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In time series analysis, it has been considered of key importance to determine whether a complex time series
measured from the system is regular, deterministically chaotic, or random. Recently, Gottwald and Melbourne
have proposed an interesting test for chaos in deterministic systems. Their analyses suggest that the test may be
universally applicable to any deterministic dynamical system. In order to fruitfully apply their test to complex
experimental data, it is important to understand the mechanism for the test to work, and how it behaves when
it is employed to analyze various types of data, including those not from clean deterministic systems. We find
that the essence of their test can be described as to first constructing a random walklike process from the data,
then examining how the variance of the random walk scales with time. By applying the test to three sets of
data, corresponding to �i� 1/ f� noise with long-range correlations, �ii� edge of chaos, and �iii� weak chaos, we
show that the test mis-classifies �i� both deterministic and weakly stochastic edge of chaos and weak chaos as
regular motions, and �ii� strongly stochastic edge of chaos and weak chaos, as well as 1 / f� noise as determin-
istic chaos. Our results suggest that, while the test may be effective to discriminate regular motion from fully
developed deterministic chaos, it is not useful for exploratory purposes, especially for the analysis of experi-
mental data with little a priori knowledge. A few speculative comments on the future of multiscale nonlinear
time series analysis are made.
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I. INTRODUCTION

Complex signals with characteristics such as scaling, non-
stationarity, sensitive dependence on small disturbances, long
memory, and infinite variance can arise from as diverse fields
as physics, geophysics, astrophysics, ecology, finance, and
biology. A long-standing fundamental issue in nonlinear time
series analysis is to determine whether a complex time series
is regular, deterministically chaotic, or random. A steady
stream of efforts has been made, and a number of effective
methods �1–13� have been proposed to tackle this difficult
problem. However, none of the methods has the attributes of
a recent test, termed 0-1 test, for deterministic chaos, pro-
posed by Gottwald and Melbourne �14�: �i� the test does not
require phase space reconstruction, �ii� the dimension of the
dynamical system and the form of the underlying equations
are irrelevant, �iii� the input is the time-series data and the
output is 0 or 1, depending on whether the dynamics is non-
chaotic or chaotic, and �iv� the test is universally applicable
to any deterministic dynamical system. These features, if
they are generically true, may greatly simplify complex time
series analysis, especially experimental data analysis. There-
fore it is important to understand the mechanism for the test
to work, and how it behaves when it is employed to analyze
various types of data, including those not from clean deter-
ministic systems. In this paper, we employ the 0-1 test to
analyze three types of data, �i� edge of chaos, �ii� weak
chaos, and �iii� 1/ f� noise with long-range correlations, to
assess the usefulness as well as the limitations of the test.

The paper is organized as follows. In Sec. II, we point out
that the 0-1 test for chaos amounts to first constructing a
random walk-type process from the data, then examining
how the variance of the random walk scales with time. In
Sec. III, we study 1/ f� noise with long-range correlations. In
Sec. IV, we apply the test to two types of data: �i� edge of
chaos and �ii� weak chaos. Our results are largely negative.
We make a few remarks in Sec. V.

II. UNDERSTANDING THE 0-1 TEST FOR CHAOS

Consider a dynamical system characterized by state vari-
ables x�t�= �x1�t� ,x2�t� , . . . ,xn�t��. Let an observable be
��t�=�(x�t�). The 0-1 test for chaos involves computing

��t� = ct + �
0

t

�„x�s�…ds , �1�

p�t� = �
0

t

�„x�s�…cos„��s�…ds , �2�

M�t� = lim
T→�

1

T
�

0

T

�p�t + �� − p����2d� , �3�

where c is a constant chosen more or less arbitrarily, and
then examining whether

K = lim
t→�

log M�t�/log t �4�

approaches 0 or 1: when K is close to 0, the motion is clas-
sified as regular, and when it is close to 1, the motion is*Electronic address: gao@ece.ufl.edu

PHYSICAL REVIEW E 72, 056207 �2005�

1539-3755/2005/72�5�/056207�5�/$23.00 ©2005 The American Physical Society056207-1

http://dx.doi.org/10.1103/PhysRevE.72.056207


classified as deterministically chaotic. Note that in the former
case, M�t� grows slower than t, while in the latter case, M�t�
grows linearly with t.

