = M2 = 0,

1/4 if one of M1 and M2 is zero,

1 otherwise,
� �33�

differentiates between the self-retracing and non-self-
retracing orbits. Notice that both �3

� and Emax are functions
of the position � in the spectrum �����, which is in contrast
with Gaussian ensembles. The quantum scale Emax for the
onset of saturation corresponds to the time of traversal of the
shortest classical periodic orbit �2�,

FIG. 3. �Color online� Numerical evaluation
of �� ;E� �jagged line� using the same � and �
ensemble as in Fig. 2 �200 algebraic � in the
�1,2� interval�. The smooth line is the semiclassi-
cal theory, Eq. �42�, and the decaying wavy curve
is the ansatz �35�.

FIG. 2. �Color online� Level rigidity �3�� ;E�
vs the interval width E for �=105 and 200 alge-
braic � in the �1,2� interval. The two curves are
obtained by numerical evaluation of �3 �slightly
higher saturation value� and by substituting the
result of numerical evaluation of , shown in Fig.
3, into Eq. �19�. The straight line through the ori-
gin is �3�� ;E�=E /15 and corresponds to uncor-
related levels. The two horizontal lines are the
saturation �E�Emax� rigidities �3

� calculated
from the semiclassical formula �31� for �=1
�bottom line� and 2, respectively. �The fact that
the curve derived using  lies slightly below the
theoretical values reflects the somewhat lesser ac-
curacy in the evaluation of .�
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Emax =
h

Tmin
, �34�

whose length is just twice the length of the rectangle’s
smaller side, and the winding numbers are M1=0, M2=1.

The saturation of �3 to �3
� in Eqs. �30� and �31� is analo-

gous to but differs significantly from the transition of �3 for
a Gaussian ensemble to the weak logarithmic dependence in
Eqs. �28� and �29�. Consequently, one might expect the level
density correlation function for a rectangular box to be simi-
lar in form to �21�, except that the scale of K is set by ����
instead of �. This qualitative reasoning led us earlier �7� to
propose the following simple ansatz for K:

K��,�� = �−2����

�
 −

�

	�
sin�2	�

Emax
� . �35�

This K�� ,�� satisfies Eq. �23� and so is consistent with level
rigidity developing on the scale Emax. Using this ansatz to
evaluate �3 reproduces the saturation to �3

� at Emax which is
seen in Fig. 2. Equation �35� also predicts the saturation of
� to 2�3

�, but in a damped oscillatory fashion,

 − �

� =
sin�E/Emax�

E/Emax
. �36�

�This oscillatory behavior is largely washed out in the ap-
proach to �3

� by the integration in Eq. �19�.�
While successfully describing the onset of the level rigid-

ity and of oscillations of  on the energy scale of Emax, the
ansatz �35� does not capture the correct behavior of  at
larger energies E. The central and rather surprising result of
the present work is that the magnitude of the oscillations
around � is not decaying. This means that there is no pre-
cise onset of rigidity at E�Emax. The oscillatory behavior is
shown in the numerical results of Figs. 3–7, and the analysis
in Sec. III as well as the Appendix A, supersedes the ansatz
�35�.

III. CORRELATION FUNCTION OF THE LEVEL
DENSITY

In this section we use the semiclassical formulation of the
level density ���� in which the � functions are assumed to
come from the periodic classical orbits. �A purely quantum
mechanical derivation in the Appendix A gives essentially

FIG. 4. �Color online� �� ;E� from Eq. �42�
for �=105 including 100 harmonics from the
single sum and 100 from the double sum.

