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Variational principles and the shift in the front speed due to a cutoff
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We apply variational principles to reaction-diffusion equations in order to predict, for a general reaction
term, the sign of the shift in the front speed due to a cutoff. We develop an improved variational principle to
obtain the shift in the front speed for a wide range of reaction terms, and the theoretical results so obtained are
in excellent agreement with numerical solutions. This work proves that variational principles are an optimal
framework to deal with fronts propagating into unstable and metastable states under cutoff.
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I. INTRODUCTION

Variational principles have been developed to find bounds
to the speed of reaction-diffusion fronts [1]. They allow one
to obtain lower bounds for the front speed when the linear
speed is selected and when the marginal stability analysis
fails. The variational principles can thus be applied to gen-
eral reaction terms and, in particular, to pulled and pushed
fronts propagating into unstable or metastable states [1]. A
pulled front is one that propagates into an unstable state with
an asymptotic speed equal to the linear speed; that is, the
computed speed from the linear analysis around the unstable
state. A front that propagates into an unstable state whose
asymptotic speed is higher than the linear speed is referred to
as a pushed front [2]. As applications of variational prin-
ciples, we can mention the study of front speed in hyperbolic
reaction-diffusion equations [3,4], thermal combustion
waves [5], reaction-convection-diffusion equations [6], non-
local reaction-diffusion equations [7], reaction with anoma-
lous diffusion [8—10], and other nonlinear dynamical systems
[11,12]. This method becomes really useful when one is able
to obtain lower and upper bounds that coincide: the front
speed is then known precisely. However, this is frequently a
challenging task and one has to resign oneself to dealing
with bounds.

On the other hand, the concept of a cutoff has been con-
sidered to model the effect of the discreteness of particles.
Brunet and Derrida [13] have studied fronts propagating into
unstable states, and they showed that the shift on the speed
has the form —7*(In &), showing a strong dependence on
the cutoff threshold e. A little bit later, Kessler et al. [14]
discussed the problem of the time development of leading
edges, precursors, and cutoffs in fronts propagating into
metastable states, finding a power-law dependence for the
speed shift on the cutoff threshold. In this work, we want to
apply variational principles to determine, for a wide variety
of reaction terms, the lower bound for the front speed for the
reaction-diffusion equation

atu:&xxu'*'f(u)’ (1)

where the reaction function f(u) contains a cutoff. First, we
start by showing that variational principles maydefine the
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sign of the shift in terms of the analytic properties of the
reaction function. In particular, we show that when the cutoff
is considered on the unstable state then the shift is negative
and it reduces the front speed. However, when it is consid-
ered on the metastable state, then the shift is positive and it
increases the front speed. We propose a variational principle,
more adequate to study the cutoff effect, and we show that it
improves the previous variational principles and also pro-
vides lower bounds with an excellent agreement with nu-
merical solutions. In consequence, this work shows that
variational principles are a general framework able to de-
scribe itself the cutoff effect on the speed of fronts propagat-
ing into unstable and metastable states.

II. VARIATIONAL PRINCIPLE: POSITIVE
AND NEGATIVE SHIFTS

We consider monotonically decreasing fronts u=u(z=x
—ct) propagating with constant asymptotic speed ¢ joining
u=1 and u=0. The front satisfies u”+cu’ +f(u)=0, under the
boundary conditions u(z— %)=0 and u(z——-)=1, where
the prime symbol stands for derivative respect to z. From the
usual variational principle, the asymptotic front speed is
given by [1]

1
ffgdu
) 0
cc=max| 22—,

1 (2)
ses f (¢2/h)du
0

where h=-dg/du and S is the set of positive and monotoni-
cally decreasing trial functions g(u) in (0,1) for which the
integrals involved in Eq. (2) are convergent. On frequent
occasions it is not possible to know the form of the function
g=g(u) which maximizes the relationship in brackets in Eq.
(2) and one can find only lower bounds

©2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.72.056113

V. MENDEZ, D. CAMPOS, AND E. P. ZEMSKOV

L6 4
154/ i
w1 . . .
10 20 30 40 50 60 70
In(1/¢)

