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Amplitude death can occur in chaotic dynamical systems with time-delay coupling, similar to the case of
coupled limit cycles. The coupling leads to stabilization of fixed points of the subsystems. This phenomenon is
quite general, and occurs for identical as well as nonidentical coupled chaotic systems. Using the Lorenz and
Rössler chaotic oscillators to construct representative systems, various possible transitions from chaotic dy-
namics to fixed points are discussed.
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I. INTRODUCTION

Amplitude death occurs when coupled oscillators drive
each other to fixed points and stop oscillating �1–3�. Initial
studies of this phenomenon were on systems wherein the
interaction between the subsystems was assumed instanta-
neous. In the absence of coupling the dynamics in the indi-
vidual subsystems were on limit cycles of different periods,
near Hopf bifurcations. New stable fixed points are created
by the coupling, and these become the attractors of the dy-
namics.

There has been considerable recent interest �4� on the ef-
fects of coupling in a variety of nonlinear systems, not only
in the physical sciences, but also in biological and social
systems in which in addition to the possibility of chaotic
dynamics, complex phenomena such as synchronization,
spatiotemporal intermittency, hysteresis, etc. have been in-
vestigated. Theoretical as well as experimental studies of
coupled systems have addressed a number of issues which
include phase-shifting, phase locking �2�, as well as ampli-
tude death.

It is often necessary to take account of inherent time de-
lays in the coupling, and Reddy et al. �5� investigated the
collective dynamical behavior of limit-cycle oscillators inter-
acting diffusively through time delay at a Hopf bifurcation
�see also Sec. III�. They observed amplitude death of oscil-
lations, regardless of the frequencies of individual oscilla-
tors, both theoretically and experimentally. In other work,
amplitude death phenomenon has been studied theoretically
in distributed time delay �6� and in a ring of delayed-coupled
�7� oscillators and experimentally in coupled electronic cir-
cuit �8� and coupled thermo-optical oscillators �9�. Phenom-
ena similar to amplitude death are also observed in time-
delayed self-feedback in limit-cycle oscillators �10� and
chaotic oscillators �11�.

That this phenomenon can occur for coupled chaotic os-
cillators as well is the main result of the present work. By
introducing time delay in the coupling of chaotic subsystems,
irrespective of their type, one can achieve amplitude death.
This transition can be direct, namely from chaotic motion to
fixed points, or indirect, when first a pair of limit cycles
�rather than a pair of fixed points� are stabilized through the

coupling. The motion then asymptotically becomes periodic,
and the subsystems oscillate at a common frequency. As a
function of the time delay, however, this limit cycle motion
can go from being in-phase to being out-of-phase. This tran-
sition is signaled by a dramatic change in two indicators: the
phase difference between oscillators and their common fre-
quency. Further variation of the time delay eventually leads
to amplitude death via stabilization of new fixed points.

In the following section we show that identical coupled
chaotic systems with matching or mismatched parameters,
and indeed even completely different chaotic systems, all
show amplitude death. The in-phase to out-of-phase transi-
tion in coupled limit cycle oscillators can be treated analyti-
cally. We estimate the common frequency for a particular
case in Sec. III, and although similar analysis cannot be car-
ried out for chaotic oscillators, this provides some insight
into how the phenomenon arises more generally. The paper
concludes with a discussion and summary in Sec. IV.

II. AMPLITUDE DEATH

The basic phenomenology of amplitude death in limit-
cycle systems has been described in some detail �2,5�. We
consider the general case of chaotic coupled systems,

ẋ = fx�x� + gx„y�t − ��,x�t�… ,
�1�

ẏ = fy�y� + hy„x�t − ��,y�t�… ,

where x and y denote the variables of the two subsystems.
The dynamical equations are specified by fx and fy, respec-
tively, and gx and hy specify the couplings, � being the time
delay.

Several scenarios are possible. In the simplest case, the
subsystems specified by the variables x and y can be identi-
cal. This is dealt with in Sec. II A below. By altering the
parameters, the two subsystems can be made nonidentical,
and this case is treated in Sec. II B. Finally, the two chaotic
systems can be completely different, and this case is pre-
sented in Sec. II C. In all cases we demonstrate that ampli-
tude death is possible, though the mechanism in each case is
somewhat different. For simplicity, the results are presented
through applications to specific Rössler or Lorenz dynamical
systems which have been extensively studied in the context*Electronic address: awadhesh@physics.du.ac.in
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of chaotic dynamics �12�. The present results are mainly nu-
merical since analytic results for such nonlinear systems are
difficult to obtain.

