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The problem of finding clusters in complex networks has been studied by mathematicians, computer scien-
tists, and, more recently, by physicists. Many of the existing algorithms partition a network into clear clusters
without overlap. Here we introduce a method to identify the nodes lying “between clusters,” allowing for a
general measure of the stability of the clusters. This is done by adding noise over the edge weights. Our method
can in principle be used with almost any clustering algorithm able to deal with weighted networks. We present
several applications on real-world networks using two different clustering algorithms.
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I. INTRODUCTION

The framework of complex networks provides a remark-
able tool for the analysis of complex systems consisting of
many interacting entities �1,2�, such as the Internet �3�, the
interaction map of proteins �4�, social networks �5�, etc. His-
torically a theoretical model to describe complex networks
was the Erdös-Rényi graph �6�. However, this model fails to
describe several features observed frequently in real-world
networks. The two most famous ones are the degree distri-
bution and the clustering coefficient. Recently different mod-
els have been proposed to give a more realistic understand-
ing of those features �7,8�.

Another characteristic of the topology of complex net-
works is their community structure: in real-world networks,
it is common to have small sets of nodes highly connected
with each other but with only a few connections to the rest of
the network. Finding the clusters of a network is a crucial
point in order to understand its internal structure. A large
amount of clustering algorithms have been developed, each
of them attempting to find a reasonably good partition of the
network �9–13�. In most of the cases those algorithms parti-
tion the network into nonoverlapping clusters, assigning each
node to a specific cluster �“hard-clustering”�. However, the
resulting clustering is sometimes questionable, especially for
nodes that “lie on the border” between two clusters. We refer
to such nodes as unstable nodes. Figure 1 shows a typical
case where a node lies exactly between two clear clusters.

Defining and identifying unstable nodes is closely related
to the problem of evaluating the stability of the clustering. It
is indeed an important issue: since the exact solution of a
clustering is generally not known, experimental perturbations
are the only possible way to investigate how much a cluster-
ing algorithm is robust. An attempt was proposed by Wilkin-
son �14� by modifying the Girvan-Newman algorithm �9�.
Recently several nondeterministic clustering algorithms have
been developed �15–17�. Using the stochasticity of the out-
put, one can probe the stability of the clustering. We finally
mention the work of Palla et al. �18� where a clustering
algorithm is designed based on the idea of clique percolation.
This is an interesting, but fundamentally different answer to
the problem of finding unstable nodes.

II. UNSTABLE NODES

In this work, we introduce a general method to find un-
stable nodes and evaluate the stability of the clusters. Instead
of having a stochastic element in the algorithm, we propose
to introduce stochasticity in the network itself and to use a
hard-clustering algorithm. We used both the Markov cluster-
ing algorithm �MCL� �12� and the fast algorithm of Clauset
et al. �19�, but the method does not depend explicitly on
these choices. The idea is to add a random noise over the
edge weights in the network. In this study the noise added
over the weight of the edge between nodes i and j, initially
equal to wij, is equally distributed between −�wij and �wij,
where � is a fixed parameter, 0���1. Noise in this context
is not only a useful tool to reveal cluster instabilities, but it
has actually a deeper interpretation. In many real-world net-
works, edges are often provided with some intrinsic weight,
but usually no information is given about the uncertainties
over these values. Adding some noise could fill this lack,
although arbitrarily, to take into account the possible effects
of uncertainties.

In order to understand how the cluster structure changes
with the noise, we compute the “in-cluster probability” pij of
the edge between two adjacent nodes i and j. This probabil-
ity is defined as the fraction of times nodes i and j have been
classified in the same cluster during several occurrences of
the clustering algorithm on different noisy realizations of the
network. For example, in Fig. 1, node 7 has been classified
51% of the time in the same cluster as node 6 and 49% of the
time in the same cluster as node 8 �p67=0.51 and p78=0.49�.
Edges with an in-cluster probability equal to one are always
within a cluster and edges with an in-cluster probability close
to zero connect two different clusters. We thus define edges
with an in-cluster probability lower than a threshold � as
“external edges” �we typically choose �=0.8�.