FIG. 5. �Color online� Blown-up section of
Fig. 4 compared with a less structured line ob-
tained using a much smaller number of harmon-
ics, namely, three terms each from the single and
double sums in Eq. �42�. This shows the rapid
decrease in higher harmonic amplitude.
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the same K�� ,��; but it also gives the analytical asymptotic
form of �N���� which, as stated in Sec. II, is very helpful for
a universal representation of the staircase spectrum �and of
derived quantities� such as shown in Fig. 1�. From Eqs. �23�,
�38�, �58�, and �60� of Berry �2�, we obtain the level corre-
lation function as the inverse Fourier transform of Eq. �60�,
namely,

K��,�� =
1

��	��3�
�

M1=0

�

�
M2=0

�

4�M

�
cos���4	/����M1

2�1/2 + M2
2�−1/2���

�M1
2�1/2 + M2

2�−1/2
�37�

→
1

��	��3�
�4 �

M1�0

�

�
M2�0

�

�
cos���4	/����M1

2 + M2
2���

�M1
2 + M2

2

+ 2 �
M�0

�
cos��4	/��M��

M �
��1

. �38�

�The energy variables in the above and what follows are now
the original dimensional ones.� The paragraph following Eq.
�38� in �2� explains the nature of the factor 4�M in the above
equations; namely, that the factor of 4 is the intensity factor
due to constructive interference between the closed orbit and
its time-reversed orbit for non-self-retracing orbits when
both M1 and M2 are nonzero.

For small � ������� the summation over �M1 ,M2� can
be replaced by integration over �x ,y� in the entire plane,
where

x = M1�1/4�4	�

�
, y = M2�−1/4�4	�

�
. �39�

Converting Eq. �38� into polar coordinates gives

K��,�� →
1

2	2�2�
0

2	

d��
0

�

d� cos��

�
� = �−2���

�

�40�

which is just the first term in Eq. �35�. Notice, however, that
the lower limit of the � integral should not extend to zero
since M1,2 cannot be zero simultaneously. The second term
�level repulsion� in Eq. �35� is obtained, following �7�, by
choosing the lower cutoff in the � integral at �min=ymin
=�−1/4�4	� /�.

In the opposite case, �����, the terms in the series �37�
become rapidly oscillating with amplitude and also rapidly
decreasing with increase of the winding numbers M1,2. Con-
sequently, the sum is dominated by just a few terms with the
smallest M1,2, and these are responsible for the nondecaying
oscillations of  which are discussed below.

IV. LEVEL NUMBER VARIANCE

Combining Eqs. �18� and �37�, we find �on replacing the
variable ��1+�2� /2 by its central value in the interval�

��;E� =� �

	5�
�

M1=0

�

�
M2=0

�

4�M

�
sin2�E��	/����M1

2�1/2 + M2
2�−1/2��

�M1
2�1/2 + M2

2�−1/2�3/2 �41�

→� �

	5�
�4 �

M1�0

�

�
M2�0

�
sin2�E��	/����M1

2 + M2
2��

�M1
2 + M2

2�3/2

+ 2 �
M�0

�
sin2�E�	/��M�

M3 �
��1

. �42�

For narrow intervals, Eq. �41� reduces to

��;E� =
E

�
, E � Emax, �43�

which follows either from Eqs. �18� and �40� or directly from
Eq. �41� if summation is replaced with integration using the

FIG. 7. �Color online� �� ;E� for �=105 for the case of broken
time-reversal symmetry, using Eq. �42� but with the modified �M� in
Eq. �47�.

FIG. 6. �Color online� A blowup of the initial part of Fig. 3 for
E�400. The two curves are the ansatz �35� �greater initial slope�
and the semiclassical theory �41�. The straight line is �� ;E�=E,
corresponding to uncorrelated levels.
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variables �39�. It is also consistent with Eqs. �19� and �30�.
Figure 3 shows the result of evaluation of  using Eq.

�41� �with the upper limit of summation on M1,2 limited to
100� versus the numerical evaluation of  for the ensemble
of 200 algebraic �’s� �1,2�. We also show  obtained using
the ansatz �35� of Ref. �7�. Clearly, the latter adequately de-
scribes the transition from the small-scale E�Emax linear
behavior �43� to scales of E�Emax, but fails to describe the
large-scale behavior, E�Emax. On the other hand, the agree-
ment of numerical evaluation with the theoretical result �41�
for all E is quite remarkable.