FIG. 1. Front speed (dimensionless) versus the cutoff for pulled
fronts propagating into unstable states. Symbols (squares) corre-
spond to numerical solutions obtained from the integration of Eq.
(1) with f(u)=6(u—e)u(1—u). Curves corresponds to the solutions
obtained from the variational principles. In particular, c(LO)
tained from the old variational principle (10), c L) is obtamed from
the new variational principle (11) by using g 0(y), cr
from the improved variational principle by usmg g( )(u) and c( Vis

obtained from the biparametric family ga2 B(u) and the 1mpr0ved

variational principle.
J fedu

f (gz/h)du

is ob-

) s obtained

3)

To consider a cutoff in the reaction function we can write
f(u)=0(u—¢e)p(u), where ¢ is the cutoff threshold and ¢(u)
may be a positive or negative function in (0,1). Then,
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FIG. 2. Front speed (dimensionless) versus the cutoff for the GL
case. Solid lines correspond to the results obtained from Eq. (13)
and symbols are the numerical solutions computed from (1) with
fw)=0(u-e)u(1-u)(1+au). In particular, we take a=3 (),
a=3.5 (°), and a=4 (/). Inset: symbols (M) are obtained by fitting
our results to a power law in & and solid curve is the exponent
calculated below Eq. (13).
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FIG. 3. Front speed (dimensionless) versus the cutoff for the
bistable case. Solid lines correspond to the results obtained from
Eq. (14) and symbols are the numerical solutions computed from
(1) with f(u)=60(u—&)u(1—u)(u—1y). In particular, we take y=0.1 (
1, dashed line), y=0.2 (°), solid line), and y=0.3 (A, dotted line).
Inset: symbols (M) are obtained by fitting our results to a power law
in g, and the solid curve is the exponent calculated below Eq. (14).

1 1 1 &
fgdu= f pgdu = f pgdu - f pgdu. 4)
0 e 0 0

If ¢(u)>0 for ue(0,e] with 0<e<I, then [jpgdu>0
and, from (4), the inequality || (l]fgdu< f (l)(pgdu always holds.
Hence, from Eq. (2) one obtains
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FIG. 4. Front speed (dimensionless) versus the cutoff for the
Schlogl reaction function. Solid lines correspond to the results ob-
tained from Eq. (15) and symbols are the numerical solutions com-
puted from (1) with f(u)=6(u+1-g)(1-u?)(u+0). In particular,
we take o=1/4 (A), o=1/3 (°) and o=1/2 (OJ). Inset: symbols
(M) are obtained by fitting our results to a power law in &, and the
solid curve is the exponent calculated below Eq. (15).
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FIG. 5. Schematic plot of the combustion reaction term
fu)=uP(1-u). The inflection point u* defines a tangent line which
cross the horizontal axis at € which represents a intrinsic cutoff.
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Defining c,=cy+ éc, from (5), the shift éc is negative and
the presence of a cutoff reduces the front speed. However,
if the cutoff is such that ¢(u)<0 for ue(0,e] with
0<e<1, then [{egdu<0 and the shift dc is positive: the
presence of a cutoff increases the front speed. For example,
in the case f(u)=6(u—e)u(l—u) one has Sc <0, while for
f(u)=60(u—¢e)u(l-—u)(u—b) with 0<e<b, one has 5c>0.
Thus, we have shown how variational principles are able to
infer the sign of the shift in the front speed due to a cutoff in
a very general way.
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FIG. 6. Front speed for combustion fronts (dimensionless) ver-
sus the intrinsic cutoff e. In the inset, the front speed versus the
exponent 3 is plotted. Solid curves stand for theoretical results ob-
tained from Eq. (16) and symbols (°) are numerical solutions of (1)
with f(u)=uPf(1-u).
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FIG. 7. Front speed (dimensionless) versus the cutoff for com-
bustion case with external cutoff. Solid lines correspond to the re-
sults obtained from Eq. (17) and symbols are the numerical solu-
tions computed from (1) with f(u)=0(u+1-e)(1-u?)(u+0). In
particular, we take B=1.5 (o, €=0.04), B=2 (O, €=0.111), and
B=2.5 (A, €=0.184).