Although it is sometimes visually obvious which nodes
are unstable with respect to the cluster structure, the imple-
mentation of the algorithmic procedure has to be more pre-
cise. We start by removing all the external edges of the net-
work, which gives a new, most of the time disconnected,
network. Let us now call initial clusters the clusters obtained
without noise, and subcomponents the disconnected parts of
the network after the removal of the external edges. If the
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community structure of the network is stable under several
repetitions of the clustering with noise, the subcomponents
correspond to the initial clusters. In the opposite case, a new
community structure appears with some similarities with the
initial one. In order to find which subcomponents correspond
to the initial clusters and which consist of unstable nodes, we
introduce a similarity measure between two sets of nodes. If
E1 �E2� is the set of initial clusters �the set of subcompo-
nents�, we use the following definition of the similarity �sij�
between the initial cluster C1j �E1 and the subcomponent
C2i�E2:

sij =
�C2i � C1j�
�C2i � C1j�

, 1 � i � �E2�, 1 � j � �E1� .

If C1j =C2i, sij =1 and if C1j �C2i=�, sij =0. For every C1j
�E1, we find the subcomponent C2i, 1� i� �E2�, with the
maximal similarity and associate it with the initial cluster C1j
�most of the time C2i corresponds to the stable core of the
initial cluster C1j�. If there is more than one of such subcom-
ponents, none of them will be associated with the initial clus-
ter. In practice, this latter case is extremely rare.

For example, the network in Fig. 1 consists of three initial
clusters �the three colors� and four subcomponents
��1,2,3,4,5,6�, �7�, �8,9,10,11,12,13,14,15,16,17�, �18,19,20��.
Our method associates the three biggest subcomponents with
the three initial clusters, while the subcomponent �7� is not
associated with any cluster. In this example the same initial
clusters and subcomponents are obtained with the two clus-
tering algorithms mentioned at the beginning of this section
��12,19��.

Nodes belonging to subcomponents that have never been
associated with any initial cluster will be defined as unstable
nodes �those subcomponents do not always consist of only
one node as in Fig. 1�. We note that in some rare situations it

can happen that a large initial cluster is split into two sub-
components of similar size. It is not reasonable to define one
of these subcomponents as unstable and one would rather
have the two subcomponents as two different clusters. This
drawback can be avoided by setting a limit to the size of
subcomponents made of unstable nodes.

III. CLUSTERING ENTROPY

Partitioning a network into clusters can be tricky since
most of the algorithms will force a cluster structure, even on
random networks where a cluster structure can arise from a
purely stochastic process �20� and is thus meaningless. It is
important therefore to define a suitable quantity able to as-
sess the reliability and the robustness of the cluster structure
obtained with a given algorithm.

Locally we can address the question of the stability of the
clusters by looking at the in-cluster probabilities of the edges
inside each cluster and around a cluster. For instance, if all
edges inside the cluster have an in-cluster probability close
to one and all edges connecting the cluster to its neighbors
have an in-cluster probability close to zero, we can conclude
that the cluster is rather stable. From a more global point of
view, we propose the entropy as a measure of the stability of
the cluster structure. In first approximation, we assume that
the pij are independent of each other and we define the clus-
tering entropy �CE� of edges as

S =
− 1

m
�
�i,j�

�pij log2 pij + �1 − pij�log2�1 − pij�� ,

where the sum is taken over all edges and m is the total
number of edges in the network. If the network is totally
unstable �i.e., in the most extreme case pij =

1
2 for all edges�,

S=1, while if the edges are perfectly stable under noise
�pij =0 or 1�, S=0.