Two comments are in order. First, it was necessary to
have a sufficient spread of � values �between 1 and 2 here�
to obtain reliable statistics for large quantum numbers from
our relatively small � ensembles �200 values here�. How-
ever, the dependence on � of the relevant parameters is quite
weak, through �±1/4, so that, for �� �1,2�, the difference
from an ensemble with � values close to 1 is not significant.
Second, for E�Emax it is sufficient to limit summation on
M1,2 to 2 and 3 in the double and single sum, respectively, to
obtain a curve that is very close to the full theoretical curve.
As was explained above, this is because the amplitudes of
the quickly oscillating terms in the sum rapidly fall off with
increasing M1,2.

We now turn to the theoretical curve in Fig. 4 that repre-
sents the level number variance given by �42� including up to
400 harmonics. The �-ensemble values are now close to 1.
Figure 5 shows how well the variance is reproduced by the
superposition of only six harmonics: three from the double
sum and three �with commensurate frequencies� from the
single sum. These are nondecaying oscillations whose ampli-
tude is given by

+

� � 0.63,
−

� � 0.74, �44�

where +=max��−�, −=�−min��, and � is the
mean value of oscillating  obtained by substituting
sin2→1/2 in Eq. �41�. The asymmetry of the positive and
negative swings of  oscillations, +�−, is due to the
asymmetry of the Clausen function �13� fCl3

�x�, which comes
mainly from k�3

fCl3
�x� = �

k=1

�
cos kx

k3 ;

max�fCl3
�x�� /min�fCl3

�x���1.3. This function originates in
the single sum in Eq. �42�, which corresponds to self-
retracing orbits.

Figure 6 illustrates the initial behavior of the curve in Fig.
4. Notably, in this range it is well approximated by the curve
generated using the ansatz �35�.

It is important to point out that if one averages over the
range of � values, or over the range of � values as in Ref.
�5�, the beats that result from a superposition of a continuous
range of harmonics will present themselves, over relevant
interval widths, as decaying oscillations. This is due to the

corresponding continuous range of the beat frequencies rep-
resented by their envelopes. �A slightly more detailed discus-
sion is given in Appendix B.�

We now turn to breaking of time-reversal symmetry, as
for charged particles due to a magnetic field. Clearly, the
condition for the latter is given by

BA � �0 �45�

where �0=hc /e is the flux quantum. For such fields, the
Larmor radius is much greater than either side of the rect-
angle,

R =
mcv
eB

� �A� �

�
, �46�

where mv2 /2=�. Therefore, the deviation from the free
specular scattering will be small and we can find both the
level correlation function and the level number variance via
simple substitution:

�M → �M� = �0 if M1 = M2 = 0,

1/4 if one of M1 and M2 is zero,

1/2 otherwise,
� �47�

in Eqs. �37� and �41�. For the ��1 ensemble considered
above, � is shown in Fig. 7. In this case

��

� � 0.69, �48�

�+

�� � 0.66,
�−

�� � 0.80. �49�

The increased asymmetry of  oscillations underscores the
increased relative contribution of the single sum to  in Eq.
�42� �self-retracing orbits�.

V. DISCUSSION

The central results of this work are summarized by Figs.
3–7. The first of these graphs shows that the numerical
evaluation of the level number variance for a particle in a
rectangular box is in excellent agreement with the theoretical
result given by Eq. �41�. The second indicates a nondecaying
oscillatory behavior of . Fig. 7 shows  when the time-
reversal symmetry is broken. Figures 3 and 4 can be success-
fully reproduced with just a small number of lowest harmon-
ics in �42�, as seen in Fig. 5.

It is remarkable that, for the center of the interval �
�N�, �� ;E� exhibits large, reproducible oscillations as a
function of the interval width E. The main implication of this
result is that while the level rigidity saturation indeed devel-
ops on the scale set by ������, it is accurate only in an
approximation where a harmonic is replaced by its average,
namely, zero. In other words, Eq. �23� converges to zero on
the scale of ����� only up to a sum of harmonic terms, as
implied by Eq. �37�.