In each of the cases, we address the possibility of ampli-
tude suppression, namely the stabilization of limit cycles.
For this phenomenon, some analysis is possible, and is pre-
sented in Sec. III.

A. Identical chaotic subsystems

The Rössler system �13� is a simple mathematical model
of chemical kinetics that incorporates reaction-diffusion, and
has been extensively studied in the past two decades as one
of the simplest chaotic flows. Consider two identical Rössler
oscillators denoted by variables x and y,

dx1�t�
dt

= − x2 − x3,

dx2�t�
dt

= x1 + ax2 + ��y2�t − �� − x2�t�� ,

dx3�t�
dt

= b + x3�x1 − c1� ,

�2�
dy1�t�

dt
= − y2 − y3,

dy2�t�
dt

= y1 + ay2 + ��x2�t − �� − y2�t�� ,

dy3�t�
dt

= b + y3�y1 − c2� ,

which are symmetrically coupled through x2 and y2. We take
numerical values of the parameters as a=b=0.1 and c1=c2
=c=14 with the coupling parameters � and the delay � being
treated as variable.

In absence of coupling, �=0, the subsystems, which are
chaotic �13�, evolve independently. For finite coupling
strength various states of motion are observed. These are
indicated in the schematic Fig. 1�a� within a representative
range of coupling parameters � and �. The region marked C
which is shaded black, corresponds to chaotic states while
the white region shows the regions of regular behavior,
namely periodic �P�, fixed point �FP�, and hypertorus �HT�
�14� dynamics. Numerical details are given in �15,16�. Finer
analysis at a fixed value of coupling strength, �=0.5, is
shown in Fig. 1�b�. The three largest Lyapunov exponents are
shown as a function of the time delay �. The dotted line in
Fig. 1�a� indicates the transition where the largest Lyapunov
exponent ��1� becomes negative �see Fig. 1�b��. The vertical
arrow in Fig. 1�b� denotes the parameter at which the slope
of �1 changes sign. In Fig. 1�a�, the locus of this point is
plotted as a dashed line. The solid line in Fig. 1�a� shows the
transition from periodic solution to the hypertorus where
�1��2�0.

In the region marked P in Fig. 1�b�, the dynamics of the
two subsystems settles onto limit cycles. Trajectories �17� of

the individual oscillators in the x1-x2 plane with �=0.6 are
shown in Figs. 2�a� and 2�b�, respectively. Here the trajecto-
ries of both the oscillators overlap since they are in complete
synchronization. Further, these are also in-phase since the
phase difference is zero. There is also another periodic re-
gion between the FP and HT motions �between dotted and
solid lines in Fig. 1�a�� where trajectories of individual os-
cillators at �=2.25 are shown in Figs. 2�c� and 2�d�. In the
latter case both the oscillators show the same periodic mo-
tion �frequency locked states� �see Fig. 2�c�� but they are

FIG. 1. �Color online� �a� Schematic phase diagram of identical
Rössler oscillators, Eq. �2�, in the �-� plane for c1=c2=18. In the
dark region the motion is chaotic �C� while in the white region there
are regular states of different kind, e.g., fixed point �FP�, periodic
cycles �P�, and hypertorus �HT�. Numerical details are given in
�15�. The dotted line indicates the locus where the largest Lyapunov
exponent ��1� becomes negative. �b� The spectrum of Lyapunov
exponents �black, green, and blue correspond to �1, �2, and �3,
respectively� as a function of time delay � at fixed coupling strength
�=0.5. The vertical arrow in �a� shows the parameter value, �c,
when the motion goes from being in-phase to out-of-phase. The
largest Lyapunov exponent of the fixed point is shown in red. In the
amplitude death range all the Lyapunov exponents are negative and
�1=�2=�FP. The transition is from limit cycle to a fixed point. �c�
The phase difference between oscillators with time delay �, which
before and after the transition are equal to 0 and �. �d� Numerically
calculated common frequency, �, as a function of the time delay �.
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out-of-phase �Fig. 2�d��, with a constant phase difference of
�.