The clustering entropy allows for comparing with a net-
work without a predefined cluster structure. To avoid biasing
the comparison, we shall always compare the CE of a net-
work with the one of a randomized version of the network in
which the degree of each node is conserved �21,22�. We first
apply the randomizing step and then add the noise over the
edge weights using the same � as in the original network.
The randomized network plays the role of a null-model since
the clusters �if present� are destroyed by the randomizing
process. Note, however, that we do not assume the random-
ized network to have no apparent community structure �20�.
If the difference between the CE of the original network and
the randomized one is important, it shows that the network
has an internal cluster structure that differs fundamentally in
terms of stability from a network where the nodes have been
connected randomly. For this comparison, we have to restrict
ourselves to unweighted networks since the rewiring process
described in �21� is not designed for weighted networks.

IV. APPLICATIONS

Since it is not widely known in the physics community,
we briefly describe MCL �12,23� that we used as one of the
clustering algorithms, before showing applications of our

FIG. 1. �Color online� Small toy network with one unstable
node �7�. The clusters obtained without noise are labeled with dif-
ferent colors. Only in-cluster probabilities pij �0.8 are shown
�dashed edges�. We have used MCL �described in Sec. IV� with r
=1.6, and �=0.5.
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method to study the stability of the clusters. MCL is based on
the idea that when a random walk on a network visits a
dense cluster, it will likely not leave it until many of its ver-
tices have been visited. However, the idea of performing a
random walk on a network does not immediately lead to the
clusters, since as time increases, the random walk will end up
exploring the whole network. MCL favors the most probable
random walks, already after a small number of steps, thereby
increasing the probability of staying in the cluster. The algo-
rithm works as follows: �1� take the adjacency matrix A of
the network; add the self-edges �1’s on the diagonal� and
normalize each column of the matrix to one, in order to
obtain a stochastic matrix W; �2� compute W2; �3� take the
rth power of every element of W2 �typically
r	1.5–2� and normalize each column to one; and �4� go
back to �2�. After several iterations MCL converges to a ma-
trix idempotent under steps �2� and �3�. Only a few lines of
the matrix have some nonzero entries that give the cluster
structure of the network. Note that the parameter r can tune
the granularity of the clustering. A small r corresponds to a
few big clusters, whereas a big r to smaller ones. MCL is
finding a growing consensus, especially in the bioinformatics

community, thanks to its trade-off between speed, scalability,
and adjustable granularity �12,24,25�.

To illustrate the principle of the comparison based on the
CE, we apply it on the well-known benchmark network in-
troduced in �9�. The network consists of four communities of
32 nodes. The nodes are connected with a probability Pin if
they belong to the same community and Pout if not. Typically
one chooses to vary Pin and Pout keeping the average degree
of the nodes constant. In Fig. 2 we plot the CE of the net-
work. The parameter z is the average number of edges con-
necting a node from a given cluster to nodes of other clusters
�z=96Pout�. The average total degree is fixed at 16. The error
bars stand for the standard deviation and give an indication
of the dispersion of the values between different realizations
of the network. When z is small the clusters are very well-
defined and most of the algorithms correctly identify them.
As z increases, the clusters become more and more fuzzy and
for z�7 even the best currently available algorithms fail to
recover the exact cluster structure of the network �actually
the cluster structure tends to disappear from the network�.
This corresponds to the point from which the comparison of
the CE does not allow one to differentiate between the net-
work and a randomized one. We stress that the clustering
entropy does not make reference to the assumed partition of
the network into four clusters that, given the statistical nature
of the links, cannot be guaranteed for every realization.

Let us now turn to real-world networks. As a first ex-
ample, we consider the “karate club network” built by Za-
chary �26�, where each node is an individual and edges rep-
resent social interactions. MCL correctly identifies the two
communities, which correspond to the actual division of the
club. The only unstable node is represented with a diamond
�see Fig. 3�. This node is connected to four nodes of one
community and five of the other one. From a topological
point of view, it is absolutely justified to consider it as an
unstable node. It corresponds to an individual who still had
contact with the two groups. The CE of the network is 0.14.
The randomized network has an average CE of 0.27±0.1
�average and standard deviation of 100 randomized ver-
sions�. Thus on average the CE is significantly larger for the
randomized network.