To understand the meaning of Eqs. �1�–�4�, it suffices for
us to recall the definition of the so-called fluctuation analysis
�FA�, which is a key method for fractal time series analysis.
To apply FA, one tacitly assumes the time series is like a
noise, and constructs a random walk. To facilitate experi-
mental data analysis, from now on, we shall work with
sampled data �1 ,�2 , . . .. The random walk y�n� is generated
by simply forming partial summations of the �i time series
�with mean �̄ removed�,

y�n� = �
i=1

n

��i − �̄� . �5�

One then examines whether the following scaling law holds
or not:

F�m� = ��y�i + m� − y�i��2	 
 m2H, �6�

where � 	 denotes average. H, called the Hurst parameter,
characterizes the correlation structure of the data. When
1/2�H�1, the process y is said to have persistent correla-
tions. When H=1/2, y does not have or only has short-term
memory. The representative case of this is the standard
Brownian motion. Its increment process is the Gaussian
white noise. When 0�H�1/2, y has antipersistent correla-
tions. Note that the power spectral density for x and y is
1 / f2H−1 and 1/ f2H+1, respectively.

It should be clear by now that if one interprets p�t� of Eq.
�2� as a random walk process, then M�t� of Eq. �3� plays the
same role as F�m� of Eq. �6�. Therefore K of Eq. �4� is
equivalent to H normalized by H=0.5, the case of white
Gaussian noise �or equivalently, the standard Brownian mo-
tion�. To find out whether there exists any difference between
the random walk-type process of the 0-1 test for chaos and
the usual random walk process of Eq. �5�, we first study 1/ f�

noise by the 0-1 test.

III. ANALYSIS OF 1/ f� NOISE WITH LONG-RANGE-
CORRELATIONS

Of the types of activity that characterize complex sys-
tems, the most ubiquitous and puzzling is perhaps the ap-
pearance of 1 / f� noise, a form of temporal or spatial fluc-
tuation characterized by a power-law decaying power
spectral density. Some of the older literatures on this subject
can be found, for example, in Press �15�, Bak �16�, and Wor-
nell �17�. Some of the more recently discovered 1/ f� pro-
cesses are in traffic engineering �18–20�, DNA sequence
�21–24�, human cognition �25�, coordination �26�, posture
�27�, dynamic images �28,29�, and the distribution of prime
numbers �30�.

The prototypical model for the 1/ f� process is the frac-
tional Brownian motion �fBm� process �31�. It is a Gaussian
process with mean 0, stationary increments, variance

E�„BH�t�…2� = t2H, �7�

and covariance:

E�BH�s�BH�t�� =
1

2
�s2H + t2H − �s − t�2H� , �8�

where H is the Hurst parameter. The increment process of the
fBm, Xi=BH(�i+1��t)−BH�i�t�, i	1, where �t can be con-
sidered a sampling time, is called fractional Gaussian noise
�fGn�. It is a zero mean stationary Gaussian time series, with
autocovariance function:


�k� = E�XiXi+k�/E�Xi
2�

=
1

2
��k + 1�2H − 2k2H + �k − 1�2H�, k 	 0. �9�

Since 
�k� is independent of �t, without loss of generality,
we can take �t=1. In particular, we have 
�1�= 1

2 �22H−2�.
The notions of persistent and antipersistent correlations come
from the fact that 
�1� is positive when 1/2�H�1, but
negative when 0�H�1/2.

We now apply FA and the 0-1 test to analyze three fGn
processes, with H=0.25, 0.5, and 0.75. Figures 1�a� and 1�b�
show the results of FA and 0-1 test for chaos, respectively.