III. IMPROVED VARIATIONAL PRINCIPLE

We split the equation u”+cu’ +f(1)=0 in two regions: re-
gion I, where 0 <u<e and region II, where e <u<1. De-
fining py=—du;/dz, and py=-duy/dz, one has the following
differential equations for front

p@&—0p=0
Idl/ll el »

dpy

—— —cgpu+ @luy) =0. (6)
duu

Pu
From the first equation in (6) one finds p;=cu;, and
multiplying the second one by g and integrating over uy, we
have

1 ! ! 1
—58(8)82C§+J g@(”ll)duH:f d”II(ngPH_EhP%I)v

where we have made use of the matching condition for the
front slope at u=eg; that is, py(e)=p(e)=c.e in the integra-
tion by parts of f duygpudpy/ duy. Since c,, py, g, and h are
positive for fixed uy, the function ®(py)=c.gpy—1/ 2th
has a maximum at pjJ**=c,g/h, so that ®(py) <c’g?/(2h) at
each value of uy. It then follows that

1
2] godu
2 &

c2=ci(e)=— : (7)
f (g*h)du + €*g(g)

This lower bound is valid for any reaction function for
which a monotonic front exists. To prove that this is a
variational principle we have to show that there exists a func-
tion g for which this equality holds. From pmax—csg/ h, one
can see that the equality is attained when ¢ is such that
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g'1g=-c./py, which may be integrated to obtain

uyp

&(uy) = exp(= Csf duy/py) (8)
o

with e <uy<l.

Since pp vanishes at wupy=1, we must analyze the
behavior of g at this point in order to ensure the convergence
of the integrals in (7). Near uy=1 one has py~r(1-uy)
to the lowest order, where r is the positive root of
r*+rc,—¢'(1)=0. Thus, from Eq. (8) we obtain g~ (1
—uy)"’“s; ¢ and g2/h diverge at most as (1—up)’=*!, and
the integrals in (7) exist. Therefore, the asymptotic front

speed is given by
1
ZJ godu

1 bl
f (g h)du + %g(¢)

©)

¢2 = max
ges

where the maximum is taken over all positive decreasing
functions g in (0,1) for which the integrals exist. Note that in
the case =0, Eq. (9) reduces to Eq. (2). Note that the varia-
tional principle in Eq. (9) is valid in general for any reaction
term. As the problem of searching the trial function g, which
maximizes the expression in brackets in Eq. (9) and trans-
forms the inequality in Eq. (7) into an equality, is a rather
difficult task, we deal with finding the best lower bound, and
it will be compared to numerical solution directly performed
on the reaction-diffusion equation du=4, u+0(u—e)p(u)
under a steep initial condition. This shall be done in turn for
fronts propagating into unstable and metastable states.
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IV. FRONTS PROPAGATING INTO UNSTABLE STATES

We consider here two special cases: the Kolmogorov-
Petrovskii-Piskunov (quadratic) and the Ginzburg-Landau
(GL) (cubic) reaction functions. In both cases we will
compare our lower bound with numerical solutions and
with the results of Brunet and Derrida [1] and Kessler
et al. [14].

A. Pulled fronts propagating into unstable states

First we consider the family of trial functions
gg))(u)=u”“1 as in [1]. Taking @(u)=u(1-u), from the old
variation principle [Eq. (3)] the best lower bound is

1= a+1 1- a+2 172
C(LO)(8)=|:2 max (1—a2)< £ _—° )} .

—1<a<l 1+« 2+«
(10)

Second, we consider the same family gg))(u), but using

now the variational principle developed in Sec. III, we
find

l-al+(l+a)e™*—(2+ a)s‘“l}”2

(M) —
c;(e)= {2 max oot

_1<a<12+ « 1-

_s lns—s+1~2 3 +E 1 (11)
"NV Ine-2 In(1/e) = 4 (Ing)?