Both types of periodic motions �either in- or out-of-phase�
can arise from the following reasons �18�. Either the cou-
pling stabilizes one of the �infinitely many� unstable periodic
orbits �UPO� �19� which are embedded in the chaotic set, or
creates new periodic solutions with time period �T� different
from the time delay, i.e., ��T �the perturbation term does
not vanish here�. In the former case only those UPOs will be
stabilized whose time periods are equal to the time delay,
namely �=T. A trajectory will settle on an UPO and remain
there since the feedback function becomes zero: the coupling
term vanishes when y2�t−�� becomes equal to x2�t�. This
implies that the perturbation does not change the original
solution. In the latter situation, the effect of time delay is
shown in Figs. 2�a�–2�d�.

As � is increased further �between the dotted lines in Fig.
1�a�, where the largest Lyapunov exponent, �1, is negative as
can be seen in Fig. 1�b�� fixed point �FP� solutions are ob-
tained. Examples of such solutions, before and after the
marked arrow in Fig. 1�b� are shown in Figs. 2�e�-2�f� and
Figs. 2�g�-2�h�, respectively, for �=1.5 and 2. In both cases
transient trajectories start spiraling into one of the fixed
points x1�=y1�=ax3� ,x2�=y2�=−x3� ,x3�=y3� ,x3�= �c− ��c2

−4ab�� /2a. In these regions, since the subsystems are iden-
tical, the coupling term vanishes and the fixed points remain
the same as that of the uncoupled systems. The largest

Lyapunov exponent for the fixed point solution ��FP�, the
position of which does not change with time delay at a given
value of the coupling strength, is also shown in Fig. 1�b� �red
line with circles�. Since this is negative in the FP region
�where �1=�2=�FP�, the fixed point is stable. Any attempt
by the subsystems to move from this state increases the cou-
pling term and brings the entire system back to the fixed
point. Thus by using time-delay coupling, amplitude death
phenomena can be observed even in chaotic systems in a
manner which is very similar to that in limit cycles �2,5�.

In the transition from chaos to amplitude death that occurs
via a limit cycle, the mechanism is the same as that of the
coupled limit cycle case �2,5� �see also Sec. III�, i.e., the
transition from limit cycle to FP takes place because a pair of
complex eigenvalues cross the imaginary axis from right to
left and the Lyapunov exponent �FP becomes negative. Si-
multaneously the stability of the fixed point is lost as a pair
of eigenvalues cross the axis from left to right. Thus in this
case amplitude death is initiated at a Hopf bifurcation.

There are, however, some differences in the manner in
which the fixed points are reached. The largest Lyapunov
exponent has a change in slope at the point �c marked by the
arrow, and differences can be seen in the phase relationship
of the two oscillators: for ���c �inset of Fig. 2�f�� the two
are in-phase, while for ���c �inset of Fig. 2�h��, they are
out-of-phase. Shown in Fig. 1�c� is the phase difference ��	�
between oscillators which is defined as �	= ��	1�t�−	2�t��	
where �·	 denotes the average over time while 	1�t�

 tan−1��x2�t� /x1�t��� and 	2�t�
 tan−1�y2�t� /y1�t�� �20,21�.
This clearly indicates that below �c the phase difference is
zero while after it is �. We also observe �see Figs. 2�b�, 2�d�,
2�f�, and 2�h�� that the two oscillators are frequency-locked.
Their common frequency, � �measured from the peak-to-
peak separation �20�� is shown in Fig. 1�d� where a steplike
change is observed at �c. This behavior is analyzed in a sim-
pler system in the following section.

The change in the phase difference and common fre-
quency occurs at parameter values corresponding to maximal
stability, namely when the Lyapunov exponent is at a local
minimum. While details of the precise mechanism in chaotic
systems needs further analysis, it can be easily verified that
this behavior is quite general, and a similar transition occurs
in a variety of model systems.

Consider coupled identical chaotic Lorenz oscillators
�23�,

dx1�t�
dt

= − 
�x1 − x2� ,

dx2�t�
dt

= − x1x3 − x2 + r1x1 + ��y2�t − �� − x2�t�� ,

dx3�t�
dt

− = x1x2 − dx3,

�3�
dy1�t�

dt
= − 
�y1 − y2� ,

FIG. 2. �Color online� Trajectories of oscillator 1 �solid line� and
2 �dashed line� in phase space �left panel� and with time �right
panel� �a� and �b� at �=0.6, �c� and �d� at �=2.25, �d� and �e� at �
=1.5, and �g� and �h� at �=2, respectively.