The  oscillations are, nonetheless, entirely consistent
with the near straight line saturation of �3. �3 does also
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exhibit oscillatory behavior around �3
�, but the oscillatory

behavior is both parametrically small in � /� and decays as a
function of E. This reduction of �3 can be traced, for in-
stance, to integration in Eq. �19�. From the treatment in the
Appendix, which essentially reproduces the expression �37�
for K�� ,��, it is clear that the basic and general feature be-
hind the oscillatory behavior of K�� ,�� and �� ,�� is the
separability of the Hamiltonian. This leads to two sets of
integral quantum numbers which can always be arranged on
a lattice and define persistent Fourier components which
dominate when N is very large.

VI. SUMMARY

We investigated the oscillatory behavior of the level num-
ber variance  in a rectangular box.

Analytically,  is obtained from the level density correla-
tion function �37� and is given by Eq. �41�. Physically, it is a
manifestation of the long-range correlations in the level den-
sity. Semiclassically, while the individual levels are obtained
by Born-Sommerfeld quantization of action variables, the
scale of level correlations is determined by the periodic or-
bits �4�. Relative to Ref. �2�, our contribution is as follows:
Obtaining the real space version of the level correlation func-
tion Eq. �37�, which then results in Eq. �41�; emphasizing ,
rather than �3, as a better indicator of long-range correlations
in the level density; showing that the initial rise and ap-
proach to saturation can be described by Eq. �35�; showing
that the oscillations around the saturation value can be de-
scribed by the few first harmonics of the infinite sum �41�;
and deriving Eq. �37� directly from quantum mechanics,
along the lines of Ref. �12�, without using semiclassical for-
malism.

Numerically, we studied the oscillations of  using en-
semble averaging, as opposed to the more common energy
averaging �5,6�. This is the usual method in mesoscopic
physics, where ensembles corresponds to different realiza-
tions of disorder in otherwise like systems. In the rectangle,
we define ensemble in terms of the aspect ratio � of the
rectangle sides �� ensemble�. For numerical verification of
the oscillations of  it is important to keep �’s close to a
fixed value; otherwise, since the frequency depends on �,
adding harmonics with varied frequencies will result in beats
that appear as decaying oscillations. �As explained in Appen-
dix B, the energy dependence of frequency is stronger than
the � dependence, suggesting that energy averaging is more
likely to result in beats “masquerading” as decaying oscilla-
tions; while we believe this might have been the case in Ref.
�5�, where the oscillations of  were first observed numeri-
cally, we hope to investigate this issue in a more thorough
fashion in a separate work.� However, if the �’s are kept
close, one needs to exercise care in order to have a represen-
tative sampling. The narrower the range of �’s and the larger
the number of �’s per given range, the higher in spectrum the
center of the interval needs to be �larger quantum numbers�
to attain it. The effectiveness of our technique is confirmed
by the following observations: �-ensemble averaging of in-
dividual staircases, shown in Fig. 1, results in a straight line
with a 45° slope; given the center of the interval and the

range of �’s that we used, the positions of the levels and the
corresponding pairs of quantum numbers showed no signifi-
cant correlations between various �’s; and numerical averag-
ing greatly improves with the increase of the number of �’s
used until such number becomes sufficiently large; its further
increase leads to a slow approach of quantities to the values
consistent with theoretical predictions.

In the future, we will investigate the level number vari-
ance in a variety of finite-domain and potential problems. We
will also address the explicit dependence of the level corre-
lation function on the magnetic field for a detailed descrip-
tion of the time-reversal breaking transition and to address
the orbital magnetism of nonresonant integrable systems.

Note added. Recently, we received a communication from
Marklof pointing our attention to Refs. �14,15�. In particular,
the nondecaying oscillatory behavior of the level number
variance that we observe in the present paper seems to be in
correspondence with the behavior of the scaling function
V�z� in Ref. �14�.
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APPENDIX A: QUANTUM MECHANICAL DERIVATION
OF THE DENSITY OF STATES

This is an extension �independently derived� of von Op-
pen’s application of the Poisson summation method to the
square billiard �12�. It illuminates the basic difference be-
tween quantum mechanically separable �classically inte-
grable� and nonseparable �chaotic� Hamiltonians. For motion
in 2D a separable Hamiltonian has two quantum numbers—
which are discrete for the confined motion in billiards but
also for motions like the Coulomb bound states, which are
not strictly confined. Equation �7� contains two integers n, m
which lie inside the first quadrant of a 2D square lattice with
unit spacing. The “perturbed” Coulomb problem, V�r�=
−�r−1+�r−2, �, ��0, is separable in r and �; and the quan-
tum numbers nr, m ��l� form a lattice subset, nr=0, 1, 2, …,
m=0, ±1, ±2, ….1