Finally, as the aim here is to compare the improvement of the
new variational principle, we consider alternatively the fam-
ily gS)(u)=[(l—u)/u]1‘“ also in the new variational prin-
ciple to obtain

I'(1+a)l'(3-a)-6G,(a,) 172 5 323 1

C(Lz)(s) =2 1H<1a)i1(l -a)

where Gi(a,g)=g'*%F (a=-2,a+1;2+a,e)/(1+a) and
,F, is the hypergeometric function. In the last equality of Eq.
(12) we have used the fact that the maximum is attained very
close to a=-1, as may be checked numerically by plotting
(12) versus « for some values of e. Our goal here is to
compare (11) with (12) in order to find which family of trial
functions fits better with numerical solutions. In Fig. 1 we
compare c(LO), c(Ll) and c(Lz) (dashed lines) with numerical so-
lutions (symbols). Two interesting results may be found: first
of all, the new variational principle improves the old one,

and secondly, the agreement with the family gS)(u) is better

I'(1+a)l'(3-a)-6G(a,e)+6(1 —a)e' (1 -—g)'~*

=2-3 In(1/e) 192 (In &)? (12

than with gg))(u). However, the best fit is not in an excellent
agreement with numerical solutions or with the Brunet and
Derrida’s result ¢,=2—*(In €)= [13]. To improve the result

of c(Lz) , we try with the biparametric family of trial functions
gﬁ?,),(u):u“‘l(l —u)P. In this case, the new lower bound cf)

involves integrals that have to be numerically performed as
well as the maximum over « and 3. When & — 0, the maxi-
mum is attained at large 8 and a— 0. For € ~ 1, it is attained
at 8—0 and a— 1. In Fig. 1, the lower bound is depicted in
solid line and exhibits good agreement with the numerical
solutions.
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B. Pushed and pulled fronts propagating into unstable states

We consider here a front connecting the unstable state u
=0 to the stable state u=1 of the GL reaction function
o(u)=u(l1-u)(1+au) with a>0. First of all, we have to
check that when £=0, our result is in agreement with that
obtained by Ben-Jacob et al. [15]. Making use of the family
gg)(u), we get

PHYSICAL REVIEW E 72, 056113 (2005)

{ u 12
¢;(0)=92 max (l—a)[l+z(1+a)] .

-1<a<l

When a<<2, the maximum is reached at a=-1 and
¢;(0)=2 (pulled front), while for a>2, the maximum is at-
tained at a=-2/a and cL(O):v%+ va/2 (pushed front) in
agreement with [15].

Now, we consider & # 0 and gS)(u). In this case, from (7)
we get

T(1+ TG - @) - 6G,(a,8) + Zr(z + )T (3 = @) - 6aG,(a,s)

ci(s) =2 1n<1a)il(1 -a)

where G,(a,e)=e**%F(a=2,a+2;3+a,e)/(2+a). Tak-
ing the first derivative respect to « in Eq. (13) and perform-
ing a perturbative expansion in powers of g, it is easy to
show that the maximum is reached at
a=-2/a+(higher-order terms). On setting this into (13),
ci(e)~0(0)+&'">* and Sc~&'~?* to the leading order, in
agreement with the result already obtained by Kessler et al.
[14]. In Fig. 2, we compare the lower bound obtained from
(13) with our numerical integrations and with the scaling
relation 8¢~ &'~ (inset). An excellent agreement is found.
The symbols in the inset of Fig. 2 correspond to find the
exponent n after fitting the results for dc obtained from (13)
to a power law &". It is shown here that the shift éc is nega-
tive and the cutoff reduces the front speed, in agreement with
our results in Sec. II.

V. FRONTS PROPAGATING INTO METASTABLE STATES

In this section we deal with front propagation into the
metastable state. We consider here the bistable reaction term

I'(l1+a)'(3-a)-6G(a,e)+6(1 —a)e'**(1-¢)'~ ’

(13)

employed in front propagation in excitable media [16] and
the Ginzburg-Landau cubic reaction functions. As in the pre-
vious section, we will compare the results derived from the
variational principle with numerical solutions and the
Kessler’s scaling relations.