AMPLITUDE DEATH IN COUPLED CHAOTIC OSCILLATORS PHYSICAL REVIEW E 72, 056204 �2005�

056204-3



dy2�t�
dt

= − y1y3 − y2 + r2y1 + ��x2�t − �� − y2�t�� ,

dy3�t�
dt

= y1y2 − dy3,

with 
=10,r1=r2=28,d=8/3. The phase diagram as a func-
tion of the coupling parameters � and � is shown in Fig. 3�a�,
while the Lyapunov exponents with time delay � at fixed �
=0.5 are shown in Fig. 3�b�. The step transition in phase
difference and common frequency are shown in Figs. 3�c�
and 3�d�, respectively. The behavior is very similar to the
Rössler case, Fig. 1. Transient trajectories that go to the fixed
point across the marked vertical arrow at �=0.12 and 0.17
are shown in Figs. 3�e� �in-phase� and 3�f� �out-of-phase�,
respectively. The fixed point at �±�d�r−1� , ±�d�r−1� ,r
−1� is stable in the region marked FP, and has a negative
Lyapunov exponent, �FP �24�. In this region �1=�2=�FP.
Thus in this regime amplitude death also occurs.

However, there is a difference in manner of transition
from that of Fig. 1. In the case of coupled limit cycle �5� or
Rössler system, Eq. �2�, transition is from periodic to fixed
point while in this case it happens directly from chaotic dy-
namics to a fixed point. This implies that although neither
UPOs are stabilized, nor new periodic solutions are created
via the time-delay interaction, the fixed point is stabilized
directly and this leads to an abrupt change in the largest
Lyapunov exponent of the system, �1. Such a transition,
which has not been discussed earlier, suggests that a new
mechanism may be operative in amplitude death.

B. Nonidentical chaotic subsystems

We consider the effect of a difference in parameters be-
tween the two subsystems. This is particularly important
with respect to experimental realization of such phenomena
since in practice it is impossible to ensure that all parameters
of two different systems are exactly equal. Introduce a mis-
match in the parameters of the Rössler system, Eq. �2�. For
c1=14 and c2=18, various possible states are shown in Fig.
4�a�. Other parameters are the same as in Fig. 1. A major
difference, compared with Fig. 1 is the absence of hypertorus
dynamics. The spectrum of Lyapunov exponents at �=0.5 are
shown in Fig. 4�b�; in the fixed point region all the Lyapunov
exponents are negative. The periodic states at �=0.25 and
�=2.5 are shown in Figs. 4�e� and 4�f� where the motions are
in- and out-of-phase, respectively �these are in the frequency
locked regime where time periods are the same for both the
oscillators�.

Shown in Figs. 4�g� and 4�h� are transient trajectories at
�=1 and �=2, respectively. The insets are enlarged views of
the corresponding transient and fixed point motions. Here
coupling introduces a new set of fixed points and the system
settles in one of these. The fixed points for Eq. �2� simply
turn out to be

x1� = ax3� − ��x3� − y3�� ,

x2� = − x3�,

x3� = ��� − a�y3�
2 + c2y3� − b�/�y3�,

y1� = ay3� − ��y3� − x3�� , �4�

FIG. 3. �Color online� �a� Schematic phase diagram for the Lo-
renz system Eq. �3� in the �-� plane. �b� Spectrum of Lyapunov
exponents �black, green, and blue corresponding to �1, �2, and �3,
respectively� as a function of the time delay, �, at fixed coupling
strength �=0.5. The other details remains the same as that in Fig. 1.
In the amplitude death range all the Lyapunov exponents are nega-
tive and �1=�2=�FP; the transition is directly from chaos to a fixed
point. �c� The phase difference between oscillators with time delay
�. The phase difference before and after the transition are equal to 0
and �. �d� Numerically calculated common frequency, �. Trajecto-
ries of oscillators 1 �solid line� and 2 �dashed line� with time at �e�
�=0.12 and �f� �=0.17. The inset figures are the enlarged view of
the corresponding marked boxes.
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FIG. 4. �Color online� �a� Schematic phase
diagram of Eq. �2� in the �-� plane. Parameters
values are c1=14 and c2=18. �b� Spectrum of
Lyapunov exponent �black, green, and blue cor-
respond to �1, �2, and �3, respectively� as a func-
tion of the time delay, �, at fixed coupling
strength �=0.5. Other details remain the same as
that of Fig. 1. In amplitude death range all
Lyapunov exponents are negative and �1=�2

=�FP. This is also a chaos to FP transition as in
Fig. 1�c�. The phase difference between oscilla-
tors with time delay �. The phase difference be-
fore and after the transition are near to 0 and �,
respectively. �d� Numerically calculated common
frequency, �. Trajectories of oscillator 1 �solid
line� and 2 �dashed line� for the nonidentical case
with time �e� at �=0.25, �f� at �=2.5, �g� at �
=1, and �h� at �=2. The inset figures are the en-
larged views of the corresponding marked boxes.
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y2� = − y3�,

where y3� is the root of the polynomial

b + y3��ay3� − ��y3� − x3�� − c2� = 0.