For a rectangular box, let k be a continuous vector in the
space with the integer lattice points km= �m1 ,m2�. The den-
sity of states in k space is

��k� = �
allowed m

��2��k − km� . �A1�

According to Eq. �7� ��−km�=��km�, so we can extend Eq.
�A1� to include all m. Multiple counting is avoided by writ-
ing

��k� = �1/4����2��k� − ��1��kx���ky� − ��1��ky���kx� + ��2��k��
�A2�

where ��1,2� are the lattice � functions:

1We hope to discuss the perturbed Coulomb problem in a separate
publication �16�.
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��1��k� = �
m=−�

�

��k − m�, ��2��k� = �
all m

��2��k − m� .

�A3�

The Poisson-sum representation of Eq. �A3� is

��1��k� = �
�=−�

�

eiw�k, ��2��k� = �
all �

eiw�·k �A4�

where

w� = 2	�, w� = 2	��1,�2� �A5�

and the �’s are integers. Equations �A2�–�A5� restate ��k� as
a discrete Fourier series. Let ��k� be a continuous function
with

��km� = ��m1,m2� . �A6�

The interpolation function ��k� is not unique in general and
the functions I���� introduced in Eq. �A9� below will depend
on the choice of �. However, the sum over all � contains
only ��2��k−m� and is unique. Here we choose the “sim-
plest” ��k�, namely, replacing �m1 ,m2� in ��m1 ,m2� by
�kx ,ky�.

The density of states in the variable � is

���� = �
allowed m

�„� − ��m�… =� d2k �„� − ��k�…��k� .

�A7�

Inserting the form of ��k� from Eqs. �A2�–�A4� gives

���� = ��2���� + ��1���� +
1

4
�„� − ��k = 0�… . �A8�

A typical Fourier component of ��2��k� involves the k inte-
gral

I���� =
1

4
� d2k �„� − ��k�…eiw�·k. �A9�

Now define L� to be the �level� line of constant ��k� :��k�
=�, and let k�,k� be tangential and perpendicular local coor-
dinates along L�. Then

I���� =
1

4
�

L�

dk�

1

��k��
eiw�·k. �A10�

We first check this procedure for a square box retaining
only the ��2���� terms—as did von Oppen �12�. Here
��k�=ck2, where c=	2
2 /2mL2=� in dimensional units �or
1/4 in dimensionless units�. Then ��k��=2ck and L� is a
circle of radius k=�� /c, so that

I���� =
1

8c
� d� eiw�k cos��� =

	

4c
J0�w�k� , �A11�

giving

��2���� = �1 or �−1� �
all �

J0�w�k� �A12�

This agrees with von Oppen’s Eq. �B4� �12�.
We now turn to the rectangular box. Equation �7� reads

��k�=c��1/2kx
2+�−1/2ky

2� and L� is an ellipse—which be-
comes a circle of the same area in the new coordinates:

k̃x,y =�±1/4kx,y. ��k� simplifies to ck̃2 and w� ·k= w̃� · k̃ where
w̃�=2	��−1/4�1 ,�1/4�2�. Since the Jacobian of the transfor-
mation is unity, we can write immediately

��2���� = �
all �

J0�w̃�k̃���� . �A13�

To find ��1���� consider a single ��1��kx� term in Eqs. �A2�
and �A4�. Corresponding to the 2D expression for a single k
term in Eq. �A9�, we get here

−
1

4
� dkx��� − c�1/2kx

2�eiw�kx = −
�−1/4

2�	�
cos�w�kx���� ,

�A14�

kx��� = 2�−1/4��/	�1/2.

For ��1��ky� replace � by �−1, getting in dimensionless units

��1���� = −
1

2�	�
�

�=−�

�

��−1/4cos�w�kx���� + �1/4cos�w�ky����� .