A. Bistable reaction function

Let us consider a front joining the metastable state
u=0 to the stable state u=1 for the reaction function
e(u)=u(l-u)(u—vy) with 0<y<1/2. Taking the family
(1) : _

g,, (u) one obtains, for £=0,

1+ o o
cL(0)={2 max (l—a)[ a—'y}} =TE—a\"2,
A

—1<a<l 4

in agreement with the already known result [16]. For e #0
we find from (7)

1
ci(s) =— max (1 -a)
2 _1<a<l

Following the steps of the previous section, we obtain here
that the maximum is attained at a=2y+ (higher-order
terms). Thus, from (14), éc ~&'*?” to the leading order. This
case was not dealt by Kessler et al., but the scaling law may
be also obtained following his estimations. In Fig. 3 we plot
in curves the results obtained from (14) which are in very
good agreement with numerical solutions (symbols) and with
the scaling law (inset). It is worthwhile to mention that here
the shift Jc is positive, in agreement with the general result
of Sec. II. Thus, the cutoff here increases the front speed,

'+ ao)l'G-a)-24G,(a,e) —4al'(1 + )I'(3 — @) + 24aG(a, )
I'(1+a)l(3-a)-6G(a,e)+6(1 —a)e'™(1-¢g)!~* '

(14)

contrary to what happens for pulled fronts propagating into
unstable states.

B. Schlogl reaction function

We deal with the Schlogl reaction function to study the
front propagation into the metastable state. To do this, we
consider the case studied by Kessler er al. [14], in which
fu)=60u+1-g)(1-u?)(u+0) with 0<o<1. We consider a
front connecting the metastable state u=—1 to the stable state
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u=1. In order to apply the variational principle, we have to
define a new field p such that p(z— )=0 and p(z— —=)
=1. If we define p=(1+wu)/2, and introduce it into the gen-
eral reaction-diffusion equation, we obtain p"+cp’+46(p
—e/2)p(1-p)[p—(1-0)/2]=0. Computing the front speed
without a cutoff (e=0) with the family gS)(u) we get, after
some algebra,

PHYSICAL REVIEW E 72, 056113 (2005)

{ - a }1/2
¢;(0)=12 max 5 [(I+a)(1-0-a)-3(1-0)]

—-l<a<lz— &
—
= 0'\!’2’

which is the expected result [16]. When cutoff is present,
from (7), the lower speed reads

N2+ a)l'G-ao)[l +a-2(1 - 0)]-24G,(a,e/2) + 12(1 = 0)G,(a,&/2)

ci(s) =2 1n<1a)i1(1 -a)

The maximum is then reached at a=1-o+(higher-order
terms) and then the shift scales as dc ~ &>~ to the leading
order, in agreement with Kessler’s results. In Fig. 4 we
show that the agreement is excellent between variational
results, numerical solutions, and the power-law scaling
(inset). In this case, there is also a positive shift Sc on the
speed.

INTERNAL CUTOFF

Up to now, we have considered the cutoff as a conse-
quence of the discrete nature of the particles which has
to be introduced into our equation by hand. Now we want
to point out that some reaction functions incorporate
their own cutoff. For example, combustion reaction functions
take into account the existence of an ignition threshold (by
means of an activation energy or an ignition temperature)
such that for values of the field lower than the threshold,
there is no reaction. Another example may be the interaction
between green and burning trees in a forest fire model [17].
If B stands for the number of burning trees needed to set fire
to a neighboring green tree, then f(u)=u”(1-u). 8 plays the
role of an internal cutoff because in the neighborhood of the
state u=0, the reaction term is very small and there exists a
plateau region such that for a finite range f =0. In Fig. 5, we
draw f(u)=uP(1-u) qualitatively to illustrate this behavior.
If we call u” the horizontal coordinate of the inflection point,
it is easy to find that u"=(8-1)/(B8+1). Tracing the tangent

B+ ao)l'G-aw

I'(1+a)'(3-a)-6G(a,e/2) +6(1 — a)(e/2) (1 — e/2)!7

(15)

line to f at the inflection point, a cutoff € may be arbitrarily
defined as the distance between 0 and the crossing point
between the tangent line and the horizontal axis; i.e., €
=[(B-D/(B+1)].