We also studied a linguistic network based on the relation
of synonymy in French �27�. The nodes are the words in a

FIG. 2. CE as a function of z, the average number of edges
connecting a node from a given cluster to nodes of other clusters,
for a network with four communities of 32 nodes. The error bars
represent the standard deviation for different networks with the
same z. We have used MCL with r=1.85, and �=0.5.

FIG. 3. �Color online� Zachary’s karate club
network. The two clusters are represented with
two different colors. The unstable node is repre-
sented by a diamond. We have used MCL with
r=1.8, and �=0.5.
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given sense. Two nodes are connected if they are considered
as synonyms. We applied MCL on the larger disconnected
components of the network �up to 10 000 nodes per compo-
nent� and found a much better lexical representation of the
synonyms. The natural interpretation of unstable nodes in the
case of a synonymy network is that they correspond to am-
biguous words. As a validation of our results, we can mea-
sure the clustering coefficient and the betweenness centrality
�28� of the unstable nodes. The clustering coefficient of a
node i with degree k is defined as the number of 3-loops
passing through i, divided by the maximal number of pos-
sible three-loops given by 1

2k�k−1� and the betweenness cen-
trality of a node i is the number of shortest paths between all
pairs of nodes that run through i. Averaging over the whole
network, we have a clustering coefficient of 0.26 for the
unstable nodes and 0.45 for the stable nodes and the be-
tweenness centrality of unstable nodes is on average 1.6
times larger. The important difference was expected since
unstable nodes often lie between clusters, and therefore usu-
ally do not have a large clustering coefficient, but have a
large betweenness �typically node 7 in Fig. 1�. Moreover, the
plot of the edge betweenness �9� versus the in-cluster prob-
ability pij in Fig. 4 shows that external edges have on aver-
age a larger betweenness than the other edges, which is con-
sistent with the Girvan-Newman clustering algorithm �9�.
Yet, although this is true on average, it is not on a single edge
basis.

Figure 5 shows how the CE varies with the parameter r of
MCL for a component of 185 nodes from the linguistic net-
work displayed in Fig. 6, compared with a randomized ver-
sion of the same component. For 1.3�r�2, the difference
in behavior is striking. This shows that the clusters are not a
by-product of the clustering algorithm, but correspond to a
real community structure of the network.

We finally analyzed the protein folding network of the
antiparallel �-sheet peptide developed by Rao and Caflisch
�29�. The network is weighted, directed, and consists of al-
most 80 000 nodes. Due to the very large number of nodes
we used the fast clustering algorithm of Clauset et al. �19�.
The clustering algorithm correctly identifies the native state
�or at least part of it� and other stable configurations such as
the curl-like trap and the alpha-helix. In Fig. 7 we plot the

network of the clusters. Each node corresponds to a cluster in
the original network and two nodes are connected if there is
at least one edge between the two clusters. The size of the
nodes is related to the weight of the clusters and the size of
the edges to the number of connections between the two
clusters. As it can be seen, some of the configurations are
represented by more than one cluster, which may indicate a
substructure of the energy basins. Figure 7 shows also the
possibilities offered by the clustering in order to visualize
very large networks.

A possible interpretation for the unstable nodes �not rep-
resented in Fig. 7� is to consider them as transition states �as
already suggested in �15��, although it is rather difficult to
check our results since we do not know a priori which are
the transition states. The unstable nodes have a clustering
coefficient of about two-thirds of the average clustering co-
efficient of the whole network. The CE of the protein folding
network is 0.08 with �=0.6, which is low and seems to
indicate that the clusters are rather robust to the noise. This
was expected since the clusters often correspond to deep en-
ergy basins. In this case the comparison with a randomized
network cannot be done since the network is weighted and
directed, and considering it as unweighted induces important
changes in the cluster structure.