�A15�

Finally, the term ��2��k� in Eq. �A2� gives

1

4
�„� − ��0�… =

1

4
���� . �A16�

Since k�����1/2�N1/2, where N is the number of levels
below �, and �w���2	� �or ����, the arguments of the oscil-
latory functions in Eqs. �A13� and �A15� are large for large
N so that, except for �=0, these functions oscillate rapidly
around zero with period of order �−1N1/2, i.e., more rapidly
for larger �. It is natural to define the mean value �̄��� as
being the contribution of the �=0 Fourier components. Then

�̄��� = 1 −
�

�	�
+

1

4
���� �A17�

which, when integrated, gives Eq. �5�. �In the deformation
ensemble � is replaced by ���.�

The level density fluctuation is given by the nonzero Fou-
rier components in Eqs. �A13� and �A15�, so the level den-
sity correlation function �16� is determined by their products.
Only products like cos�w�kx����cos�w�ky����� with the same
magnitude �w�� will produce the “systematic” dependence on
the energy difference displayed in Eqs. �37� and �38�. The
other products give oscillatory terms with arguments �, ��,
�+���� and lead to rapid randomlike contributions. These
latter may be responsible for the difference between the nu-
merical and analytic results seen in Fig. 3 �the red and green
lines, respectively�.

If we retain only ��2����, namely, the full lattice sum
in Eq. �A2�, we get the semiclassical form for K�� ,�� of
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Eq. �37�. ��1����, the sum from points on the x and y axes,
adds coherently to the axes Fourier terms of ��2����. Thus,
��1���� is apparently not contained in the semiclassical sum
�37�. This has the effect that �m should be modified for
m= �m ,0� and �0,m� by an amount proportional to ��−1/4.
For small � �or m� and ��104−5, as in Figs. 3–7, this is a
small correction.

APPENDIX B: PERIODIC ORBIT REPRESENTATION
OF LEVEL NUMBER VARIANCE

This contains a more general semiclassical representation
of level number variance, decoupled from a specific form of
the integrable confining potential. According to Berry �2�,
the saturation rigidity is given by

�3
���;E� =

2

N−1�

j

Aj
2

Tj
2

�B1�

where Aj and Tj are the amplitudes and the periods of the
periodic orbits and 2N is the dimension of phase space. For a
rectangle, Aj and Tj are explicitly evaluated in Ref. �2� and
yield Eqs. �31� and �32�.

In the same limit E�Emax�
 /Tmin, where Tmin is the
period of the shortest periodic orbit, and using the same for-
malism, the leading term for the level number variance can
be shown to be

���;E� =
8


N−1�
j

Aj
2

Tj
2
sin2�ETj

2

 . �B2�

Averaging over the oscillations, we find

̄���;E� =
4


N−1�
j

Aj
2

Tj
2

= 2�3
�. �B3�

Note that Aj and Tj depend explicitly on the position of the
center of the interval ��E, the width of the interval. In a
rectangle, for instance,

Tj = 2
� 	

��
�M1

2�1/2 + M2
2�−1/2�, j = �M1,M2� ,

determines the periods of oscillations due to sin2�ETj /2
� in
Eq. �B2� �compare with Eq. �41��.

We note that the corrections to �3
� also exhibit oscillatory

behavior which can be derived analytically either directly
from Berry’s evaluation or via substitution of Eq. �B2� into
Eq. �19�. In contrast to �, however, the amplitude of these
oscillations is small in the parameter Emax/E�
 /ETmin. Nu-
merically, the small decaying oscillations on approach to �3

�

are observed in Fig. 2.
The above result for � is an average so that numerically

averaging must be performed in order to verify it. Previous
authors �5,6� used the spectral averages �averages over ��
which resulted in mixing of harmonics in Eq. �B2�. As a
result, while the oscillations of � were indeed observed,
they appeared as decaying for the interval widths E studied
there. We used ensemble averaging over �, keeping �1/4, the
parameter on which the energy and time scales depend in the
problem, close to 1 as to avoid such mixing. As seen from
Figs. 2 and 3, our results are in excellent agreement with
theory.
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