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Nonuniversality in microbranching instabilities in rapid fracture
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The apparent similarity of microbranching instabilities in different brittle materials gave rise to a widely held
belief that many aspects of the postinstability physics were universal. We propose that the physics determining
the typical length and time scales characterizing the postinstability patterns differ greatly from material to
material. We offer a scaling theory connecting the pattern characteristics to material properties (like molecular
weight) in brittle plastics like PMMA, and stress the fundamental differences with patterns in glass which are
crucially influenced by three-dimensional dynamics. In both cases the present ab initio theoretical models are
still too far from reality, disregarding some fundamental physics of the phenomena.
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More than a decade of high precision experiments on
rapid crack propagation in brittle materials has ignited the
interest of the physics community [1]. It appears that one
important prediction of “linear elasticity fracture mechanics”
[2], stating that cracks will accelerate smoothly as they
lengthen until they reach their asymptotic velocity (bounded
either by the loading conditions or by the Rayleigh speed cg),
is in fundamental contradiction with experiments. In thin
brittle plates of width W (see Fig. 1; W is in the z direction,
with the length in x and the height in y much larger than W),
at some finite fraction v, of the Rayleigh speed, the smooth
dynamics of the crack evolving in the x direction is marred
by the appearance of microbranches in the x-y plane that do
not cut through the whole width W. This dynamical instabil-
ity was observed in many different materials, including glass,
plastics, and gels. The experimental analysis [3,4] of the
postinstability features (geometry of side branching, velocity
fluctuations, etc.), as well as theoretical models of the phe-
nomenon [5], stressed the apparent universality, as if the dy-
namics are invariant to the material. The aim of this Rapid
Communication is to point out that the universality may have
been overstressed.

The microbranches have a typical length €,, a typical
width Az=<W, and they appear to recur with an average pe-
riodicity. We will refer to this recurrence scale as “the scale
of noisy periodicity” Ax. In glass, this scale appears to range
between the measurement resolution (~1 um) and a few
mm [7], while in PMMA between tens and hundreds mi-
crometers [6], depending on the material properties and the
experimental conditions. We argue in this Rapid Communi-
cation that the nature of this length scale and the physics that
determine it are nonuniversal.

As is well known, linear elasticity fracture mechanics has
no typical scale, and thus the appearance of such a scale is
yet another demonstration of the need to modify this theory
in the context of dynamic fracture. Indeed, there exist con-
cepts in the classical theory of crack propagation that can be
used to form a length scale. Recall that in the classical theory
one asserts that as a crack of length L propagates at velocity
v under loading conditions o, the energy G(o,L,v) released
from the stressed material streams into the tip region where it
is compensated by the total dissipation I'(v),
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G(o,L,v)=T(v). (1)

The dissipation function I'(v) is not computable from elas-
ticity theory, but it can be measured in experiments [essen-
tially by using Eq. (1)]. Equipped with this function and the
Young modulus E of the material we can form a (velocity
dependent) scale from

(v) =TW)/E. (2)

To get a rough estimate of the resulting scale, we use the data
for PMMA determined in [1] near the onset of the micro-
branching instability: I['(v.)=3000J/m? and E=3
% 10° N/m?. This predicts €(v) in the wm range; a similar
estimation for glass yields a nm scale. We thus understand
that the scale computed in Eq. (2) may be relevant for
PMMA, but appears utterly out of range for glass, where the
observed scales of noisy periodicity must be sought else-
where, as we discuss below. Given information about the
largest stress value that marks the breakdown of the linear
theory, say o,,, another length scale can be constructed as

7(v) = ET(v)/o?. (3)

We estimate o,, by the yield stress of the material. For the
materials under discussion the resulting length scale is typi-
cally two order of magnitude larger than (2), putting it right
in the range of scales of noisy periodicity for PMMA, but
still off range for glass. We continue now to assess the rel-
evance of (2) or (3) to PMMA. Obviously, the dissipation
I'(v) in PMMA should be a strong function of the molecular

FIG. 1. (Color online) Typical geometry of a dynamically gen-
erated crack, with the side branches that result from the instability
leaving their mark on the faces of the crack.
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weight M of the polymers that make the material, due to the
increased density of entanglements of the polymer chains.
Indeed, a calculation of the M dependence of I in quasistatic
conditions exists [8], with the resulting prediction

I'(v=0) ~ exp(— My/M), (4)

where M|, is a constant. On the other hand, the Young modu-
lus E and the yield stress were shown [9,10] to be M inde-
pendent.