V. DISCUSSION

Our method depends on two parameters, � and �. The
parameter � is directly related to the strength of the noise
added to the network. With � close to 0, we cannot detect the
unstable nodes, while with � close to one, the topology of
the network changes dramatically. However, in many ex-
amples the results do not change significantly for a broad
range of values of � around 0.5. For instance, in the network
displayed in Fig. 1, the node 7 was identified as the only
unstable node for 0.15���0.8. If we want to strongly per-
turb the network or if the edge weights have a large intrinsic
uncertainty, we should choose a rather high � while if we
only look for small perturbations we should choose a small

FIG. 4. Edge betweenness vs pij for a component of 9997 nodes
from the synonymy network. r=1.6, �=0.5.

FIG. 5. CE as a function of the parameter r for a component of
185 nodes of the synonymy network. The dashed curve is the aver-
age over 50 randomized versions and the error bars correspond to
the standard deviation. �=0.5.
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�. Moreover, very similar results are obtained using a Gauss-
ian distribution for the noise.

Up to now we have always chosen a value of 0.8 for �.
The parameter � has to be interpreted as a threshold such that
two adjacent nodes that have been classified in the same

cluster with an in-cluster probability higher than � can be
considered as belonging to the same cluster. For instance, if
one wants to keep only edges that connect nodes with a very
high confidence score, one should choose a rather large �.

Our choice of �=0.8 was motivated by the following rea-
son. � should not be too close to 1 to avoid insignificant
effects due to a peculiar noisy realization of the network,
neither too close to 0.5, since if � equals 0.5 the subcompo-
nents basically correspond to the initial clusters �see Fig. 1�.
Thus a value of 0.8 is reasonable �as confirmed with small
test networks�. However, as for �, other values of � could be
chosen without having an absolute criterion to decide which
choice is the best one.

Finally the time-consuming step is the computation of pij,
involving only the parameter �, since we have to repeat the
clustering several times. One can thus easily probe different
values for � without having to rerun the whole procedure.

VI. CONCLUSION

The introduction of the noise over the edges and the in-
cluster probabilities pij provide a well-defined and objective
way to identify unstable nodes and to deal with ambiguities
in clustering. The method performs well on the small test
networks presented above, and it can be applied on large

FIG. 6. �Color online� Component of 185 nodes of the linguistic network. The colors represent the different clusters found by MCL and
the cyan diamonds are the unstable nodes. Some words may appear more than once since an initial distinction between different senses was
sometimes already present in the original data, see �27�. r=1.6, �=0.5.

FIG. 7. �Color online� Network of the clusters of the protein
folding network obtained with the clustering algorithm of Clauset et
al. �19�. The size of the nodes is related to the total weight of the
clusters and the size of the edges to the total weight of the edges
between two clusters. The main clusters correspond to the following
conformations. 1: native state, 2: the first hairpin is native, 3: the
second hairpin is native, 4: curl-like trap, and 5: alpha-helix.
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real-world networks, using a fast clustering algorithm. Fur-
thermore, it is straightforward to parallelize it in order to
apply it to very large networks. As a validation of our results
for large networks that can hardly be visualized, we have
seen that the clustering coefficient of the unstable nodes is
usually lower than the average clustering coefficient of the
whole network. Moreover, these nodes have, on average, a
larger betweenness, which is also expected for nodes lying
between clusters. Nevertheless we could not have identified
the unstable nodes only by comparing the clustering coeffi-
cient and the betweenness since very stable nodes may still
have a large betweenness and a small clustering coefficient,
and vice versa.

The CE allows for a quantitative comparison between a
network and a null-model. We have found that in many ex-
amples the difference was clear, assuring that the clusters are

neither the result of random fluctuations in the modularity of
the network �20�, nor an artifact of the clustering algorithm.
Finally, since the method does not depend on a particular
clustering algorithm, it can in principle be implemented us-
ing any clustering technique.
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