FIG. 1. �a� Fluctuation analysis of the fractional Gaussian noise
with H=0.25, 0.5, and 0.75; and �b� the 0-1 test yields H=0.5 for
all three kinds of noise.
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As expected, FA is consistent with the defining Eq. �7�. How-
ever, the 0-1 test for chaos simply gives H=0.5 �i.e., K=1�,
regardless of the value of H chosen to generate the fGn.
Therefore we have to conclude that the 0-1 test for chaos
constructs the random walk in such a way that long-term
correlation in the original data is effectively eliminated. Us-
ing a commonly used terminology in electrical engineering,
the construction resembles a whitening filter �32�.

The above case study clearly indicates that there is a risk
for the 0-1 test to interpret random data as deterministic
chaos, if one assumes that the data comes from a determin-
istic system.

We have also applied the method to analyze data gener-
ated by parametric Langevin equations �33–37� and Levy
motions �38–40�, and have always obtained K=1 for the
processes studied. Therefore we suspect that the method may
always yield K=1 for all kinds of stochastic processes, inde-
pendent of their defining properties �such as long-range-
correlations, power-law-type tails, fractional dynamics
�41–44�, etc.�. This implies that any kind of noise process
may be interpreted as deterministic chaos by this method, if
one assumes that the data come from deterministic systems.

IV. ANALYSIS OF EDGE OF CHAOS AND WEAK
CHAOS

In the 1980s and early 1990s, researchers were very keen
to find unambiguous evidence of deterministic chaos from
apparently irregular experimental time series. A bit surpris-
ingly, this effort was rarely fruitful. While current consensus
is to attribute this fact to the noise in and the high-
dimensionality of the data, another possibility is that the mo-
tion may not be simply regular, nor completely chaotic/
random, but lies in between. Such a consideration motivates
us to consider edge of chaos and weak chaos. Indeed, recent
work of Tsallis and co-workers �45–49� has found that the
dynamics of the edge of chaos is so rich that multifractal
characterization is needed. In this section, we examine the
deterministic and the noisy logistic and Henon map at and
near the edge of chaos. Since the behaviors for the two
model systems are the same, we shall only present the results
for the logistic map:

xn+1 = axn�1 − xn� + ��n, �10�

where a is the bifurcation parameter and �n is a white Gauss-
ian noise with mean zero and unit variance. The parameter �
characterizes the strength of noise. For the clean system
��=0�, the edge of chaos occurs at the accumulation point,
a�=3.569945672. . .. Besides studying a�, we also examine
a=a�+0.001, whose motion is weakly chaotic. Note that
motions corresponding to these parameters have been exam-
ined by a new concept, power-law sensitivity to initial con-
ditions �50�.

To facilitate discussion below, we first explain a stringent
dynamical test for low-dimensional chaos �9,10�, which has
found numerous applications in the study of the effects of
noise on dynamical systems �51� and experimental time se-
ries �52�. Given a scalar time series, the test involves first
reconstructing a phase space by forming vectors �53–55�:

Vi= �x�i� ,x�i+L� , . . . ,x(i+ �m−1�L)�, then properly choosing
the embedding dimension m and the delay time L �56�, and
finally computing the �k� curves defined by

�k� = ln� �Vi+k − Vj+k�
�Vi − Vj�

�� . �11�

The computation is carried out for a sequence of shells,
ri� �Vi−Vj��ri+�ri, where ri and �ri are prescribed small
distances ��ri is not necessarily a constant�. The angle brack-
ets denote the ensemble average of all possible �Vi ,Vj� pairs,
and k is called the evolution time. For true low-dimensional
chaotic systems, the �k� curves for different shells form a
common envelope, and the slope of the envelope accurately
estimates the largest positive Lyapunov exponent. For ran-
dom systems, the �k� curves corresponding to different
shells do not form a common envelope, and hence the system
under study cannot be interpreted as chaos �51�. For regular
motions, �k� is very close to 0.

For the deterministic logistic map, the �k� curves for
data corresponding to a� and a=a�+0.001 are shown in
Figs. 2�a� and 2�b�, respectively. The different curves in Fig.
2�b� correspond to shells of different sizes. We observe that
for a�, the motion cannot be characterized as chaotic or regu-
lar, since �k� curves do not increase linearly to form a
common envelope, and are not very close to 0. The data for
a=a�+0.001 is indeed chaotic. However, the chaos is weak,
since the curves are much less smooth than those for well-
developed chaos �51�.