The length (2) [or (3)] will be dressed by dynamical ef-
fects, which we introduce in the form £(v)=e™M"Mg(v/cy).
To proceed, we adopt the scaling assumption that €(v) is the
only typical scale in the problem, characterizing the length €,
of microbranches in the x-y plane as well as Ax in the x-z
plane. In addition, we will assert that in PMMA (in contrast
to glass, see below for further discussion) the relevant length
scales are determined by a competition between the side mi-
crobranch and the main crack, without important dynamical
coupling to the third dimension. In this respect the mecha-
nism underlying the repetitive nature of the microbranching
process in PMMA 1is qualitatively similar to the two-
dimensional branching model developed recently in [11]. In
this model, the local competition between the side branch
and the main crack temporarily slows the main crack below
the relevant branching velocity. When the main crack regains
the critical velocity another side branching event occurs (see
Fig. 7 in [11]). It was found (see Fig. 6 in [11]) that the
velocity dependence of €, has the following form:

€,(v) = ()1 + alv —v,)/eg]. (5)

Here €,(v,.) is the finite length of the side branch which
occurs at the threshold and « is a dimensionless coefficient.
In [11] this length was introduced by hand to represent the
scale over which linear elasticity theory is not applicable (the
so-called process zone); here we take it as the undressed
length proportional to exp(—My/M). Collecting our assump-
tions together we present the prediction for the scale of noisy
periodicity and the length of the microbranches in PMMA,

Ax(v,M) ~ €,(v,M) ~ e MM + a(v —v.)cg].  (6)

Note that if indeed the scale €,(v.) is physically identified
with the process zone, it may have a velocity dependence of
its own. If this velocity dependence is linear, the prediction
(6) remains unchanged.

It is possible to test this major prediction against available
experiments. The influence of the mean molecular weight M
on the scale of noisy periodicity in PMMA was studied in
[12]. Figure 2 displays their experimental data for M In(Ax)
as a function of M (taken from Table 1 in [12]). The almost
perfect linearity of the graph lends a strong support to the M
dependence in our scaling law. Next, the branch length at a
fixed mean molecular weight as a function of the normalized
mean velocity for PMMA is shown in Fig. 3. It is clear that
€, is linear in v as predicted by our scaling relation. More-
over, the fit indicates the existence of a finite length €(v,)
=~ 30 um as predicted by the scaling law. This finite length is
determined uniquely in this graph once v, is known. The
value of €(v,) is confirmed in [6]. Moreover, dividing €(v)
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FIG. 2. (Color online) M In(Ax) as a function of M (measured in

units of 10°). The filled circles are the experimental data taken from

[12] (see Table 1 in [12]), the solid line is a linear fit with M,
~ 1.2, and the proportionality constant in Eq. (6) is =500 wm.

by v one gets a typical time scale (say for v=500 m/s we get
a typical time of 0.7 us, in agreement with [6].)

In summary, the time and length scales of the noisy peri-
odicity in PMMA appear to be adequately described by a
scaling theory in which the main scale depends on the mate-
rial properties I', E, and possibly o,,, dressed by dynamical
effects which are not fundamentally dependent on a coupling
to the dynamics in the third dimension. There is nothing like
that in glass. First, we remarked before that the length scales
(2) and (3) are in 1-100 nm range, whereas the noisy peri-
odicity in glass appears on scales up to a few mm. Moreover,
we will point out now that there is no typical scale of noisy
periodicity in glass experiments; the distances between mi-
crobranching events can vary over three orders of magnitude
(from the measurement resolution to the scale of the width
W), and they are determined by a dynamical mechanism that
rests crucially on the dynamics of the crack front in the nar-
row third dimension along the width W.
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FIG. 3. (Color online) The branch length €, as a function of the
mean normalized velocity for PMMA. Data taken from [3]. The
solid line represent the liner fit with a=~60, v.=~0.365c;, and
{(v.) =30 um.
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FIG. 4. The correlated microbranches in glass samples. Each
series of microbranches is localized in a strip of width Az, and has
a noisy periodicity Ax=4-5Az, adapted from [7].

In glass, once a microbranch forms at a location z along
the width of the sample and with a width Az, the next
branching events fall very precisely along a strip of width Az
localized at the same location z; see Fig. 4 as an example.
The crucial phenomenon that is responsible for these highly
correlated structures is the interaction of the crack front with
spatial heterogeneities (regions of variable I'). These can
generate nondecaying waves that travel with velocity cpy
(relative to the heterogeneity) on the front as it propagates
[13]. Plane numerical simulations [14] have shown that the
interaction of the front with an asperity leads to a velocity
overshoot exactly ahead of the interaction site, see Fig. 5.