The largest Lyapunov exponent �FP �red line with circles�, of
the fixed point x1�=0.00135. . ., x2�=−0.0056. . ., x3�

=0.0056. . ., y1�=−7.914. . . �10−5, y2�=−0.00714. . ., and
y3�=0.00714. . . is shown in Fig. 4�b�. Here the transition
from chaos to a fixed point occurs indirectly, namely via a
limit cycle at a Hopf bifurcation as in the case of identical
coupled Rössler oscillators, Fig. 1.

Similar step transitions in the phase difference and com-
mon frequency as in Figs. 1�c�, 1�d�, 3�c�, and 3�d� are also
observed here in Figs. 4�c� and 4�d�. However, the phase
differences are only �0 and �� before and after the transi-
tion �marked by the arrow�.

Amplitude death phenomena thus also occurs in noniden-
tical chaotic subsystems, though there can be subtle differ-
ences in the nature of the final state which can have either
in-phase �2,5� or out-of-phase �26� similar to the identical
subsystem case. Similar results have been obtained �25� for
the case of mismatched coupled Lorenz systems.

C. Mixed chaotic subsystems

Since amplitude death occurs for interacting oscillators
with very different time periods, it is natural to consider the
situation when the two subsystems are dynamically distinct.
This is of even greater relevance experimentally, since a va-
riety of different oscillator systems can be mutually coupled
in a given natural situation.

To examine the behavior obtained when distinct oscilla-
tors are coupled, I study coupled Rössler and Lorenz oscil-
lators,

dx1�t�
dt

= − x2 − x3,

dx2�t�
dt

= x1 + ax2 + ��y2�t − �� − x2�t�� ,

dx3�t�
dt

= b + x3�x1 − c1� ,

�5�
dy1�t�

dt
= − 
�y1 − y2� ,

dy2�t�
dt

= − y1y3 − y2 + r2y1 + ��x2�t − �� − y2�t�� ,

dy3�t�
dt

= y1y2 − dy3,

where parameters c1=18 and r2=28. Other parameters are
the same as in Eqs. �2� and �3�. A typical phase diagram is
shown in Fig. 5�a�, and the Lyapunov exponent as a function
of delay � is shown in Fig. 5�b�. Various possible states are

indicated: the region of fixed point motion, i.e., amplitude
death phenomena, is observed in the range �
0.3–0.52
�where �1=�FP�. Trajectories for �=0.35 and 0.45 in ampli-
tude death region are shown in Figs. 5�e� and 5�f�, respec-
tively. The inset figures indicate that both the subsystems are
neither completely in nor completely out of phase, i.e., phase
differences are away from zero or near � �see Figs. 5�c� and
5�d�� due to the completely distinct natures of the chaotic
dynamics of the individual subsystems. Even though the sub-
systems are distinct, it has been possible to observe indica-
tions of a vestige of the transition in the phase difference
when Lyapunov exponent is at a local minimum �25�.

Regions, denoted by R, where wild fluctuations �see Fig.
5�a�� in the Lyapunov exponent occur are indicative of the
presence of coexisting attractors with complicated basins
�25,27�. I have verified the presence of riddled �28� basins
�results are not presented here� in this region, and identify at
least two coexisting attractors: the chaotic trajectories
�shown separately for Rössler and Lorenz subsystems in
Figs. 5�g� and 5�h� respectively�, and the fixed point attrac-
tor, in Figs. 5�e� and 5�f�. Here the transition is directly from
chaos to fixed point similar to Lorenz oscillator, Eq. �3� �nei-
ther is an UPO stablized nor is a new periodic solution cre-
ated� but in the present case the FP solution is created via
riddling.