To obtain the lower bound to the front speed, we take the
family gfyl)(u) and obtain from Eq. (3)

12 (1-a)'(a" +pB)
rg+p TI+a) °

where o is solution of the equation W(a'+8)-W(a +1)
=(1-a")™" and ¥(x)=d In I'(x)/dx. As may be seen in Fig.
6, there is an excellent agreement between the front speed
computed from (16) (solid lines) and the numerical solutions
(symbols). We have fitted dc=c;(B)—c;(B=1) to a power
law and we have obtained 8c=-2.39€"2°. Thus, in combus-
tion reaction terms, the cutoff € acts qualitatively, as in a GL
reaction function when the front propagates into the unstable
state.

ci(B) = (16)

Internal and external cutoff

We consider now an external cutoff on the previous com-
bustion reaction term; that is, f(u)=6(u—e)uP(1-u). It is
expected that if & < € then the effect of the external cutoff is
insignificant because it cuts a region where f=0. To appre-
ciate the effect of the external cutoff, we will need to deal
with high values of . From Eq. (7) and also assuming the
family g(al)(u), one gets for this case

F(3+,B) —G3(a,ﬁ,s)

ci(s,ﬁ)=2 max (1 - a)

—-B<a<l

I'(4)

I'l+ao)l'G-a)

. (17)
-G(a,e)+ (1 —a)e*¥(1-¢)'™
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where  Gs(a,B,8)=eP** F (a=2,a+B;B+a+1,8)/(B
+a). In Fig. 7 we observe really good agreement between
numerical solutions (symbols) and the results obtained from
(17) (solid lines) for different values of S. It is observed that
appreciable shifts occur for e ~ 107!, a very high value for a
cutoff.

In this case, the shift is negative, as in the case of front
propagation into unstable states. Likewise, it is interesting to
see that u=0 has an indefinite stability because ¢'(0)=0.
Finally, we note that when B=2, it is possible to find an
exact solution for the maximum in Eq. (17) because it is
attained at =1, and then

2= i) [143: 1 3,
2)=—=(1- —_— = — _ —g% g -
cLi® \/2 & l+e+ 82 \,E \JES

VII. CONCLUSIONS

In this work we have applied variational principles to
study the effect of a cutoff on the speed of propagating
reaction-diffusion fronts. We have shown, in a general way,
that variational principles determine the sign of the shift in
the front speed induced by a cutoff threshold. If f(u)=6(u
—&)@(u), where & stands for the cutoff, it is shown that the
sign of the shift depends on the sign of the reaction function
¢o(u) in the interval (0,e]. The shift is positive if
@(u) < (0.:7<0 (the front propagates into the metastable state)
and it is negative if ¢(u),c (91> 0 (the front propagates into
the unstable state).

We have also improved the variational principle to deal
with reaction-diffusion with a cutoff for fronts propagating

PHYSICAL REVIEW E 72, 056113 (2005)

into unstable and metastable states. Our first application has
been devoted to pulled fronts propagating into unstable
states, where we have proved that the new lower bound for
the front speed improves the results obtained from the old
variational principle, widely employed in the literature.
However, to get a better agreement with numerical solutions
and the Brunet and Derrida’s result we have considered a
biparametric family of trial functions. The family gS)(u)
=[(1-u)/u]'"* has been considered to obtain lower bounds
for pushed fronts propagating into unstable and metastable
states. The theoretical and numerical results are in excellent
agreement and the results obtained by Kessler er al. have
been analytically recovered.

We have discussed the existence of an internal cutoff in
combustion reaction terms and the external inclusion of an
additional cutoff. We have obtained lower bounds, in very
good agreement with numerical solutions. Variational prin-
ciples are shown specially interesting for dealing with com-
bustion fronts with a cutoff because the methods of neither
Brunet-Derrida nor Kessler et al. are valid to calculate the
shift. In this case, it is not possible to obtain the exact solu-
tion for the front speed when =0, nor is it possible to cal-
culate front solutions near the state =0 by linearizing the
traveling wave equation due to the nonlinearities of the re-
action term.
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