We now examine the clean data by the 0-1 test for chaos.
The results are shown in Fig. 2�c�, as cross and circle, re-
spectively. We observe that in both cases, K=0. Therefore
both types of motion are interpreted as regular. Here, one has
to conclude that the 0-1 test for chaos fails to properly clas-
sify the motions.

Next we analyze the noisy logistic map with the 0-1 test.
Since the difference between a� and a=a�+0.001 becomes
unidentifiable when there is noise, we shall only consider the
case of a�. When we choose the noise level �=0.001, the
variation of M�t� vs t shown in Fig. 2�d� �as circle� remains
very similar to that shown in Fig. 2�c�. Hence the motion is
again classified as regular. However, if we increase the noise
level to �=0.01, we observe the characteristic growth for a
Brownian motion, as shown in Fig. 2�d�, the solid line. Now,
the motion would be classified as chaotic. Again, this is a
misclassification. It is then clear that the 0-1 test cannot be
used to study time series not simply regular nor fully chaotic.

V. CONCLUDING REMARKS

By studying three different types of data, �i� edge of
chaos, �ii� weak chaos, and �iii� 1/ f� noise with long-range
correlations, we have shown that the 0-1 test for chaos mis-
classifies deterministic and weakly stochastic edge of chaos
and weak chaos as regular motions, while strongly stochastic
edge of chaos and weak chaos, as well as 1 / f� noise, as
deterministic chaos. We have to emphasize, however, that
our negative results do not invalidate the 0-1 test as a proper
mathematical test for distinguishing regular motion from
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fully developed chaotic motion. We believe that so long as
the system under study is truly deterministic and the motion
is far away from the boundary between chaos and regular
motions, the test is valid.

It is pertinent to make a few speculative comments on the
future of nonlinear time series analysis here. The continuing
advances in the fields of life sciences, molecular biology,
nano-sciences, and information systems are enabling the de-
sign and exploration of complex engineered and natural sys-
tems. Such systems comprise multiple subsystems that ex-
hibit both highly nonlinear deterministic, as well as,
stochastic characteristics. The Internet, for example, has been
designed in a fundamentally decentralized fashion and con-
sists of a complex web of servers and routers that cannot be
controlled or analyzed by traditional tools of queuing theory
or control theory, and gives rise to highly bursty and multi-
scale traffic with extremely high variance �18–20�, as well as
complex dynamics with both deterministic and stochastic
components �57,58�. Similarly, with our increasing capability
to monitor and control biological activities, we have no
choice but to deal with signals generated by systems that are
by nature heterogeneous, massively distributed, and highly
complicated. Straightforward application of deterministic

chaos or random fractal theory often only gives us limited
understanding of the behavior of the system. Solving the
classic problem of distinguishing chaos from regular as well
as stochastic motions, albeit important, may not shed much
light on the complex multiscale dynamics of the system. In-
deed, there exist ample examples of dynamical systems
which exhibit chaoslike features on small scales but diffusive
behavior on large scales �59�. When the signals to be mod-
eled become increasingly multiscaled, chaos and random
fractal theory will have to be integrated, since they may char-
acterize different facets of the multiscale signals. To this end,
it is most desirable that researchers in the chaos research
community and random fractal research community can en-
hance communications. In some sense, categorical study on
whether a signal is chaotic, regular, or random, discourages
such cross talk, and hence should be paid with less attention.
Instead, more efforts should be directed to develop effective
methods to quantify as many different characteristics of a
multiscale signal as possible.

J.B.G. would like to thank Professor Kung Yao of UCLA
as well as Dr. V. A. Protopopescu of Oak Ridge National
Laboratory for directing his attention to Ref. �1� discussed
here.

FIG. 2. �a� and �b� �t� vs t and �c� log2 M�t�
vs log2 t for the edge of chaos and weak chaos of
the logistic map without noise; and �d� log2 M�t�
vs log2 t for the edge of chaos with different noise
level.
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