III. AMPLITUDE SUPPRESSION: ANALYTICAL
ESTIMATION OF THE FREQUENCY JUMP

The phenomenon of frequency jump which can be ob-
served �see Secs. II A and II B� in identical Rössler and Lo-
renz chaotic systems can be seen in coupled limit-cycles sys-
tems as well. Consider the case that has been studied in
detail by Reddy et al. �5�,

Ż1�t� = �1 + i�1 − �Z1�t��2�Z1�t� + ��Z2�t − �� − Z1�t�� ,

�6�
Ż2�t� = �1 + i�2 − �Z2�t��2�Z2�t� + ��Z1�t − �� − Z2�t�� ,

where Zj�t� , j=1,2 are the complex amplitudes of the jth
oscillator with �Zj�=1 and corresponding angular frequencies
� j. � is the coupling strength. For simplicity we consider
identical oscillators with �1=�2.

Specific results are shown for the case of �1=9, which
was the case used in Ref. �5�. The origin is a fixed point, i.e.,
Zj =0. The spectrum of Lyapunov exponents and �FP, the
exponent �the red line with circles� for the fixed point, for
coupling strength �=10 is shown in Fig. 6�a�. The resulting
limit cycles at �=0.05 are in-phase, and at �=0.25 are out-
of-phase, and these are shown in Figs. 6�b� and 6�c�, respec-
tively. The amplitude death region is in between �
0.1 and
0.2 where all Lyapunov exponents are negative, �1=�2
=�FP. The transient behavior of in- and out-of-phase motions
in this amplitude death region are shown in Figs. 6�d� and
6�e� at �=0.13 and 0.19, respectively. The transition from
limit cycle to fixed point motion �say from �=0.05 to �
=0.14� is happening at the Hopf bifurcation. The Lyapunov
exponent of the fixed point, �FP, indicates this transition
clearly, when it becomes negative.
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FIG. 5. �Color online� �a� Schematic phase
diagram for the mixed Rössler and Lorenz sys-
tem, Eq. �5�, in the �-� plane. �b� The largest
Lyapunov exponent �in black� as a function of
time delay, �, at fixed coupling strength �=0.5. R
denotes regions of wild fluctuations in the
Lyapunov exponent where chaotic and stable
fixed point solutions coexist. The red line with
circles represents the largest Lyapunov exponent
of a fixed point �x1�=4.200308. . ., x2�

=−0.007246. . ., x3�=−x2�, y1�=−8.406415. . .,
y2�=y1�, and y3�=26.500431. . .�. In contrast to
previous examples, there is no discontinuous
change in slope in the largest Lyapunov expo-
nent. �c� The phase difference between oscillators
with time delay �. �d� Numerically calculated
common frequency, �. Trajectories of Rössler
�solid line� and Lorenz �dashed line� oscillators
for �e� �=0.35 and �f� �=0.45. Chaotic trajecto-
ries of �g� Rössler and �h� Lorenz oscillators at
�=0.25. The inset figures, which ordinate axes
are scaled to see phase relations, are the enlarged
view of corresponding marked boxes.
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Similar to Figs. 1�c� and 3�c�, shown in Fig. 6�f� is the
phase difference between oscillators of Eq. �6�. The phases
of the individual oscillators are defined here as 	 j
=tan−1�Im�Zj� /Re�Zj��. The phase difference changes drasti-
cally from 0 to � when the largest Lyapunov exponent is
minimum �the system is in most stable stat�.

There is also a similar step transition in frequency across
which in- and out-of-phase motions are present. The numeri-
cally calculated frequency, �, of Eq. �6� with time delay, is
shown by the dashed line in Fig. 6�g�. In order to understand
this transition I consider the characteristic eigenvalue equa-
tion for Eq. �6� by assuming the linear perturbation to vary as
e�t, which can be written as �5�

�2 − 2�a + i��� + �a2 − �2 + i2a�� − �2e−2�� = 0, �7�

where a=1−�.
Letting �=
+ i� where 
 and � are real and imaginary

part of the eigenvalues in Eq. �7�, and separating real and
imaginary parts leads to the equations


2 − �2 − 2�a
 − ��� + a2 − �2 − �2e−2
� cos�2��� = 0

�8�

and

2
� − 2�
� + a�� + 2a� + �2e−2
� sin�2��� = 0. �9�

As these equations are difficult to solve analytically we
use the Lyapunov exponent of the fixed point, �FP, to find �
numerically. The Lyapunov exponent of a fixed point is equal
to the real part of the eigenvalue, i.e., �FP=
, we use this in
Eqs. �8� and �9�. The resulting roots of these equations give
� and are shown separately by circles and stars in Fig. 6�g�.
The final solution satisfying both these equations will be the
solution of the eigenvalue equation, Eq. �7�. Here we see that
prior to the transition, the smaller root of Eq. �8� matches Eq.
�9� while after the transition it is the larger root. The agree-
ment with � computed directly from the eigenvalue equation
and numerically calculated frequency �dashed line� is excel-
lent.