Since the creation of a microbranch increases I' locally,
one expects the generation of front waves, as indeed was
observed in glass and can be seen in the inset of Fig. 4. The
resulting velocity overshoot just ahead of the microbranching
event was interpreted by Sharon, Cohen, and Fineberg [7] as
the source of the well-defined lines of microbranches in
glass. In this picture, the creation of a microbranch reduces

5

FIG. 5. The front waves generated by the interaction of the front
with an asperity. The front velocity profile is plotted at constant
time intervals. Note the velocity overshooting just ahead of the
asperity. d,s,R are the cones generated by the dilatational, shear,
and Rayleigh waves, respectively. The relation cpy = cp is apparent,
adapted from [14].
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locally the velocity of the main crack below the micro-
branching velocity, but this velocity is reached again due to
the velocity overshoot just ahead. The typical time 7 for this
process is the time needed for the front wave to travel a
distance of the order of the width of the microbranch Az.
Since the velocity of the front wave along the front is
Vcpy—v? one obtains

7~ Az(v)/N 2 (7)

)
Therefore, the noisy periodicity scale Ax is estimated as

Ax(v) ~ Az(v)v/Vc%W —v% (8)

Since the combination v/ C%W—Uz is a slowly increasing
function of v [0.94¢g < cpy(v) <cg] in the relevant range of
velocities, one expects the ratio Ax(v)/Az(v) to be nearly
constant and this is indeed the case as shown in [7], where
the relation is stated to be Ax=4-5Az. The point that we
want to stress here is that in contradistinction with PMMA, in
glass there exist no typical scale for the noisy periodicity.
Ax(v) can be anything, depending on the width of the first
microbranch Az(v). After that the dynamics will sustain re-
peated microbranches every Ax=4-5Az. The only thing that
can happen is that Az(v) might increase as a function of v,
which is the last issue that we discuss.

As noted earlier, Eq. (1) predicts that cracks accelerate
smoothly towards their asymptotic velocity. A crucial as-
sumption leading to this prediction is that a single crack
whose front is essentially a point, can expend the extra en-
ergy flowing to its tip, by adjusting its velocity and increas-
ing the kinetic energy of its surroundings. This assumption
holds up to v,, but breaks down for v >v,. At the onset of
instability, a multiple crack state is formed by repetitive frus-
trated microbranching events, and these microbranches break
the translational invariance in the third dimension, occupying
a finite width Az<W. The essence of the instability is that
the additional energy supply is expended on creating more
surface area per unit crack extension, even at a constant ve-
locity. This process introduces new dynamic variables to the
problem: the number of coexisting branches n, the morphol-
ogy of the branches in the x-y planes and their width Az. All
these variables contribute to the additional energy dissipation
per unit crack extension. It was shown [15] that the total
surface energy created per unit crack extension is propor-
tional to the total energy release rate, implying that in this
regime the fracture energy I'(v) is constant, independent of
the velocity. Assuming that Az characterizes the width of the
microbranches as long as they exist, we can write

WG(v) = Az(v)f(n(v),.. )T + WI, 9)

where the right-hand side is a sum of the dissipative contri-
butions from the microbranches as well as from the main
crack, respectively. The function f(n(v),...) depends on the
number of coexisting microbranches, their morphology, and
maybe other dynamic variables. The last relation can be re-
written as

Az(v) = WG()T = 11/f(n(v),...). (10)
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FIG. 6. The pattern width Az as a function of the normalized
mean velocity v/cg for the PMMA (filled symbols) and glass
(empty symbols), adapted from [3].

Although f(n(v),...) is not known in adequate detail, we
can still draw a relevant qualitative conclusion. Since G(v) is
known from experiments to be a strongly increasing function
of v [15], we can safely expect that Az(v) is also a strongly
increasing function of v. This expectation is supported by the
data; the dependence of Az on the mean velocity v for both
PMMA and glass is shown in Fig. 6. We stress that in glass
the increase in Az(v) must affect the scale of noisy periodic-
ity, whereas in the PMMA it does not. In glass, the dynamics
along the third dimension are strongly coupled to the dynam-
ics in the longitudinal direction (by the front waves mecha-
nism), and the dynamic length scale Az controls all the other
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length scales. In PMMA, the dynamics along the third dimen-
sion are only weakly coupled to the dynamics in the longitu-
dinal direction, where the length scales are determined by
material properties and the elastodynamic competition be-
tween the microbranches and the main crack. We note that in
PMMA the front waves are decaying due to the condition
dl'/dv >0 Ref. [13].

In summary, models of dynamic fracture can hope to ad-
equately describe the dynamic instabilities only if the phys-
ics that determines the fundamental scales were incorporated.
In glass, without adequate treatment of the third dimension
and the physics of the crack front, not much insight into the
microbranching process can be gained. In PMMA the cou-
pling to the third-dimension might be weaker, but one should
resolve how the material parameters appear in the continuum
description. Completely different scaling laws appear in
these two materials due to the different mechanisms that con-
trol the postinstability physics; probably other materials may
increase the richness of the phenomenology. It might be
worthwhile to stress less the presence of universal features
and more the interesting physics that can be learned even
with simple scaling theories.
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