This analysis has been possible for the case of coupled
limit cycle oscillators. Although it cannot be extended to the
case of chaotic systems, it is possible to conjecture that the
underlying mechanism could be similar, namely that the tran-
sition is due to a jump in the imaginary part of the eigen-
value of the fixed point.

IV. DISCUSSION AND SUMMARY

In this paper I have shown that the phenomenology devel-
oped for the cause of amplitude death in systems with limit-
cycle oscillators �1–3� can be extended to the case of chaotic
dynamical systems. This also extends earlier work on ampli-
tude modulation �29�, where time-delay coupling has been
used to stabilize undesirable low-frequency chaotic fluctua-
tions in a semiconductor laser. �There it was seen that time-
delay coupling could convert chaotic oscillations of the laser
field with power dropouts into quasiperiodic motion without
power dropouts.�

Amplitude death in chaotic systems is a consequence of
time delays that stabilize fixed points that might either have
existed in the uncoupled system, or that might have been
created through the interaction. The evidence presented here
is largely numerical. We considered separately the cases of
the interacting systems being �a� identical, �b� the same but
with mismatched parameters, and �c� completely distinct. In
all cases, amplitude death can occur, and moreover, this can
occur over a range of parameter values. The mechanics
through which chaos converts into fixed point motion are
different in these examples: in some cases it happens via
limit cycle at Hopf bifurcation while other cases fixed point
gets stablized directly. In mixed systems this stabilization is
initiated via riddling phenomenon.

We have used the Lyapunov exponent as an indicator to
detect the different dynamical regimes, and to detect transi-

FIG. 6. �Color online� �a� Spectrum of Lyapunov exponents for
the coupled limit-cycle oscillators �black and green correspond to
�1 and �2, respectively� with time delay, �, at fixed coupling
strength �=10. The red line with circles is the largest Lyapunov
exponent for the fixed point, Zj =0. In amplitude death region all
Lyapunov exponents are negative and �1=�2=�FP. Trajectories of
the oscillators 1 �solid line� and 2 �dashed line� with limit cycles at
�b� �=0.05 �in-phase� and �c� �=0.25 �out-of-phase�. Re Zj repre-
sents the real part for Zj of the jth oscillator. Transient trajectories
of oscillators 1 �solid line� and 2 �dashed line� with time at �d� �
=0.14 �in-phase� and �e� �=0.19 �out-of-phase�, respectively, for
fixed point solutions. �f� The phase difference between oscillators
with time delay � which is equal to 0 and � before and after the
transition, respectively. �g� Solution of Eqs. �8� �black circles� and
�9� �red stars� with parameter �. Blue dashed line indicates the
numerically calculated common frequency, �.
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tions, as for example, in the case of identical oscillators,
when the subsystems are oscillating in- or out-of-phase with
each other. When the subsystems are maximally stable,
namely the largest Lyapunov exponent is minimum, a
“phase” transition occurs, and motion goes from being in-
phase to being out-of-phase. Measures that detect this tran-
sition are the phase difference and frequency; although not
possible to analyze in chaotic systems, it is possible to get
some understanding of this transition for a limit-cycle case.
Apart from its mathematical interest, the possibility of using
a transition from dynamics on a limit cycle which is in-phase
to that which is out-of-phase in practical applications sug-
gests itself. In experimental application of amplitude death
phenomena, where transient dynamics always persists, it will
be important to know the parameters where motion is either
in-phase �low frequency� or out-of-phase �high frequency�.
An important possible use of it could be coupled chaotic

lasers �29�, where a relatively higher degree of constant out-
put could be obtained by keeping the parameters of the lasers
and the time-delay coupling in the out-of-phase regime com-
pared to that of the in-phase �25�.

Experimental verification of this generalization of the
conventional amplitude-death phenomenon that occurs in
limit-cycle oscillators may in fact prove to be technically
simple to achieve since it persists even after parameters mis-
match, and occurs for different types of coupled oscillators,
bypassing the need for irregular oscillations �e.g., Ref. �29��.
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